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Electrochemical methods are environmentally friendly and have unique advantages in the synthesis of
organic chemicals. However, their implementation is limited due to the complex transport problems
posed by traditional electrochemical reactors. Recently, the application of microreaction technology in
electrosynthesis studies has reduced the transport distance of ions and increased the specific surface area
of electrodes, leading to efficient, successive, and easily scaled-up electrosynthesis technologies. In this
review article, engineering advantages of using microchannels in electrosynthesis are discussed from
process enhancement perspective. Flow patterns and mass transfer behaviors in recently reported
electrochemical microreactors are analyzed, and prototypes for the reactor scale-up are reviewed. As a
relatively new research area, many scientific rules and engineering features of electrosynthesis in
microreactors require elucidation. Potential research foci, considered crucial for the development of novel
electrosynthesis technology, are therefore proposed.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Electronic transfer induced by the chemical potentials of oxida-
tive and reductive substances occurs in most chemical reactions.
This electronic transfer can also be induced by electrode potential,
which moves electrons directly from the chemicals to external cir-
cuits. Since the publication of Mantell’s book on electrochemical
cells in 1930, electrochemical engineering has developed steadily,
and large-scale industrialization has been achieved in the chlor-
alkali industry [1]. As an atom-economic reaction technology [2],
electrochemical reactions are widely used in organic synthesis
[3,4], which are commonly called electrosynthesis process. For
example, electro-oxidation of organic chemicals produces highly
reactive intermediates such as ‘‘cation pools” [5] and free radicals
[6], which join the reaction chain to generate target products. Com-
pared to ordinary redox reactions, in which the standard chemical
potentials are determined by the oxidants and reductants,
electrochemical reactions allow the manipulation of oxidation or
reduction ability, enhancing selectivity of destination products.
Therefore, electrochemical methods are essential for producing
high-value compounds suffering from selectivity problems during
synthesis or processing [7], such as pharmaceutical intermediates
and natural homologues. For example, Kawamata et al. [8]
reported an electrochemical method for the oxidation of
inactivated carbon (C)–hydrogen (H) bonds by employing
quinuclidine as a redox mediator, which realized 50 g of sclareolide
in a laboratory-scale reactor fitted with inexpensive carbon and
nickel electrodes. The same group also reported an electro-
oxidative dimerization method for creating nitrogen (N)–N linked
dimeric indole alkaloids, which was applied in the total synthesis
of dixiamycin B [9].

Although the advantages of electrosynthesis methods have
been demonstrated, electrosynthesis technologies are not widely
used in the chemical industry [10], likely due to the requirement
of complex reaction systems, including additive electrolytes, and
the high energy cost due to the low substance transport efficiency
in traditional electrochemical reactors. In the early of 1969, Beck
and Guthke [11] presented the advantages of reducing the distance
between electrodes during electrochemical processing. Recently,
the combination of microreaction technology and electrosynthesis
methods has attracted the interest of academia and industry
[12,13]. Essentially, an electrochemical reaction is a solid–liquid
reaction process. Using microchannels as the flow cells of electro-
chemical reactors, the distance of ionic migration is greatly short-
ened, which reduces the Joule heat of the reaction and facilitates
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removal of the supporting electrolytes from the reaction system. In
addition, the electrical field in a microchannel equipped with
parallel electrodes is more homogeneous while the short distance
between electrodes creates a stable internal laminar flow, which
improves control of the contact sequence of reactants. As a hybrid
technology, the electrosynthesis microreactor has both the advan-
tages of electrochemical reaction and transport enhancement,
including high reaction selectivity, precise residence time control,
and enhanced working efficiency and safety [13,14]. Furthermore,
both electrochemical and microreaction devices accommodate
numbering-up [15], allowing associated processes to be scaled-
up for industrial application.

Based on our research, electrosynthesis microreaction technolo-
gy has not enjoyed much attention until 2015 when the first
reports appear in literature. Reports have since increased [7], in
conjunction with the fast development of flow chemistry. Most
recent conferences of flow chemistry societies in Asia, Europe,
and North America have featured electrosynthesis topics, includ-
ing selective oxidation of alcohols [16], carbon dioxide (CO2)
reduction [17], carboxylation [18], C–sulfur (S) cross-coupling
[19], trifluoro-methylation [6], amino group deprotection [20],
hexylthiophene polymerization [21], and organic compound
degradation [22]. Due to the rapidly increasing influence of elec-
trochemical methods, several review papers have discussed
examples of electrosynthesis microreaction studies in terms of
chemical innovation [1,2,7,12], while regrettably, analysis from
a reaction engineering perspective, which is crucial for the design
and application of the novel technology, has been limited. To
address this oversight, we present a preliminary analysis of the
features of an electrochemical microreactor, in comparison with
traditional electrochemical reactors. Some examples do not
involve organic synthesis, but are reviewed in order to illustrate
relevant scientific laws and demonstrate the effects of reducing
electrode distance and enlarging the specific electrode area on
the electrosynthesis process. Prototypes of scaled-up electro-
chemical microreactors and their possible future application in
the chemical industry are discussed as well.
2. Advantages of microchannels in electrosynthesis

Electrons are the cleanest chemical reagents; therefore, the use
of electrochemical methods to produce chemicals has long been
cherished by chemists. An electrochemical reactor supports elec-
trochemical reactions and determines the results and working effi-
ciency of electrochemical processes. Most electrochemical reactors
used in organic synthesis in laboratories are batch reactors, repre-
sentative schematics are shown in Figs. 1(a)–(c) [12,23], which
evolved from beaker reactors with additional electrodes and por-
ous separators. In these reactors, the rates of the reactions occur-
ring at or near the electrode surfaces are usually limited by the
mass transfer of substances moving toward or away from the
electrodes, as shown in Fig. 1(a), since the long distance between
electrodes extends the reaction time and may induce unnecessary
side reactions caused by the limited availability of necessary reac-
tants. Some reactors use a rotating electrode (Fig. 1(b)) or stirring
bars (not shown) to promote mixing in the bulk solution, but their
efficacy is limited, especially in working systems involving more
than one liquid phase. To increase the capacity of electrosynthesis
reactors, large-area parallel electrodes in flow cells (mostly used
for flow batteries in energy storage) have been developed, shown
in Figs. 1(d) and (e) [12,24]. This type of compact reaction device
is characterized by short mass transfer distances and is easy to
scale-up [1]. However, to the best of our knowledge, the
inter-electrode distances in these parallel devices are still in the
millimeter to centimeter range [25–27], and the fluid flows
23
between electrodes cannot be effectively controlled by the struc-
ture of the reactor.

Reducing the distance between electrodes in electrosynthesis
devices is significant because most organic reactions proceed more
favorably in weakly polar solutions, with poor ionic transport
performance. The low electrical conductivity of the solution not
only reduces the mass transfer rate of ions, but also causes high
electrical resistance in the electrical loop increasing the energy
cost and heat loss. According to the theory of ionic transport in
solution, the electrical potential required to overcome the cell
resistance is expressed by

Uc ¼ I � L
Ae � j ð1Þ

where Uc is the cell resistance, I is the electrical current, L is the
distance between electrodes, Ae is the surface area of electrode,
and j is the solution conductivity [13]. In many electrochemical
processes, supporting electrolytes, such as tetrabutylammonium
tetrafluoroborate (Bu4NBF4) [28] and tetrabutylammonium
hexafluorophosphate (Bu4NPF6) [29], are used to increase the
solution conductivity, which, in turn, increases the difficulty of
substance purification after the reaction. However, the electrical
resistance is automatically reduced by shortening the ionic trans-
port path. Accordingly, some electrosynthesis reactions in small
flow cells do not require supporting electrolytes [30–32]. Since
the Nernst diffusion layers are usually between 10 and 500 lm in
electrochemical reactions, micrometer-scale flow cells allow for
the coupling of mass transfer near the anode and the cathode
[13], and a process that is less affected by the ion transport in bulk
solution. In terms of engineering, this process requires fewer
reagents, for example, electrolytes, than the conventional process,
improving atom economy. The separation and purification steps
are thus simpler and, possibly safer.

Images of typical electrosynthesis microreactors and an experi-
mental platform found in literature are shown in Fig. 2 [33–36].
Like original microreactors [37], electrosynthesis microreactors
use microchannels as flow cells to carry out reactions, except that
two parallel walls of the channel act as electrodes, which are made
from platinum [38], graphite [39], nickel [16], iron [40], or other
electrode materials. The electrodes may be oriented top–bottom
or left–right, as shown in Figs. 2(a) and (b) [33,36], depending on
the experiment. An ionic membrane may also be fixed between
two parallel microchannels to isolate specific substances and pre-
vent unnecessary side reactions. In contrast with the flow cells in
traditional electrochemical reactors [1], the flow cells in elec-
trosynthesis microreactors do not use board chambers but rather
micrometer sized channels, which are small in both width and
height. The small distance between electrodes should be well
supported by the channel wall, but more importantly, with the
confined flow path, the flow direction of the reaction solution
may be arbitrarily guided, as shown in Fig. 2(c) [35], eliminating
the randomness of the flow directions in flow cells leading to a
more controllable reaction. With the confinement of flow paths,
the residence time distribution is narrowed [41] and the heat
transfer from the solution to the reactor shell is also improved
for the large specific surface area of flow cells [42]. Besides, the
large specific surface area of microchannel also provide large
electrode area for unit volume of a reactor; therefore, the working
efficiency of an electrosynthesis microreactor is higher than a
traditional batch reactor [38]. The results of an electrosynthesis
microreactor and a batch reactor is compared in Table 1 [39], in
terms of a constant current oxidation reaction of 4-aminophenyl
ether to quinone sulfonimides (QSIs) in the presence of arylsulfinic
acids. In contrast to the batch reactor, the electrosynthesis
microreactor containing a 1mm inner width flow cell generated
products (QSIs 1–3 are C20H17NO5S2, C18H13NO5S2, and C18H11Cl2NO5S2,



Fig. 1. Schematics of typical electrosynthesis reactors. (a) Mass transfer and reaction steps in a batch electrosynthesis reactor (beaker cell). r and P represent the reactant and
product, respectively; the asterisk indicates the chemicals involved in the electrosynthesis reaction in solution or adsorbed (subscripted ads) on the electrode; rbulk: reactant
in bulk solution; rads: reactant adsorbed on the electrode; Pbulk: product in bulk solution; Pads: product adsorbed on the electrode; e�: electron; +: positive electrode; �:
negative electrode. Not all electrosynthesis reactions involve a preceding and/or subsequent reaction, they are indicated for generality. (b) Beaker cell reactor with a rotating
electrode used to promote mixing in the bulk solution. (c) H-cell reactor used for electrosynthesis requiring ion exchange control. Due to the isolation separator, mass transfer
mainly depends on diffusion at the regions near the porous membrane. (d) Flow cell reactor for batch electrosynthesis reactions in recycled solutions. (e) Flow cell reactor for
electrosynthesis with reaction chamber divided by ion exchange membrane.
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respectively, which are QSIs with different substituent groups
including CH3, H, and Cl) of high purity, in greater yield, faster.
These reaction engineering factors lead to an electrosynthesis
microreaction platform that is compact, highly efficient, and easily
operated, setup shown in Fig. 2(d) [34].

The assembly of the flow cells of electrosynthesis microreactors
is highly modular [43] and important parts of continuous flow
chemistry systems [44–46], which are considered to the next gene-
ration technology for synthesis of pharisaical and high-value fine
chemicals. For example, Qu et al. [14] reported the green synthesis
of N-phenylphenylglycine and its homologs by using the two-step
flow chemistry process shown in Fig. 3(a) [14]. An electrosynthesis
microreactor was used to generate intermediate anion C, in-line,
through carboxylation of an appropriate imine that was then
converted to a stable a-amino acid by subsequent hydrochloric acid
(HCl) acidification. The carboxylation and acidification proceeded
successively without interruption. Green et al. [47] reported a more
complex flow synthesis approach to N-heterocyclic carbene-
mediated anodic oxidative amidation of aldehydes. A micro-
electrolysis cell was used to oxidize the Breslow intermediates,
24
as shown in Fig. 3(b) [47]. After the electro-oxidation, the interme-
diate N-acylated thiazolium cation was reacted with primary
amines and passed through a heating cell. A yield, productivity,
and current efficiency of 99%, 2.6 g�h�1, and 91%, respectively, were
realized. In addition to being a part of a flow chemistry system, the
flow chemistry component is also useful in the electrosynthesis
process. Fig. 3(c) [48] shows an N-hydroxyphthalimide (NHPI)-
assisted electro aerobic oxidation of acetophenone via an elec-
trosynthesis microreactor with a cation exchange membrane,
which was used to prevent the decomposition of NHPI anions at
the cathode. A Teflon AF tube-in-tube absorber was employed to
feed oxygen-saturated reactant solution into the flow chamber of
the anode, and an in-line flow infrared spectroscopy (IR) detector
was used to monitor the production.

3. Flow and mass transfer characteristics of electrosynthesis
microreactors

An electrosynthesis microreactor is a new kind of microreaction
device, which is not fully understood. To facilitate the development



Table 1
Electrosynthesis of quinone sulfonimides (QSIs) 1–3 using a batch reactor and microreactor [39].

Product Yield in batch reactor
(%)

Yield in continuous
microreactor (%)

Conversion in flow cell
(%)

Electrolysis time in batch reactor
(min)

Electrolysis time in microreactor
(min)

QSI 1 90 94 95 242 30
QSI 2 75 90 95 242 30
QSI 3 80 90 90 242 30

Fig. 2. Electrosynthesis microreactors and typical experimental platform. (a) Microchannel reactor for the synthesis of amides from N-acyliminium ions and allyls lanes using
the cation flow method; (b) a three-dimensional (3D)-printed electrochemical microchannel reactor with side electrodes (in yellow) and a transparent cover for the
electrolysis experiment of water (H2O) [33]; (c) schematic of an electrosynthesis microreactor with flower-patterned microchannel; (d) experimental setup containing
packed microreactor, pump, power source, and collection vial for the electrosynthesis of thiazolidin-2-imines. (a) Reproduced from Ref. [36] with permission of John Wiley &
Sons, �2005; (c) reproduced from Ref. [35] with permission of Elsevier, �2011; (d) reproduced from Ref. [34] with permission of John Wiley & Sons, �2019.
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of advanced electrosynthesis microreactors, basic laws of flow and
mass transfer for electrode embedded microchannels are required.
Similar to the common microchannel reactors, laminar flow
dominates the flow conditions in electrosynthesis microreactors,
but sometimes electrosynthesis reactions demand unique flow
and mass transfer control [2]. Methods that reveal the flow and
transport phenomena in electrosynthesis microreactors are
limited, and those reported are mainly derived from traditional
microfluidic studies such as microscopic observation and computa-
tional fluid dynamics (CFD) simulation. Similar to previous
microreactors with wall loaded catalysts [49,50], the crucial trans-
port direction is vertical to the channel walls of electrosynthesis
microreactors, but the effect of electromigration should be consid-
ered when dealing with ionic mass transfer issues. Here follows a
summary of typical investigations into the flow patterns and mass
transfer controls in electrosynthesis microreactors to elucidate the
features of miniaturized electrosynthesis devices.

3.1. Liquid–liquid parallel flow in microchannel flow cells

Laminar flow is easy to generate with stable liquid–liquid
parallel flow in straight microchannels from T- or Y-junction fluid
inlets; this stable flow pattern may also be used to realize fluid
25
separation with branched outlets. Because of the good controllabi-
lity of flow direction in microspaces, the liquid–liquid parallel flow
has been studied extensively. Mass transfer between channel walls
is determined by molecular diffusion in the liquid–liquid parallel
flow, which is not extremely fast, but researchers have developed
many advanced methods to break the parallel flow to realize fast
mixing of reactants [51–53]. Although the liquid–liquid parallel
flow does not promote mixing, it is useful in controlling the reac-
tion in electrosynthesis processes [54], see examples from Profes-
sor Atobe’s group shown in Fig. 4 [32,55,56]. The liquid–liquid
parallel flows are mainly applied to segment different reaction
regions near the anode and cathode. In Fig. 4(a) [55], a selective
cross-coupling reaction of aldehyde and allylic chloride via catho-
dic reduction is investigated. The reaction mechanism shows that
both the aldehyde and allylic chloride can be reduced on the cath-
ode, but different reduction sequences lead to different production
yields of the a- and c-adducts. The authors first determined the
diffusion coefficient of benzaldehyde (2a in Fig. 4(a) [55]), and then
obtained its concentration distribution in the microchannel via
CFD simulation. Results show that the concentration of benzalde-
hyde is close to zero near the cathode surface, and therefore
1-chloro-3-methyl-2-butene (1a) is in almost exclusive contact
with the electrode during the reaction. With the equipment shown



Fig. 3. Typical examples of flow chemistry systems containing electrosynthesis microreactors. (a) Schematic of electrochemical generation of intermediate anion C and its
subsequent acidification in a flow synthesis process. Me: methyl. (b) Electrosynthesis of amide (11a) via a flow system from aldehyde (8) mediated by thiazolium
bistriflimide. Mes: mesitylene; DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene; X: halogen; Bn: benzyl; NTf: N-trifluoromethanesulfonyl. (c) Computer-aided design (CAD) image
and schematics of the flow cell for NHPI-mediated aerobic oxidation of benzylic C–H bonds. Anolyte gets saturated with oxygen in a Teflon AF tube-in-tube device before
entering the anodic chamber. A flow infrared spectroscopy (IR) was used to monitor the species concentration in the anolyte. Reaction mechanism and cyclic voltammograms
are also shown. RVC: reticulated vitreous carbon; Pt: platinum; PINO: phthalimide-N-oxyl; E: potential; Ep/2: half-peak potential; E1/2: half-wave potential; vs. Fc/Fc+: versus
the ferrocene/ferrocenium redox pair; kc: rate constant. (a) Reproduced from Ref. [14] with permission of the Royal Society of Chemistry, �2017; (b) reproduced from Ref.
[47] with permission of American Chemical Society, �2016; (c) reproduced from Ref. [48] with permission of John Wiley & Sons, � 2018.
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in Fig. 4(b) [32], the performance of three flow modes were tested
(as shown in Fig. 4(a) [55]), which represent mixed (single flow
mode) reactants and segmented reactants (flow modes 1 and 2
in Fig. 4(a) [55]). The experimental results in Table 2 [55,56] indi-
cate that the yield and selectivity are dependent on the flow mode
and that flow mode 1 obtained > 90% selectivity of a-adduct (4a).
In another study, Matsumura et al. [56] reported optimum results
when contact between 2-pyrrolidone (compound 1 in Fig. 4(b)
[32]) and the cathode was maximized (Fig. 4(c) [56]). The results
listed in Table 2 [55,56] show that flow mode A achieved the high-
est yield of the target product (methyl-2-methylphenylacetate 5a).
The low concentration of 2-pyrrolidone in the reactant mixture in
flow mode B and the contact of methyl iodide with the electrode in
flow mode C both reduced the conversion of reactants and
selectivity of the mono-alkylated product. Note, from these elec-
trosynthesis microreactors, that electrodes are usually placed
26
along the microchannel for a distance, allowing the reaction to
proceed continuously as the solution passes. Sometimes, an
electrosynthesis reaction does not need to be ultra-fast finished,
but depends on reasonably control of the mass transfer process.
The liquid–liquid parallel flow segments the flow cell preventing,
to a certain degree, undesired side reactions, although not as
directly as ion exchange membrane [48]. Accordingly, the
electrosynthesis microreactor fitted with a membrane can also be
considered a liquid–liquid parallel flow reactor.

3.2. Bubble containing liquid (gas–liquid) flow in microchannel flow
cells

In an electrosynthesis reactor, oxidation and reduction
reactions run on the anode and cathode, respectively. One is the
working electrode to carry out the main reaction we demand,



Fig. 4. Typical applications of liquid–liquid parallel flow in electrochemical microreactions. (a) Laminar flow reactor used for selective cross-coupling of aldehyde with allylic
chloride. The figure shows CFD simulation for 2a diffusion in the microreactor channel from inlets to 1.0 mm downstream and corresponding 2a concentration distribution at
specific positions. The reaction mechanism is shown on the left and three flow modes in the microreactor are illustrated along the bottom, which result in different product
yields due to the fluid segmentation. HMPA: hexamethylphosphoramide; F: Faraday constant; Ph: phenyl. (b) Schematics of the liquid–liquid parallel flow reactor. DMF:
N,N-dimethylformamide. (c) Reaction mechanism and three flow modes for mono-alkylation of methyl phenylacetate in liquid–liquid parallel flow. Different flow regions are
shown by reaction equations. Mel: methyl iodide; R: alkyl group. (a) Reproduced from Ref. [55] with permissionof the Royal Society of Chemistry,�2011; (b) reproduced from
Ref. [32] with permission of the Electrochemical Society, �2008; (c) reproduced from Ref. [56] with permission of the Royal Society of Chemistry, �2015.
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Table 2
Comparison of reaction results for different flow modes in Figs. 4(a) and (c) [55,56].

Flow mode Cathode material Total yield 3a + 4a (%) Selectivity of 4a (%) Conversion of 3 (%) Yield of 5a (%)

Flow modes in Fig. 4(a) [55]
Single flow mode Pt 64 83 — —
Flow mode 1 Pt 44 91 — —
Flow mode 2 Pt 58 59 — —

Flow modes in Fig. 4(c) [56]
Flow mode A Pt — — 52 85
Flow mode B Pt — — 35 16
Flow mode C Pt — — — —

Data are sourced from Refs. [55,56].
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while, the other, counter electrode, hydrogen or carbon dioxide, is
either a donor or acceptor of electrons, as illustrated by the
isoindolinone synthesis reaction reported by Folgueiras-Amador
et al. [57], the 2,5-dimethoxy-2,5-dihydrofuran synthesis reaction
reported by Horii et al. [58], the electrochemical oxidation of alco-
hols studied by Wang et al. [16], and the nitrobenzene reduction–
methanol oxidation reaction reported by Wouters et al. [59]. Thus,
a lot of electrochemical synthesis processes combine gas genera-
tion reactions, in which the reaction turns to gas–liquid systems.
The flow of gas bubbles in traditional batch electrosynthesis reac-
tors has received little attention due to the long distance between
the working electrode and the counter electrode, and the resultant
negligible effect on mass transfer near the working electrode. The
effect of bubble content on liquid flow should, however, be care-
fully considered in a microchannel with very short distances
between electrodes. The presence of a gas phase in the electrolyte
strongly affects the electrical conductivity and the ionic transport
of the reaction solution [60]. In Fig. 5 [33], Islam et al. [34]
examined the flow details of the three-dimensional (3D)-printed
microreactor shown in Fig. 2(b) [33]. Although the examination
does not feature the electrosynthesis of an organic compound, it
does study the bubble generation and flow in an electrochemical
microchannel reactor using water (H2O) and sodium chloride
(NaCl) solution electrolytic reactions [33]. The flow cell in the
microchannel reactor is not fitted with an ion exchange mem-
brane; the products were directly separated through a branched
outlet, as shown in Fig. 5(a) [33]. Figs. 5(b) and (c) [33] show that
large amounts of bubbles are generated from the iridium
oxide (IrO2)-, ruthenic oxide (RuO2)-, and titanium dioxide
(TiO2)-coated titanium electrodes, and the bubbles increase in size
along the flow direction. The authors found that the Reynolds
number (Re) greatly affected the working efficiency of the microrea-
ctor. From the lowest to the highest Re, the current density of H2O
and NaCl solution decomposition increases by approximately 10%
and 20%, respectively, reducing the volume fraction of gases in
the flow cell. Compared with the gas–liquid flow in common
microreactors, such as the gas–liquid Taylor flow, gases generate
differently [61–63], and general laws fall short in explaining and
predicting the bubble generation, break-up, and coalescence in
the electrochemical microreactors.
4. Scale-up of electrosynthesis microreactor

As a cutting-edge technology, microreactors have been used in
industrial processes [64] and the scale-up of microreactors mainly
follow the numbering-up approach [65–68]. For electrosynthesis
reactions, which are essentially reactions on solid surfaces, the
reaction productivity is highly dependent on the electrode area.
Therefore, the scale-up of electrosynthesis microreactors are based
on the numbering-up of the microchannel unit as well. In contrast
with traditional microfluidic devices, in which parallel microchan-
nels are used [69], the microchannels in an electrochemical
28
microreactor can also be combined in series, if flow resistance is
acceptable. Laudadio et al. [15] recently compared the two scale-
up methods using an eight-channel device as shown in Fig. 6(a),
where the channels were individually connected by short tubes.
Both parallel and in series microchannels were used to perform a
thioanisole oxidation reaction, and the results showed that higher
yield of sulfoxide was obtained from the microchannels in series
due to the long residence time of the reaction solution, however
the parallel microchannels also produced acceptable sulfoxide
yields. Further scale-up of electrosynthesis microreactions can be
achieved through numbering-up of reactors, connected in parallel
or in series. Recently, Peters et al. [4] reported a scalable electrore-
duction reaction of 4-methyl-tert-butyldimethylsiloxy-benzene via
parallel flow reactors, which represent a highly efficient approach
to the Birch reduction. The production was increased from 10 to
100 g by using more parallel reactors without major loss in produc-
tion yield. In another example of modular microreactors in a scale-
up assembly used in the electro-conversion of dichloroacetic acid
to chloroacetic acid, Scialdone et al. [70] reported that three
microreactors in series allow greater modulation of the current
density between the reactors, improving selectivity control of the
reaction. Although the productivities recorded in this study are
on a millimole scale, as shown in Table 3 [70], the scaled elec-
trosynthesis microreactor prototype has been well documented.
As a new development in electrosynthesis and microreaction
research, very few reports address the principles and methods for
reactor scale-up. However, existing fundamentals of energy stor-
age batteries can be referred. Fig. 6(b) [1] shows a photo of a
100 kW flow battery module stack (XL 200 type, 200-bipolar cells,
Regenesys, UK) for energy storage based on bromine–polysulfide
redox reaction, and the schematics in Fig. 6(c) [1] show the struc-
ture of a smaller flow battery (XL 10 type, 10-bipolar cells) [1].
Although the reaction chamber in a flow battery is different from
the microchannels in electrosynthesis microreactors, principles of
reactor integration, packaging, and operation are transferable.
5. Summary and outlook

Due to the focus on the development of environmentally
responsible and sustainable chemical synthesis processes, elec-
trosynthesis methods have been garnering interest. The combina-
tion of electrosynthesis methods and microreaction technologies
has great potentials for use in chemical industry, as an important
component of a flow chemistry system. The benefits of electrosyn-
thesis microreactors include atom economy, green and safe
processing, and easy scale-up, which is believed to achieve a
versatile field of the area of chemistry and chemical engineering.
Reducing the distance between electrodes and increasing the
electrode area effectively reduce ionic transport resistance and
realize controllable electrosynthesis, which addresses the short-
comings of traditional batch reactors and may propel the industri-
alization of electrosynthesis technology. Although electrosynthesis



Fig. 5. Microscope observations of the bubble generation and bubble containing liquid flow in an electrolytic microreactor [33]. (a) Schematics of the electrolytic reactions in
a batch flow cell. U: mean velocity of the electrolyte flow. (b) Snapshots of the upstream. Re: Reynolds number; J: current density. (c) Downstream regions of the
microchannel.

Table 3
Reaction performances of microreactors in series or stacked in electrolysis of dichloroacetic acid water solutions [70].

Reactor and overall electrode
surface (cm2)

Current density (A�m�2)/flow rate
(mL�min�1)

Initial dichloroacetic acid concentration
(mol�L�1)

Conversion (%)/
yield (%)

Productivity
(mmol�h�1)

One reactor 4 cm2 330/0.05 0.1 94/93 0.3
330/0.10 0.1 51/50 0.3

Three reactors 12 cm2 330/0.10 0.3 89/82 1.5
480/0.10 0.4 82/80 1.9
350, 330, 310a/0.10 0.3 91/87 1.6

One reactor 6 cm2 330/0.10 0.1 90/86 0.5
330/0.10 0.3 61/57 1.0

Stack 12 cm2 330/0.10 0.3 88/81 1.5
Stack 18 cm2 330/0.10 0.3 97/93 1.7

430/0.20 0.3 89/85 3.1
370/0.10 0.5 92/84 2.5

a The currents of three in series reactors were individually controlled.

S. Zheng, J. Yan and K. Wang Engineering 7 (2021) 22–32
microreactors have many advantages, the factors governing the
electrosynthesis process require elucidation since, to the best of
our knowledge, the laws of flow and transport phenomena in elec-
trode embedded microchannels are unique and research methods
on electrosynthesis microreaction processes are limited. In
addition to the flow patterns we have discussed, other useful flow
29
patterns, such as organic–aqueous Taylor flow [71], may be
employed in electrosynthesis processes to overcome the low elec-
trical conductivity of organic solutions by creating phase transition
processes [13]. In the field of microfluidics, it is well known that
the wetting property of a microchannel strongly influences the
flow pattern [72,73] which, in turn, affects the mass transfer



Fig. 6. Prototype of scaled electrosynthesis microreactor in laboratory and pilot-scale flow battery for reference. (a) Schematic of an eight-channel electrochemical
microreactor [15]. (b) A photograph of XL 200 flow battery module stack for energy storage. (c) Single electrode compartment and side view of XL 10 reactor stack, showing
the location of flanges and manifolds (not to scale). PE: polyethylene. (b, c) Reproduced from Ref. [1] with permission of Elsevier, �2018.
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performance [74], but the variation rules of fluid contact angle on a
charged electrode are still underreported in current electrosynthe-
sis studies. The influence of electrode interfacial properties on the
electrochemical microreaction process requires careful study as
well. Additionally, microscale transport experimental studies of
the mass and heat transfer rates in electrosynthesis microreactors,
focusing on quantification and modeling, should be established.
Reaction kinetics is another important and underreported aspect
of electrosynthesis reactions. Finally, most electrosynthesis
reactors still use classic inert electrodes without advanced
electrocatalyst materials. The combination of electrosynthesis
and electrocatalysis technology has produced promising results
such as using NixB-modified Ni foam (NF) to achieve the effective
electro-oxidation of 5-(hydroxymethyl)furfural [75] and the
hydrogenation of furfural with Pd/C cathode in a continuous flow
membrane reactor [76]. Therefore, the development of material
science will inform electrosynthesis microreaction technology.
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