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In air traffic and airport management, experience gained from past operations is crucial in designing
appropriate strategies when facing a new scenario. Therefore, this paper uses massive spatiotemporal
flight data to identify similar traffic and delay patterns, which become critical for gaining a better under-
standing of the aviation system and relevant decision-making. However, as the datasets imply complex
dependence and higher-order interactions between space and time, retrieving significant features and
patterns can be very challenging. In this paper, we propose a probabilistic framework for high-
dimensional historical flight data. We apply a latent class model and demonstrate the effectiveness of this
framework using air traffic data from 224 airports in China during 2014–2017. We find that profiles of
each dimension can be clearly divided into various patterns representing different regular operations.
To prove the effectiveness of these patterns, we then create an estimation model that provides prelimi-
nary judgment on the airport delay level. The outcomes of this study can help airport operators and air
traffic managers better understand air traffic and delay patterns according to the experience gained from
historical scenarios.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the rapid development of the world’s civil aviation indus-
try, severe flight delays have remained a major problem and a
cause of inconvenience. Such delays not only discourage passen-
gers from considering air transport or choosing the same airline
again [1–4], but also force airlines to bear the additional costs of
aircraft maintenance and fleet underutilization [5]. Furthermore,
flight delays lead to increases in fuel consumption and carbon
dioxide emissions, bringing harm to the environment [6,7]. Besides
the direct impacts listed above, flight delays have a negative influ-
ence on various aspects of the overall economy [8]. In summary,
flight delays constitute a severe and widespread problem with sig-
nificant negative impacts.

Many factors contribute to the complexity and intractability of
this problem. These factors are generally summarized as abnormal
weather [9,10] and technical reasons including air traffic control
[11], insufficient facility capacity, poor scheduling [12], changes
in procedures [13], and limited buffer time [14]. This variety of fac-
tors makes it difficult to understand the underlying pattern of
flight delays and design appropriate strategies [15]. Recently,
data-driven approaches based on historical observations have been
shown to be free from previous constraints and to fit the potential
dynamic properties [16]. Therefore, one approach to facilitating
system cognition and decision-making is to fully utilize and learn
from historical data [17]. For example, when faced with bad
weather, it is possible to look up past days with similar weather
conditions and refer to the actions taken by air traffic controllers
on those days. Several previous studies [18–23] have focused on
identifying fixed patterns in air traffic management. Liu et al.
[19] introduced a semi-supervised learning algorithm that can
determine groups of similar days as different patterns. The first
step was to measure the distance between hourly weather fore-
casts, followed by identifying the days with a small total distance.
The authors applied this method to conduct two case studies at
Newark Liberty International Airport and proved its efficiency.
Mukherjee et al. [20] proposed a way to classify patterns based
on the impact of severe weather conditions. The authors used a
weather index as the input and applied factor analysis to
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identify dominant weather patterns. Then, they clustered days
using Ward’s minimum-variance method. Days belonging to the
same cluster shared similar weather patterns. Apart from weather
patterns, some studies have attempted to identify similar days
from other perspectives. Grabbe et al. [21] used a k-means cluster-
ing algorithm to identify similar days in terms of ground delay pro-
grams. The authors applied an expectation-maximization (EM)
algorithm on the start and end times of ground delay programs
and scheduled arrival rate data. Other studies have focused on
air traffic flow and flight delays to identify similar patterns [24].
Gorripaty et al. [17] measured the principal components in
demand and capacity data, but found that there were no natural
patterns in demand or capacity after applying clustering analysis
to the data. By identifying the periodic patterns of arrival delay
for non-stop domestic flights, Abdel-Aty et al. [25] found that some
patterns were not detected by statistical methods.

Despite these previous efforts, there are still gaps in under-
standing flight delay patterns. As mentioned above, an effective
method is to find clusters or patterns in spatiotemporal historical
data [26,27]. However, due to the high dimensionality of this data,
it is difficult to find distinct patterns in Euclidian space, as men-
tioned in previous studies [28]. Methods of latent component anal-
ysis have thus been put forward to reveal the hidden patterns.
Instead of directly mining the patterns, methods such as latent dis-
tribution analysis [29], latent trait analysis (including item
response theory and Rasch models), and grade-of-membership
analysis can utilize the signatures derived from the tensor factor-
ization to form a projection subspace with much lower dimension-
ality, which strengthens the underlying cluster structure of
spatiotemporal traffic dynamic patterns [30]. These methods open
up new frontiers in the field of transportation science [31], such as
urban mobility analysis [32–34], traffic speed prediction [35],
missing traffic data completion [36,37], and vessel track recovery
[38].

Inspired by the methods described above, the main goal of this
paper is to understand potential air traffic and flight delay patterns
using massive air traffic data. In the first part of this work, we
regard flight records as a multivariate observation sampled from
a universal distribution and adopt a Tucker-like latent class model
to identify principal patterns of each mode. We then propose an
estimation model based on potential patterns to show the effi-
ciency of this framework. The remainder of the paper is organized
as follows. In Section 2, we introduce the modeling framework.
Section 3 demonstrates a case study in which we apply the model
to a dataset of the Chinese aviation system, and Section 4 gives
conclusions.
2. Modeling framework

In this section, we introduce the overall framework for model-
ing multi-way flight data in a probabilistic setting. The aim is to
characterize the principal patterns of air traffic and flight delays
from different dimensions and their joint interactions. In Sec-
tion 2.1, we introduce the notation used in our framework. In Sec-
tion 2.2, the nonnegative Tucker decomposition (NTD) method is
presented as a method of understanding the tensor decomposition
(TD). Finally, the latent class analysis (LCA) is described in
Section 2.3.

2.1. Notation

We let xa ¼ ðxa1; . . . ; xaqÞT represent a flight record a, where q
represents the number of dimensions—that is, the number of attri-
butes in a single trip record. To characterize the features of flights,
each element xa� may denote the departure airport of the flight
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(xa1), departure time (xa2), departure date (xa3), delay level (xa4),
and so forth.

We map the values into discrete values for convenience. We
define xab 2 f1; . . . ;wqg discrete values starting from 1 for attribute
b (b = 1, . . . , q). b denotes the indices of attributes.wq is the discrete
value of the vector of dimension q. Taking the departure airport as
an example, xa1 = 1 represents airport 1 for flight record a. The
departure time of a flight is then represented by xa2 2 f1; . . . ;24g,
with each value corresponding to a 1h period in a day. We then
present our method using flight record data from four years
(2014–2017), with the days ordered by departure date as
xa3 2 f1; . . . ;1461g. As the arrival delay is more related to airborne
delay, which is difficult to analyze, we consider departure delay
rather than arrival delay to investigate the flight delay patterns.
Departure delay can better reflect the operation mode of the target
airport. In addition, there is a clear definition for the level of depar-
ture delays. According to the rules set by the Federal Aviation
Administration (FAA) and related research, delayed flights are
those that depart more than 15min later than the scheduled time.
Considering practical circumstances, a number of 45 and 90min
later than scheduled are also selected as division thresholds. Thus,
we classify the delay of each flight into four levels: ① < 15min, ②
15–45 min, ③ 45–90 min, and ④ > 90 min. We use xa4 2 f1; . . . ;4g
to represent ‘‘on time,” ‘‘slight delay,” ‘‘moderate delay,” and ‘‘seri-
ous delay,” respectively.

2.2. Nonnegative Tucker decomposition

It has been shown that TD displays a number of advantages in
various contexts, especially when data must be decomposed into
a sum of additive components [39]. TD was first proposed by
Tucker [40] in 1963. Since then, NTD has been proposed [41,42]
to deal with naturally nonnegative and observation data. NTD is
a powerful tool for the extraction of nonnegative-parts-based and
physically meaningful latent components from high-dimensional
tensor data while preserving the natural multilinear structure of
the data [24]. In mathematical terms, it decomposes a tensor into
a set of matrices and a core tensor.

Given an order tensor v with K as the tensor dimension. NTD
seeks a decomposition of a nonnegative K-way tensor
v 2 RI1�I2�����IK

þ (R+ is the space of arithmetic number, K is the size
of dimensional space, I is one of the orthogonal basis) as mode
products of a nonnegative core tensor 1 2 RJ1�J2�����JK

þ (J is one of
the orthogonal basis) and K nonnegative factor matrices

AðKÞ 2 RIK�JK
þ :

v2 1 � 1A
ð1Þ � 2A

ð2Þ � 3A
ð3Þ � � � �� KA

ðKÞ ¼ ½1; Að1Þ
; Að2Þ

; . . . ; AðKÞ� ð1Þ

where Að1Þ
; Að2Þ

; Að3Þ
; . . . ; AðKÞ are the factor matrices and can be

regarded as the principal components of mode K. The entries of 1
show the level of interaction and connections between different
components. In this method, both the core tensor ϛ and the factor

matrices AðKÞ should be elementwisely nonnegative. Elementwise,
they are given as follows:

vg1 ;g2 ;:::;gK ¼
XR1
r1¼1

XR2
r1¼2

� � �
XRK
rK¼1

1r1r2 ���rK@
ð1Þ
g1r1

@ð2Þ
g2r2

� � � @ðKÞ
gK rK

ð2Þ

where @ðKÞ
gK rK

is a factor matrix, RK is size of factor. r and g are the
dimensions of mode K in the factor matrix. The decomposition is
then modeled as an optimization problem:

Minimize
1
2
jj1 � 1A

ð1Þ � 2A
ð2Þ � 3A

ð3Þ � � � � � KA
ðKÞ � vjjF

subject to 1 � 0; AðKÞ � 0 ð3Þ
where F is matrix norm.



Table 1
Categorical values of flight data.

Attribute Category Description

Departure airport 224 Origin airport
Order of day 1461 Ordered by date during four years
Time of day (h) 24 0:00–1:00, 1:00–2:00, . . ., 23:00–24:00
Level of delay 4 ① < 15 min, ② 15–45 min, ③ 45–90

min, ④ > 90 min
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2.3. Latent class analysis

LCA is a statistical method for finding subtypes of related cases
(latent classes) from multivariate categorical data [43,44]. The
latent class model is written as follows:

Pi1 ;i2 ;:::;iN ¼
XT
t

pt

YN
n

pt
@l ð4Þ

where Pi1 ;i2 ;:::;iN is the probability distribution function, i is dimen-
sional index, N is principal patterns of each mode, T is the number
of classes, t is the index of class, pt is the recruitment that should
sum to 1, pt

@l is the conditional probability, @ and l are the size of
probability factors. LCA defines latent classes by the criterion of
conditional independence. This means that each variable is statisti-
cally independent of every other variable within each latent class.
Thus, each element in the probability tensor can be calculated as
the sum across all pattern combinations.

Pi1 ;i2 ;:::;iN ¼
XT
t

pt h
ð1Þ
i1t

� � � � � h
ðNÞ
iNt

ð5Þ

where h Nð Þ is the probability vectors characterizing the principal
patterns of each mode N.

In our research, we apply latent class models, which assume
that each observation is generated from a mixture of underlying
classes, and each class is associated with a unique probability dis-
tribution. Thus, the joint distribution is regarded as a mixture of
product-multinomial and the probability of observing a flight xa.
With the notations in Section 2.1, all the flight records x can be
summarized into an m-way tensor with dimension
/ ¼ w1 �w2 � � � � �wm and each cell ðv1;v2; . . . ;vmÞ (where v rep-
resents a dimension) is the counting of flight numbersP

d xa1 ¼ v1; . . . ; xam ¼ vmð Þ. d is a two-valued indicator function.
d ¼ 1 if it is true and 0 otherwise. To better understand the inte-
rior connections of the dataset, we put these collected flight
records into a probabilistic tensor, each cell of which represents
the probability of a flight belonging to that particular cell. The
probabilistic tensor with each cell is the probability of a flight
belonging to a particular cell pcðxa1 ¼ v1; . . . ; xam ¼ vmÞ (where pc
is the probability of a particular cell). The probability of observing
a flight xa (i.e., the probability mass function) can be reformulated
by the Tucker decomposition in a similar way.

P xajhð Þ ¼
XR1
r1¼1

XR2
r2¼1

� � �
XRN
rN¼1

pr1r2 ���rN
YN
n¼1

hðNÞxanrn ð6Þ

The core tensor p captures the interactions across different
modes. hðNÞxanrn are the probability vectors characterizing the princi-
pal patterns of each mode N. Each element in the probability tensor
can be calculated as the sum across all pattern combinations.

Pðxa1 ¼ v1; . . . ; xam ¼ vmjhÞ

¼
XR1
r1¼1

XR2
r2¼1

� � �
XRN
rN¼1

pr1r2 ���rNh
ð1Þ
i1r1

h
ð2Þ
i2r2

� � � hðNÞinrn
ð7Þ

h
ðNÞ
inrn

is the probability vectors characterizing the main patterns
of each mode. This model, which is equivalent to a nonnegative
Tucker (NNT) decomposition [45,46], can identify universal pat-
terns of different dimensions and reveal the interactions through
the core tensor. The EM algorithm is applied to efficiently derive
the model [47].
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3. Case study

3.1. Flight operation data

The flight operation data is used as a proxy for the collective
features of flights in this analysis. The dataset analyzed in this
paper was provided by the Civil Aviation Administration of China
(CAAC). Given that the purpose of our study is to provide
decision-making support for air traffic and airport management,
flight delay conditions are of particular interest. Moreover, air traf-
fic flow is the basis of delay conditions. Therefore, it is natural to
choose air traffic flow and flight delays as the main objects of our
study. Departure delays are chosen, as they can better reflect the
level of congestion of a departure airport and airspace. The categor-
ical values of flight data are shown in Table 1. The database con-
tains 13 492326 domestic flights. All flights connect 224 airports,
among which Beijing Capital International Airport has the most
flights, accounting for 6.3% of flights in all airports. The departure
date of the flights is from 1 January 2014 to 31 December 2017,
and the departure time could be in any hour within a day. As can
be seen, all the flights can be divided into four groups according
to the departure delay time. The percentage of flights in the four
groups are 37%, 38%, 14%, and 11%, respectively. The average
departure delay of these flights is 31.08min. Canceled flights are
ignored in this study. 9 February 2016 was the day with the great-
est number of flights, which was 12419. 1 January 2014 was the
day with the least number of flights, which was 7009. The busiest
time period for airports is from 8:00 to 9:00, with 6% of all flights
taking off during this time period.
3.2. Factorization analysis

In our research, we assume that flight records are multivariate
variables sampled from a universal distribution. The 13 492326
flights are aggregated to the same tensor. Each observation con-
tains four variables, including departure airport, order of the day
during the four years, time of day, and level of delay. The total
combinations are 224 � 1461 � 24 � 4. Here, we use a small 3 (de-
parture airport, A) � 4 (order of day in four years, D) � 5 (time of
day, H) � 4 (level of delay, L) core tensor p to capture the interac-
tions across different modes. Although a bigger core tensor could
contain more information and reflect comprehensive relationships
among different modes, this small core tensor can facilitate the
interpretation of results. Moreover, existing research shows that
the results are basically consistent across different sizes of core
tensors [48]. In the following paragraph, we present the main
results based on the core tensor size [3 � 4 � 5 � 4] as an example.
The hour, day, airport, and delay-level factor matrix allows us to
interpret the pattern due to its distribution profile.

Fig. 1(a) depicts hour profiles of the five patterns. The compo-
nent pattern H1, covering 18.7% of all flights, reveals a gradual rise
from 11:00 and reaches its peak at 24:00, followed by a decrease
until the early morning. Pattern H2 shows similarities to a Gaussian
distribution with a peak at 17:00, and covers about 24.4% of all
flights. Compared with patterns H1 and H2, patterns H3 and H5



Fig. 1. Principal patterns in different modes. (a) The Y-axis is the probability of each pattern (column) in the hour factor matrix Probability(H); (b) the Y-axis is the probability
of day of the week along with the day factor matrix Probability(W); (c) the Y-axis is the probability along with the day factor matrix Probability(M).

Fig. 2. Delay-level composition probability for each pattern (column) in the delay
factor matrix.
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are more concentrated. They increase significantly in the morning
and display a sudden drop by noon. Pattern H4 reaches its peak at
11:00 and then decreases continuously over the rest of the day. The
proportions of H3, H4, and H5 are 22.9%, 22.2%, and 11.8%, respec-
tively. The day factor matrix has 1461 rows and four columns,
which depict the corresponding relationship between original days
and day patterns. We analyze the day patterns across different
months of the year and days of the week. To do so, we sum up
the daily traffic probability along different months and days of
the week to identify how the traffic flow interacts with the dates.
Patterns across days of the week are shown in Fig. 1(b). W is the
weekly pattern and M is the monthly pattern. Most traffic observa-
tions of pattern W1 are concentrated on weekdays, while the peaks
of patternW3 are on the two-day weekend. Interestingly, we found
that patterns W2 and W4 also show opposite trends. W2 is mainly
concentrated on Monday, Saturday, and Sunday, while pattern
W4 is concentrated on Wednesday, Thursday, and Friday. Fig. 1(c)
shows patterns of different months. We can observe clear seasonal
diversity in that no pattern is equally distributed across the sea-
sons. Pattern M1 is mainly concentrated in autumn and winter,
while pattern M2 is concentrated in winter and spring. Pattern
M3 is concentrated in spring, and pattern M4 is mainly distributed
in summer, which is the travel peak of the aviation system.

Even though the estimation process does not take any spatial
location information into account, we find that these components
can be identified by the geographic locations of airports. As the
traffic hub of China, Beijing Capital International Airport is
obviously prominent in patterns A1 and A2. Furthermore, pattern
A1 is mainly distributed in the southeast, while pattern A2 is mainly
distributed in the southwest. Pattern A3 is mostly composed of air-
ports in the midwest.

Fig. 2 shows a composition of the level of delay for each pattern
(column) in the delay-level factor matrix. L1, L2, L3, and L4 represent
flights of different levels, varying from ‘‘on time” to ‘‘serious delay”
(as mentioned in Section 2.1). As can be seen, the delay-level pat-
terns remain almost the same compared with the original tensor,
with flights of different delay levels being identified. Fig. 2 shows
the composition of each delay-level pattern, which covers 40.7%,
10.5%, 29.1%, and 19.7% of total traffic flow, respectively. It is noted
that delay is amanifestation of air traffic congestion, and delay level
thus closely interacts with traffic flow characteristics in spatiotem-
poral factors. To conduct further analysis, we adopt conditional
probability across the delay-level mode and other modes to investi-
gate the interactions. We calculate the conditional probability dis-
tribution Probability(L|H) by Bayes’ theorem. Given the hour
patterns, the conditional distribution of delay-level patterns is
468
Probability LjHð Þ¼

L1 L2 L3 L4

H1 0:2857 0:4294 0:0997 0:1852

H2 0:3894 0:0340 0:2771 0:2990

H3 0:4049 0:0000 0:4270 0:1681

H4 0:4017 0:0585 0:3197 0:2201

H5 0:6538 0:0290 0:2977 0:0196

2
66666666664

3
77777777775

ð8Þ

Probability(L|H) shows how the delay-level patterns interact
with the hour patterns. As can be seen, pattern L1, denoting the
on-time component, strongly interacts with all the hour patterns,
which indicates that on-time flights occupy the mainstream at
any time of day. To characterize the rules of delay, we now discuss
the delay-level patterns excluding L1. H1, denoting the traffic pat-
tern of an increasing trend throughout the entire day, is associated
with delay pattern L2, which corresponds to slightly delayed
flights. H2 is mainly covered by the hour patterns L3 and L4, denot-
ing that the high-level delays are highly correlated to the traffic in
the afternoon. H3, H4, and H5 are mainly covered by L3 and L4. This
can be explained by the fact that flights during the travel peak in
the morning are likely to be seriously delayed due to the heavy
air traffic in most airports.
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Probability LjMð Þ¼Probability LjWð Þ¼

L1 L2 L3 L4
M1=W1 0:3783 0:3433 0:2638 0:0146
M2=W2 0:5889 0:3195 0:0780 0:0135
M3=W3 0:4584 0:2777 0:1735 0:0904
M4=W4 0:2223 0:2035 0:2560 0:3181

2
6666664

3
7777775

ð9Þ

Based on the factor matrices of the day pattern and delay-level
pattern, we can find that on-time and slight delay patterns occur
the most in M1/W1, M2/W2, and M3/W3; however, pattern M4/W4

is very unusual. Along with the week and month dimensions, M4/
W4 indicates that the traffic is mostly concentrated on weekdays
and in the summer, and tends to interact with serious delays.

Probability LjAð Þ ¼

L1 L2 L3 L4
A1 0:2369 0:2015 0:2830 0:2783
A2 0:3081 0:0417 0:4394 0:2107
A3 0:6402 0:0950 0:1434 0:1214

2
6664

3
7775 ð10Þ

As shown in Probability(L|A) airport patterns are also correlated
with the delay-level patterns. The obvious point is that pattern A3

is mainly covered by L1, which may denote that air traffic from the
airports in the midwest have fewer delays. Compared with A3, A1

and A2 are more likely to be seriously delayed. This can be
explained by the midwest airports’ relatively lighter traffic flow
and adequate airspace resources. As shown in the analysis above,
delay is heavily influenced by time and space. To further explore
the interactions among the patterns, we present the disaggregated
distribution along the temporal and spatial dimensions. As can be
seen in Fig. 3, the value of (L2, H1) is greater than that of the other
cells in A1, indicating that when afternoon or evening flights take
off from the southeast airports, they are accompanied by slight
delays. We also observe a considerable amount of traffic within
the A2 pattern in (L3, H3), while such traffic rarely appears in A1

and A3. This can be explained by the fact that flights from south-
west airports during the morning peak often have moderate delays.
As mentioned before, due to their excess capacity, the midwest air-
ports (A3) have a low probability of flight delays. This phenomenon
is consistent with cells (L1, H2–H4) in A3.

The numerical examples show that the factorization allows us
to explain the complex dependence and higher-order interactions
based on latent factors. The core tensor p characterizes the interac-
tions between different modes in a very efficient and informative
manner. This framework helps us to comprehend and interpret
the latent interactions and complex dependence among the pat-
terns in large datasets, enhancing our understanding of air traffic
management.

On this basis, another significant problem is generated. Can the
delay level be estimated if we only consider the information about
latent patterns extracted from the time and space information?
Although previous studies have demonstrated that flight delays
can be attributed to many complex factors [49], this issue may
be of great significance. Firstly, potential patterns based on
historical information are generated by the collective effect of
various delay causes. For example, extreme weather occurs fre-
quently in summer, and we find that summer interacts strongly
Fig. 3. Interaction of delay level and h
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with the serious delay pattern in this paper. Secondly, as spa-
tiotemporal information does not require us to understand opera-
tional characteristics in great detail, the departure time and
departure airport alone can help us make a preliminary assessment
of delays beforehand. Thirdly, the highly dynamic nature and com-
plexity of aviation systems lead people to believe that delays can-
not be estimated through basic information. Thus, the effectiveness
of the potential patterns produced by our framework is also
demonstrated if accurate estimation is achieved. For further explo-
ration, the random forest (RF) algorithms employed here to con-
struct an estimation model, due to its adaptability in regard to
this problem [50]. The advantages of RF include the following: ①
It generates an internal unbiased estimate of the generalization
error as the forest building progresses; ② it runs efficiently on
large databases; and ③ it has the ability to model interactions
among variables [51]. Specifically, an RF is an ensemble tree
fC1ðXÞ; . . . ;CBðXÞg, where B is the number of trees and
X¼ ðx1; . . . ; xqÞ is a q-dimensional vector of descriptors. The
ensemble produces B outputs ŷ1ðxÞ ¼ C1ðXÞ; � � �; ŷBðxÞ ¼ CBðXÞ,
where ŷbðxÞ is the estimation of the bth RF tree (b = 1,. . ., B). The
outputs of all trees are aggregated to produce one final estimation,
ŷBrfðxÞ. For classification problems, ŷBrfðxÞ is the class estimated by
the majority of trees. The training procedure is as follows:

(1) Prepare the training data. We prepare q-dimensional the
training data samples along with their class label.

(2) Select the parameters. E: maximum depth of each tree; C:
minimum number of samples required to split an internal node;
V: the variables at each split;ML: the minimum number of samples
required to be at a leaf node.

(3) Grow a classification tree. For b = 1 to B, draw a bootstrap
sample Z�of size (Sd) from the training data. Use about two-thirds
of the original training samples to grow a classification tree. Leave
the remaining one-third of the samples as so-called out-of-bag
(OOB) samples.

(4) Grow trees. For each bootstrap sample, grow a tree CbðXÞ
with the following modifications. At each node, pick the best
variable/split-point and split the node into two nodes until the
sample number of this node is less than C. The tree is grown to
the maximum size E and not pruned back. Repeat the steps above
until B such trees are grown.

(5) Results output. Estimate new data by aggregating the esti-
mations of the trees with the majority vote of all analogous trees in

the forest. Output ŷBrfðxÞ ¼ majority vote fŷBb¼1ðxÞg
B
b¼1.

To evaluate the performance of the estimation model, four
indices are employed, referring to Eqs. (11)–(14). F1macro is the
macro-averaged score and weights all the classes (1,. . ., u) equally,
regardless of how many samples Su belong to a given class u.
F1micro is the micro-averaged score and weights all the samples
equally, thus favoring the performance of common classes.
Weighted score finds the average in each label, weighted by the
number of true instances for each class. AccuracyOOB is the mean
accuracy on each training sample Z�, using only the trees that do
not have Z� in their bootstrap sample [52].
our for different airport patterns.



Fig. 4. Model performance with different numbers of trees.
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F1macro ¼ 2� Pmacro � Rmacro

Pmacro þ Rmacro
Pmacro ¼ 1

u

Xu
u¼1

Precisionu;

 

Rmacro ¼ 1
u

Xu
u¼1

Recallu

! ð11Þ

where Pmacro is the macro-averaged precision, Rmacro is the macro-
averaged recall, Precisionu is the number of true positives divided
by the total number of elements labelled as belonging to the posi-
tive class for a class u, and Recallu is defined as the number of true
positives divided by the total number of elements that actually
belong to the positive class for a class u.

F1micro ¼ 2� Pmicro � Rmicro

Pmicro þ Rmicro
Pmicro ¼

Pu
1TPuPu

1TPu þ
Pu

1FPu
;

�

Rmicro ¼
Pu

1TPuPu
1TPu þ

Pu
1FNu

� ð12Þ

where Pmicro is the micro-averaged precision, Rmicro is the micro-
averaged recall, TPu is the true positive rate of class u, FPu is the false
positive rate of class u, and FNu is the false negative rate of class u.

Weighted score ¼ 1
S

Xu
1

2� Precisionu � Recallu
Precisionu þ Recallu

� Su ð13Þ

where Su is number of samples of class u, S is number of samples.

AccuracyOOB ¼ TPOOB þ TNOOB

TPOOB þ FPOOB þ TNOOB þ FNOOB
ð14Þ

where TPOOB is the true positive rate of OOB samples, FPOOB is the
false positive rate of OOB samples, FNOOB is the false negative rate
of OOB samples, and TNOOB is the true negative rate of OOB samples.

For this study, the data of latent spatiotemporal patterns are
used. The classification problem involves the identification of four
delay levels (on time, slight delay, moderate delay, and serious
delay). To estimate how accurately a model will perform in prac-
tice, this paper adopts a five-fold cross-validation strategy. One
round of cross-validation involves partitioning all the records into
five complementary subsets, performing the training process on
four subsets, and then validating the analysis on another testing
set. Next, the validation results are averaged over the five rounds
to give an estimation of the model’s performance. A total of
13 492 326 records are used. As mentioned above, the probability
values of the flights in each mode (latent spatiotemporal patterns)
Fig. 5. Classification results. (a) Overall performance th
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are selected as the features; that is, {A1–A4, H2–H5, W1–W4, M1–
M4}. Each feature ranges from 0 to 1.

The number of trees is the most important variable. It should be
large enough to let the generalization error of the RF converge. In
Fig. 4, we find that AccuracyOOB changes from 53.1% to 53.4% when
B increases from 100 to 150, and increases slightly when B is
greater than 150. This indicates that the RF classifier is almost
insensitive to the increase of B when it is greater than 150. To
obtain a better parameters set, a grid search method is used in this
paper. Several combinations of other parameters are tried to deter-
mine the optimal values for this model.

The overall performance and the accuracy of individual classes
are given in Fig. 5. As prior studies have noted, delays are mostly
determined by dynamic operational factors. It is not possible to
give a judgment much earlier than the actual occurrence of the
delay [53,54]. Our model only considers the latent patterns
revealed through basic flight information, which may not be
viewed optimistically. In this case, the RFs achieved more than
50% in all performance indices and achieved accuracies of 60.0%,
46.0%, 44.0%, and 65.0%, respectively, for the individual classes,
which may be a very positive sign. It signifies that the probability
of different levels of flight delay can be estimated preliminarily
based only on the time and airport information. Furthermore, this
application supports the effectiveness of the potential patterns. We
can also see that the ‘‘on time” pattern and ‘‘serious delay” pattern
are classified more accurately due to their distinctive features.
Even if the algorithm has more difficulty in classifying the ‘‘slight
rough different indices; (b) the confusion matrix.
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delay” and ‘‘moderate delay” classes, the deep color near the diag-
onal of the confusion matrix indicates that the wrong estimations
have a small bias.

4. Conclusions

In this paper, we develop a probabilistic factorization frame-
work that transforms massive flight record data into a spatiotem-
poral tensor. Our purpose is to investigate the spatiotemporal
dynamic patterns of air traffic and flight delays. We assume that
each flight observation is a sample generated from a universal joint
distribution. Then, we formulate this joint task using nonnegative
tensor factorization, which has been shown to be a useful analyti-
cal tool for high-dimensional massive data. The results show that
clear patterns are identified in different modes. The interactions
of different modes are also characterized in the core tensor, which
interprets the relationship between delays and spatiotemporal pat-
terns. The detailed analysis clearly shows that serious delays are
strongly correlated to afternoon, weekday, and summer traffic.
Flights from midwest airports have a low probability of delay at
any time of day.

This framework can shed light on the modeling of flight delays
by providing an understanding of flights in both the spatial and
temporal dimensions. Moreover, the potential patterns have been
shown to display a certain effect on delay estimation. As the inte-
gration of space and time information, potential patterns can give
positive estimation results regarding the delay level. In the context
of highly dynamic environments and the complexity of delays, this
output gives us a new comprehension of how air traffic and flight
delays interact with time and space. This framework provides a
deep understanding of massive aviation data through the latent
class model and probabilistic factorization method. The outcomes
of this study can help airport operators and air traffic managers
to better prepare air traffic and airport arrangements based on
the experience gained from historical scenarios. Further analysis
can be performed to tackle the challenge of understanding interac-
tions involving more factors, such as weather and air route
attributes.
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