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Pushing Mathematical Limits, a Neural Network Learns Fluid Flow
Fig. 1. Water flows in a thin sheet over a fountain. The Caltech AI4Scien
reports that a neural network can predict the motion of such two-dimensio
flow much more rapidly and accurately than computer programs using
methods to solve differential equations [1]. Their work, which has potentia
ramifications for advancing science through improved modeling of
phenomena such as nuclear fusion, continues with experiments on fluid
three dimensions. Credit: Pixabay (public domain).
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Drop a pebble into a flowing stream of water. It may not change
the pattern of flow very much. But if you drop a pebble into a
different place, it may change a lot. Who can predict?

Answer: A neural network can. A group of computer scientists
and mathematicians at the California Institute of Technology
(Caltech) in Pasadena, CA, USA, has opened up a new arena for arti-
ficial intelligence (AI), by showing that a neural network can teach
itself how to solve a broad class of fluid flow problems, much more
rapidly and more accurately than any previous computer program
[1].

‘‘When our group got together two years ago, we discussed
which scientific domains are ripe for disruption by AI,” said
Animashree Anandkumar, a professor of computing and mathe-
matical sciences and co-leader of the artificial intelligence for
science (AI4Science) initiative at Caltech. ‘‘We decided that if we
could find a strong framework for solving partial differential equa-
tions, we could have a wide impact.” Their first target was the
Navier–Stokes equations in two dimensions, which describe the
motion of an infinitely thin sheet of water (Fig. 1) [1]. Their neural
network, which they call a ‘‘Fourier neural operator,” dramatically
outperforms any previous differential equation solver on this type
of problem, exceeding their speed by a factor of 400 and increasing
their accuracy by 30%.

Partial differential equations (PDEs) are the kind of equation
that Isaac Newton’s laws of motion naturally lead to. For this rea-
son, they are fundamental to science, and any major advance in
solving them would have broad ramifications. ‘‘We are having dis-
cussions with so many teams, from industry and academia and
national labs,” said Anandkumar. ‘‘We are already doing experi-
ments on fluid flow in three dimensions.” One good use case would
be the equations for modeling nuclear fusion, Anandkumar said.
Another would be materials design, she added, especially plastic
and elastic materials, an area in which team member Kaushik
Bhattacharya, a professor of mechanics and materials science,
‘‘has deep experience.”

Computers emerged, in part, out of efforts during the Second
WorldWar to predict projectile motion using differential equations
[2]. They have been used ever since to solve differential equations,
with varying degrees of accuracy and success. But previous
approaches, whether they involved traditional computer program-
ming or AI, have always worked on one ‘‘instance” of an equation
at a time. For example, they can figure out how one pebble dropped
in one place affects the flow of water. Then they can learn how a
pebble dropped in a different place changes it. But they will not
generalize to understand how any pebble dropped in any place
changes the flow. That is the ambitious goal behind the Caltech
Fourier neural operator.

There is, of course, a good reason why this has not been done
before. Neural networks excel at learning associations between what
mathematicians call finite-dimensional spaces. For example, the Goo-
gle AI program AlphaGo, that beat the strongest human Go player,
learned a function between Go positions (which are finite, though
astronomical, in number) and Go moves [3]. By contrast, the Fourier
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neural operator takes as input the initial velocity field of a fluid and
produces as output the velocity field a certain time later. Both of
these velocity fields live in infinite-dimensional spaces—which is just
a mathematical way of saying that there are infinitely many ways in
which you can toss a pebble into flowing water.

The Caltech team trained the Fourier neural operator by show-
ing it a few thousand instances of a Navier–Stokes equation solved
by traditional methods [1]. The network is then evaluated by a
‘‘cost function,” which measures how far off its predictions are
from the correct solution, and it evolves in a way to gradually
improve its predictions. Because the network starts with a curated
set of inputs and outputs, this is called ‘‘supervised learning.” Goo-
gle’s original version of AlphaGo learned by a combination of
supervised and unsupervised learning (though a later version used
unsupervised only) [3]. Other neural network programs used in
image processing typically employ supervised learning [4].

But no matter how much training data you have, you might not
be able to explore more than the tiniest part of an infinite-dimen-
sional space. You cannot try out all the places where you could put
a pebble into a stream. And without some kind of prior assump-
tions, your network is not guaranteed to correctly predict what
happens when the pebble is dropped into a new place.

For this and other reasons, ‘‘We wanted to take the relevant
parts of neural networks and combine them with domain-specific
understanding on the math side,” said Andrew Stuart, another
AI4Science teammember and a professor of computing andmathe-
matical sciences.

Specifically, Stuart knew that linear PDE—the simplest kind of
PDE—can be solved with the well-known method of Green’s
functions, a device used to solve difficult ordinary and PDE which
may be unsolvable by other methods [5]. Basically, it provides a
template for an appropriate solution to the equation. This template
can be approximated in a finite-dimensional space, so it reduces
the problem from infinite dimensions to finite dimensions.

The Navier–Stokes equations are nonlinear, so no such template
is known for them. But if there were something similar to a Green’s
function for the Navier–Stokes equation, a nonlinear but still finite-
dimensional template, then a neural network should be able to
learn it. There was no guarantee that this would work, but Stuart
called it a ‘‘well-informed gamble.” Experience has shown time
and time again that neural networks are extremely good for learn-
ing nonlinear maps in finite-dimensional spaces, he said.

Learning a nonlinear operator between infinite-dimensional
spaces is a ‘‘holy grail” of computational science, said Daniele
Venturi, assistant professor of applied mathematics at the Univer-
sity of California, Santa Cruz in Santa Cruz, CA, USA. Venturi, whose
551
research involves differential equations and infinite-dimensional
function spaces, said he is not convinced that the Caltech group
has gotten there yet. ‘‘It is in general impossible to learn a nonlin-
ear map between infinite-dimensional spaces based on a finite
number of input–output pairs,” he said. ‘‘But it is possible to
approximate it. The main question is really the computational cost
of such approximation, and its accuracy and efficiency. The results
they have shown are really, really impressive.”

In addition to unprecedented speed and accuracy, the Caltech
group’s method has other remarkable properties [1]. By design, it
can predict the fluid flow even in places where you have no initial
data and predict the result of disturbances not seen before. The
program also confirms an emergent behavior of solutions to the
Navier–Stokes equations: Over time, they redistribute energy from
long to short wavelengths. This phenomenon, called an ‘‘energy
cascade,” was proposed by Andrei Kolmogorov in the 1940s as an
explanation for turbulence in fluids [6].

The next frontier for the Fourier neural operator is three-dimen-
sional fluid flow, where turbulence and chaos are major obstacles.
Can neural networks tame chaos? ‘‘We know that chaos means we
cannot precisely predict the fluid motion over long time horizons,”
Anandkumar said. ‘‘But we also know from theory that there are
statistical invariants, such as invariant measures and stable attrac-
tors.” If the neural network could learn where the attractors are, it
would be possible to make better probabilistic predictions, even
when precise deterministic projections are impossible.
Anandkumar points out that the network could control a chaotic
system so that it does not head toward an undesirable attracting
state. ‘‘In nuclear fusion, for example, the ability to control disrup-
tions, such as loss of stability of the plasma, becomes very impor-
tant,” she said.
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