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Efficient fast-charging technology is necessary for the extension of the driving range of electric vehicles.
However, lithium-ion cells generate immense heat at high-current charging rates. In order to address this
problem, an efficient fast charging–cooling scheduling method is urgently needed. In this study, a liquid
cooling-based thermal management system equipped with mini-channels was designed for the fast-
charging process of a lithium-ion batterymodule. A neural network-based regressionmodel was proposed
based on 81 sets of experimental data, which consisted of three sub-models and considered three outputs:
maximum temperature, temperature standard deviation, and energy consumption. Each sub-model had a
desirable testing accuracy (99.353%, 97.332%, and 98.381%) after training. The regression model was
employed to predict all three outputs among a full dataset, which combined different charging current
rates (0.5C, 1C, 1.5C, 2C, and 2.5C (1C = 5 A)) at three different charging stages, and a range of coolant rates
(0.0006, 0.0012, and 0.0018 kg�s�1). An optimal charging–cooling schedule was selected from the
predicted dataset and was validated by the experiments. The results indicated that the battery module’s
state of charge value increased by 0.5 after 15 min, with an energy consumption lower than 0.02 J. The
maximum temperature and temperature standard deviation could be controlled within 33.35 and
0.8 �C, respectively. The approach described herein can be used by the electric vehicles industry in real
fast-charging conditions. Moreover, optimal fast charging–cooling schedule can be predicted based on
the experimental data obtained, that in turn, can significantly improve the efficiency of the charging pro-
cess design as well as control energy consumption during cooling.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Owing to the significant challenges of fossil fuel shortages and
greenhouse gas emissions, the global transportation industry is
replacing traditional vehicles with clean energy automobiles [1].
Rechargeable batteries are the central technology of electric vehi-
cles (EVs), and lithium-ion battery cells are mainly used in energy
storage devices for their many advantages: ① high energy density,
② high power density, ③ long cycle life, and ④ low self-discharge
rate. Lithium-ion battery cells are also widely used in various kinds
of energy storage devices [2]. However, despite its many advan-
tages, a lithium-ion cell’s performance is sensitive to the ambient
temperature. Previous research has shown that temperature
strongly affects a lithium-ion battery cell’s charging/discharging
efficiency, and this hinders the development of fast-charging tech-
nology. Severe temperatures accelerate the aging process, shorten
the battery cells’ lifetime, and can even result in thermal runaway.
It is important to control the maximum temperature during the
fast-charging process [2–4]. Moreover, the uniformity of a battery
module’s temperature distribution affects inconsistencies among
the battery cells, which leads to the uneven rates of aging and a
decay of the battery module’s lifespan. Considering the severe heat
generated during the fast-charging process, it is vital to maintain
the maximum temperature of a lithium-ion battery module within
the range of 25–40 �C. Also, its temperature standard deviation
(TSD) should be controlled at below 5 �C [5,6].

A battery thermal management system (BTMS) consists of a
cooling function and a heating function. This study focuses on
the cooling technology for the fast-charging process. Several kinds
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Table 1
Advantages and disadvantages of various battery thermal management methods.

Cooling method Advantages Disadvantages Applicable type
of vehicles

Air cooling Simple structure
and low cost

Large volume
cost, low cooling
efficiency, and
easily influenced
by the
environment

Bus and car

Phase change
material

Uniform
temperature
distribution

Large volume and
mass cost, and
high cost for
replacement and
maintenance

Currently being
tested in the
laboratory

Liquid cooling High cooling
efficiency,
uniform
temperature
distribution, and
continuous and
stable cooling
performance

High mass cost
for equipment
and high cost for
maintenance

Car, logistics car,
and sports car
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of cooling strategies have been developed for battery thermal man-
agement, such as air cooling, liquid cooling, a cooling method
based on the phase change principle, and combinations of these.
Air cooling, with its advantages of lower consumption and a simple
structure, has become a commonly used method in EVs. Various
studies have investigated this method before, through theoretical
analysis and experimental validation, which were performed to
enhance the cooling performance. These studies include flow chan-
nel structural design [7,8], battery cell layout design [9–11], and
certain controlling methods of the BTMS [12]. However, air cooling
cannot provide sufficient cooling performance in several applica-
tions, especially under extreme high ambient temperatures or high
charging/discharging current rates with insufficient heat conduc-
tivity of the coolant (air) [13].

Phase change materials (PCMs) are currently employed in cool-
ing systems because they improve the uniformity of the battery
module’s temperature distribution [14]. However, PCMs cannot
be widely employed in EVs because of their inadequate long-
term cooling performance, which results from their intrinsic lower
heat conductivity [15]. Some recent studies were proposed to
investigate PCM cooling efficiency under fast-charging. To enhance
the heat conductivity, composite PCMs were studied by combining
paraffin wax with aluminum, copper, graphite, graphene, or
hexagonal boron nitride. However, the latent heat capacity of the
PCMs decreased because of these combinations. Moreover, there
is a significant volume consumption when PCM-based thermal
management systems are used under fast-charging conditions.
Under an 8C (1C = 5 A) charging current rate, the volume consump-
tion increases to 1.50–1.62 times that of traditional utilization
[4,16,17].

Heat pipes have also been used in BTMS for their gas–liquid
phase-changing characteristics [18]. Rao et al. [19] studied the
cooling performance of heat pipes in experiments. Their results
indicate that the maximum temperature can be controlled within
50 �C if a single cell’s heat-generating power is less than 50 W.
Wu et al. [20] conducted a comparison between natural convec-
tion, forced convection, and heat pipe-cooling, and concluded that
heat pipe-cooling is efficient in maintaining temperature rise.
However, the effective thermal conduction area of traditional
tubular heat pipes has the feature of ‘‘line contact” between the
heat pipes’ evaporators and battery cells’ surface, which results
in insufficient cooling performance and considerable TSD of the
battery module [21]. Zhao et al. [22] designed a flat plate-based
heat pipe with mini-channels inside, which contacted well with
prismatic battery cells, and it has become a candidate choice for
cooling structures.

The advantages and disadvantages of various battery thermal
management methods are compared in Table 1. Compared with
the other cooling strategies, liquid cooling is a more efficient
approach owing to its higher specific heat capacity and a uniform
temperature distribution. However, liquid cooling-based thermal
management systems can be error prone, and the assembly process
and maintenance are much more complicated and expensive
because the BTMS includes some additional equipment (pipes,
pumps, or heat exchangers) [23]. Moreover, the pressure drop
between the inlet and outlet leads to unavoidable energy con-
sumption [23]. Furthermore, the battery cells of a battery module
should be arranged under adiabatic conditions to avoid thermal
runaway. Mei et al. [24] proposed three three-dimensional layered
electrochemical–thermal models with various unit numbers. These
were validated by experiments at various discharging current rates
(0.5C, 1C, 1.5C, and 2C). The results indicated that a one-unit model
needed a lower computational load, and this was helpful for the
adiabatic studies. Previous studies on liquid cooling were con-
ducted mainly on the structural design of flow channels [25–27]
and on the enhancement of heat conduction by the cooling
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medium [28–30]. Chen et al. [31] proposed a comprehensive opti-
mization design for a liquid cooling-based battery module and
validated the design by experiments. The results indicated that
the batterymodule’s thermal performance (maximum temperature
and TSD)was significantly enhanced after themulti-objective struc-
tural optimization design. A liquid cooling-based BTMS was also
verified to be effective in the discharging process of a lithium-ion
battery module under a wide range of current rates. Panchal et al.
[32] designed a liquid cooling plate for a lithium-ion batterymodule
discharged at a 4C current rate. A cascade-based liquid cooling
structure has been shown to have the ability to reduce a lithium-
ion battery module’s TSD from 7 to 2 �C [33].

Previous studies have revealed the superiority of liquid cooling-
based battery modules. It has been shown that a battery module’s
maximum temperature and TSD can be maintained within an
appropriate range. However, these studies focused on the struc-
tural design of the thermal management system and on the ther-
mal performance of liquid cooling-based battery modules under
various working conditions. There is a lack of studies investigating
a fast charging–cooling coupled scheduling which is necessary in
order to enhance the driving range and charging efficiency. More-
over, in order to ensure driving safety and avoid overheating or an
uneven temperature distribution, thermal management during the
fast-charging process is also significant. There is a limited number
of studies on combining fast-charging process scheduling with
thermal management. The schedule selection reaches a reasonable
tradeoff between the charging speed, cooling efficiency, and energy
consumption that is applicable for EVs.

This study addressed the above issues through
(1) Designing a liquid cooling-based thermal management sys-

tem equipped with mini-channels for the fast-charging process of a
lithium-ion battery module;

(2) Proposing a neural network-based regression model in order
to design an efficient fast charging–cooling coupled scheduling
method;

(3) Employing the proposed regression model to predict three
results from a full dataset, which combines a range of charging cur-
rent rates (0.5C, 1C, 1.5C, 2C, and 2.5C) at three different charging
stages, and a range of coolant rates (0.0006, 0.0012, and
0.0018 kg�s�1);

(4) Selecting an optimal fast charging–cooling coupled schedule
from the predicted dataset by setting constraints;

(5) Validating the optimal schedule through the experiments.



Fig. 2. Image of the experimental setup.
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2. Design of liquid cooling-based battery module

2.1. Cooling structure design for fast-charging

A liquid cooling-based battery module is shown in Fig. 1. A kind
of 5 A�h lithium-ion cell was selected, with its working voltage
ranging from 3.20 to 3.65 V. Eight prismatic battery cells (consid-
ering the battery testing machine’s voltage limitation) were
arranged on the top surface of a cooling plate. The heat generated
from the battery cells was conducted and dissipated to the coolant
flowing through the mini-channels, which resulted in a lower vol-
ume cost and provided sufficient thermal conductivity. The side
surfaces between the single cells were separated by heat-
insulating cotton designed to avoid the interaction between single
cells under the effect of overheating. This structural design is
accessible for EVs in real applications.

Aluminum alloy 7075 was selected for manufacturing of the
cooling plate by milling, considering the high thermal conductivity
and low cost of this material. Antifreeze was selected as the cool-
ant, which consisted of ethylene glycol (50%) and water (50%).
Antifreeze is commonly used in EVs and traditional vehicles for
its lower ice point, especially in high-latitude areas.
2.2. Experimental configuration design

The experimental setup is shown in Fig. 2. Eight single cells
were connected in series, and the positive and negative electrodes
of the module were connected to a battery testing machine (BTS-
4000, Neware Electronics Co., Ltd., China). Four K-type thermocou-
ples were attached to the same sidewall of each cell to measure the
real-time temperature during the 15 min fast-charging process. A
pressure sensor was attached to the inlet of the cooling plate;
the real-time inlet pressure was also measured. The battery mod-
ule’s temperature and pressure were recorded by two data loggers
(THM001, Penghe Electronics Co., Ltd., China), with the values
shown on the screens. A motor peristaltic tubing pump (Kamoer,
China) was used to supply the coolant flow for the cooling system.
The ambient temperature in the laboratory was set at 25 �C. The
Fig. 1. Schematic of the liquid cooling-based lithium-ion battery module.
(a) Diagram of lithium-ion battery module; (b) diagram of mini-channel-based
cooling plate.
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initial state of charge (SOC) value of the battery module was dis-
charged to 0.2 before each set of experiments.

3. Artificial neural network regression model

3.1. Artificial neural network regression

An artificial neural network is a kind of machine learning model
employed for data classification or data prediction. The model
structure is constructed based on data and learning rules [34]. A
neural network regression model is trained with data, based on a
training algorithm, to predict a subsequent set of data.

As shown in Fig. 3, an artificial neural network model consists of
some nodes/neurons, which are set in multiple layers: an input
layer, one or more hidden layers, and an output layer [34–36]. Each
node/neuron has an activation function, which calculates how
much neuron is ‘‘stimulated.” At each layer, the collections of
nodes/neurons transform the input parameters; these parameters
are distributed to the next layer, which is described by Eqs. (1)–(3):

znj ¼
X

wð1Þ
ji xn�1iþwð1Þ

j0

� �
ð1Þ

an1 ¼
X

wð2Þ
1j z

n�1iþwð2Þ
10

� �
ð2Þ

yn1 ¼ Fðan1Þ ð3Þ
Fig. 3. Diagram of neural network. x represents the input to the first layer; z
represents the first layer’s output; y represents the output; i and j represent the
neural network node index; xi represents the ith input to the input layer; zj
represents the jth output of the first layer; wji

(l) represents the weight between the
jth node in the first layer and the ith node in the input layer.



Fig. 4. Schematic of the three stages during the fast-charging process.
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where x represents the input to the first layer; z represents the first
layer’s output; i and j represent the neural network node index; n
represents the index of the layer; wji

(l) represents the weight
between the jth node in the first layer and the ith node in the input
layer; a represents the input of the output layer; F(ain) represents
the output value of ith node in (n + 1)th layer after being activated
by the activation function; and w and w0 represent the weight and
bias between the neurons, respectively, which measures the signif-
icance of the data passed along the link (synapse). F(a) represents
the activation function, which employs the hidden layer’s aggre-
gated output to calculate the output y [35,37].

The initial weights and biases are assigned randomly, and the
training process continues until the desired output is obtained,
which is evaluated by the cost function Eq. (4):

EðwÞ ¼ 1
2

XK
k¼1

y xk;wkð Þ � o2k ð4Þ

where o represents the desired output; E(w) represents the cost func-
tion evaluating the training process; w represents the weight; and k
represents the index of the cost function calculation. The
Levenberg–Marquardt (LM) algorithm is used in the neural network
training process, which is a variation of gradient descent. The weight
andbias of the neural networkmodel are changedduring the training
process to minimize the error, which is described by Eq. (5):

wn ¼ wn�1 � ðJT J þ lIÞ�1
Jen�1 ð5Þ

where J = @E=@w represents the full-scale Jacobian matrix related to
w, I represents the identity matrix, l is combination coefficient, and
e represents the prediction error.

The LM algorithm starts with a forward computation by Eqs.
(1)–(3). The prediction errors of the output layer and hidden layer
are calculated by Eqs. (6)–(8):

eð3Þ1 ¼ y1 � o ð6Þ

dð3Þ1 ¼ eð3Þ1 ð7Þ

dð2Þj ¼ w1jd
ð3Þ
1 ð8Þ

where d represents the prediction error of the output layer.
As shown in Eqs. (9) and (10), the Jacobian is calculated by a

backpropagation process:

@E
@wji

¼ dð2Þj xi ð9Þ

@E
@w1j

¼ dð3Þ1 zj ð10Þ
Fig. 5. Composition of the experiment-based training dataset.
3.2. Configuration of neural network model

As shown in Fig. 4, the entire charging process is divided into
three stages; each stage lasts 5 min. I1, I2, and I3 represent the
charging current value at stages 1, 2, and 3, respectively. Q repre-
sents the coolant flow rate of the fast-charging process. I1, I2, I3,
and Q are set as input parameters of the neural network models.

This study had three objectives: ① maximum temperature
(Tmax), ② TSD, and ③ energy consumption (W) of the fast-
charging process. These three parameters were set as output
parameters of three neural network models (NN1, NN2, and NN3).

The value of the liquid cooling system’s energy consumption is
calculated by Eq. (11):

W ¼
Z

PðtÞdt ð11Þ
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where P represents the power consumption of the cooling system; t
represents time.

The TSD is calculated based on all of the measured temperature
values from the temperature sensors and is described by Eq. (12):

TSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
32

X32
r¼1

ðTr � TÞ2
vuut ð12Þ

where Tr represents the temperature value of each temperature
sensor, T represents the average temperature value of all the tem-
perature sensors, and r represents the battery cell index.

All of the training data are from experiments and three charging
current rates were selected for the three stages of the experimental
charging process: ① 0.5C, ② 1.5C, and ③ 2.5C. Three coolant flow
rates were also selected for the charging process: ① 36 mL�min�1,
② 72 mL�min�1, and ③ 108 mL�min�1. As shown in Fig. 5, a total of
81 sets of experimental data were obtained for the training
process.

The theoretical capacity is defined based on the assumption
that all of the active substances in an electrode participate in the
battery cells’ electrochemical reaction, which is treated as the
highest theoretical value calculated according to Faraday’s law. In
this study, the theoretical capacity of the battery cell is 5 A�h.
The SOC value of the battery module is employed to evaluate the
charging effect, which is calculated by Eq. (13):

SOC ¼ SOC0 þ
R
IðtÞdt

Capacitytheoritical
� 100% ð13Þ

where I represents the charging current.
Specific information about the training dataset and correspond-

ing SOC value is listed in Table 2.



Table 2
Training dataset of the neural network model.

Number Input parameters Evaluating
parameter

Output parameters

I1 (A) I2 (A) I3 (A) Q (mL�min�1) DSOC Tmax (K) TSD (K) W (J)

1 2.5 2.5 2.5 108 0.125000 26.1 0.4129 0.069725
2 7.5 2.5 2.5 108 0.208333 27.3 0.3682 0.063342
3 12.5 2.5 2.5 108 0.291667 28.3 0.5135 0.071086
4 2.5 7.5 2.5 108 0.208333 27.4 0.2596 0.084564
5 7.5 7.5 2.5 108 0.291667 27.6 0.3949 0.068818
6 12.5 7.5 2.5 108 0.375000 31.8 0.7023 0.084451
7 2.5 12.5 2.5 108 0.291667 29.1 0.5339 0.070259
8 7.5 12.5 2.5 108 0.375000 31.8 0.9332 0.077144
9 12.5 12.5 2.5 108 0.458333 32.3 0.8238 0.072041
10 2.5 2.5 7.5 108 0.208333 27.4 0.3809 0.069482
11 7.5 2.5 7.5 108 0.291667 28.5 0.4258 0.062953
12 12.5 2.5 7.5 108 0.375000 30.6 0.8403 0.072074
13 2.5 7.5 7.5 108 0.291667 28.1 0.3837 0.073613
14 7.5 7.5 7.5 108 0.375000 31.6 0.7798 0.072317
15 12.5 7.5 7.5 108 0.458333 33.2 0.9740 0.081875
16 2.5 12.5 7.5 108 0.375000 32.7 0.6894 0.075719
17 7.5 12.5 7.5 108 0.458333 32.4 0.7955 0.087269
18 12.5 12.5 7.5 108 0.541667 35.1 1.1011 0.073321
19 2.5 2.5 12.5 108 0.291667 30.9 0.5572 0.079315
20 7.5 2.5 12.5 108 0.375000 30.6 0.6335 0.072236
21 12.5 2.5 12.5 108 0.458333 32.3 0.7241 0.083608
22 2.5 7.5 12.5 108 0.375000 30.2 0.5730 0.069498
23 7.5 7.5 12.5 108 0.458333 32.0 0.7632 0.080449
24 12.5 7.5 12.5 108 0.541667 34.3 1.1734 0.083981
25 2.5 12.5 12.5 108 0.458333 29.4 0.5591 0.094235
26 7.5 12.5 12.5 108 0.541667 35.3 0.9918 0.074471
27 12.5 12.5 12.5 108 0.625000 38.0 1.4759 0.075411
28 2.5 2.5 2.5 36 0.125000 26.8 0.2462 0.015973
29 7.5 2.5 2.5 36 0.208333 27.2 0.4668 0.019013
30 12.5 2.5 2.5 36 0.291667 28.8 0.5869 0.020596
31 2.5 7.5 2.5 36 0.208333 26.8 0.6606 0.019694
32 7.5 7.5 2.5 36 0.291667 28.4 0.3939 0.021778
33 12.5 7.5 2.5 36 0.375000 29.2 0.6031 0.017685
34 2.5 12.5 2.5 36 0.291667 28.6 0.5454 0.023150
35 7.5 12.5 2.5 36 0.375000 31.1 0.7081 0.016902
36 12.5 12.5 2.5 36 0.458333 33.7 0.7630 0.019591
37 2.5 2.5 7.5 36 0.208333 27.1 0.5199 0.021292
38 7.5 2.5 7.5 36 0.291667 27.3 0.4634 0.018824
39 12.5 2.5 7.5 36 0.375000 31.8 0.5669 0.018619
40 2.5 7.5 7.5 36 0.291667 28.2 0.5400 0.019219
41 7.5 7.5 7.5 36 0.375000 30.3 0.7927 0.020504
42 12.5 7.5 7.5 36 0.458333 32.1 0.6227 0.020407
43 2.5 12.5 7.5 36 0.375000 30.3 0.4976 0.020957
44 7.5 12.5 7.5 36 0.458333 32.8 0.6300 0.020682
45 12.5 12.5 7.5 36 0.541667 33.8 0.8014 0.018479
46 2.5 2.5 12.5 36 0.291667 28.7 0.5205 0.020585
47 7.5 2.5 12.5 36 0.375000 31.1 0.5642 0.016524
48 12.5 2.5 12.5 36 0.458333 33.5 0.7250 0.021827
49 2.5 7.5 12.5 36 0.375000 33.7 1.1370 0.017167
50 7.5 7.5 12.5 36 0.458333 32.2 0.5482 0.018571
51 12.5 7.5 12.5 36 0.541667 34.2 0.8794 0.018630
52 2.5 12.5 12.5 36 0.458333 34.1 1.3452 0.018808
53 7.5 12.5 12.5 36 0.541667 33.6 0.9299 0.022351
54 12.5 12.5 12.5 36 0.625000 35.4 0.9096 0.023992
55 2.5 2.5 2.5 72 0.125000 26.2 0.3001 0.041008
56 7.5 2.5 2.5 72 0.208333 26.7 0.3742 0.046310
57 12.5 2.5 2.5 72 0.291667 29.0 0.5135 0.046926
58 2.5 7.5 2.5 72 0.208333 26.7 0.4392 0.049216
59 7.5 7.5 2.5 72 0.291667 28.4 0.4938 0.051646
60 12.5 7.5 2.5 72 0.375000 30.1 0.4827 0.039182
61 2.5 12.5 2.5 72 0.291667 28.4 0.4117 0.039064
62 7.5 12.5 2.5 72 0.375000 30.4 0.4655 0.043211
63 12.5 12.5 2.5 72 0.458333 32.7 0.7315 0.044064
64 2.5 2.5 7.5 72 0.208333 27.5 0.6321 0.041278
65 7.5 2.5 7.5 72 0.291667 27.6 0.4295 0.044345
66 12.5 2.5 7.5 72 0.375000 30.0 0.5010 0.048924
67 2.5 7.5 7.5 72 0.291667 27.9 0.4536 0.047855
68 7.5 7.5 7.5 72 0.375000 29.7 0.3648 0.037930
69 12.5 7.5 7.5 72 0.458333 32.7 0.7269 0.037552
70 2.5 12.5 7.5 72 0.375000 30.4 0.7312 0.044539
71 7.5 12.5 7.5 72 0.458333 31.9 0.7326 0.045144
72 12.5 12.5 7.5 72 0.541667 34.1 0.7250 0.042120

(continued on next page)
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Table 2 (continued)

Number Input parameters Evaluating
parameter

Output parameters

I1 (A) I2 (A) I3 (A) Q (mL�min�1) DSOC Tmax (K) TSD (K) W (J)

73 2.5 2.5 12.5 72 0.291667 29.0 0.5479 0.054475
74 7.5 2.5 12.5 72 0.375000 31.1 0.6193 0.047423
75 12.5 2.5 12.5 72 0.458333 34.4 1.1914 0.040241
76 2.5 7.5 12.5 72 0.375000 31.3 0.5785 0.052909
77 7.5 7.5 12.5 72 0.458333 33.3 0.8902 0.049464
78 12.5 7.5 12.5 72 0.541667 35.9 1.0829 0.049399
79 2.5 12.5 12.5 72 0.458333 33.3 0.7716 0.055804
80 7.5 12.5 12.5 72 0.541667 35.6 1.0460 0.044712
81 12.5 12.5 12.5 72 0.625000 36.9 1.0378 0.052693

Fig. 6. Diagram of the proposed neural network model.
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3.3. Structure of the neural network regression model

Unlike some battery cells’ behaviour-based governing equa-
tions, a neural network regression model is a ‘‘black box” model,
which does not provide insight into how the hidden model’s struc-
ture actually works. Moreover, there are two problems for a non-
linear neural network regression model: ① underfitting or
overfitting, and ② the possible stagnation of the training process
at the local optimal stage.

Some solutions are proposed to obtain a better regression per-
formance: ① input parameter preprocessing, so that representa-
tive ‘‘features” can be extracted from the data; ② increasing the
overall percentage of training datasets to cover the anticipated
operational range; and ③ comprehensive cross-validation to
enhance training performance when encountering an unknown
usage profile [34].

The configurations of three neural network regression models
are shown in Table 3. Each model consists of three layers, and these
models are designed with the same activation function (a feedfor-
ward LM backpropagation approach) in the training process. As
Fig. 6 shows, the traditional neural network model is split into
three sub-models, one for each objective (output parameter). Each
input layer consists of the four input parameters (I1, I2, I3, and Q)
and is followed by a hidden layer. The output parameter estimation
responds to each of the input layers. The number of nodes in the
input layer shows the exact number of input parameters used in
the model. To obtain a continuous result, the hidden layers feed
into another aggregation layer, which combines the results from
the previous layers and feeds them to the output layer. To avoid
overfitting and underfitting, two nodes/neurons in the hidden layer
were implemented to get the desirable regression performance.
Among the 81 sets of experimental data, a number of 73 (90%) sets
of experimental data were employed for training; four (5%) sets of
experimental data were employed for validation; four (5%) sets of
experimental data were employed for testing. One thousand
epochs were set for the neural network regression training process.

3.4. Regression performance evaluation of neural network model

As mentioned in Section 3.3, LM backpropagation was
employed in order to enhance the model training rate related to
pure error backpropagation or steepest descent, and this algorithm
maintained the accuracy of the trained model.

The neural network regression model was trained with the
designed model structure, input parameters, and number of nodes.
Table 3
Configurations of three neural network regression models.

Model Input parameters Output parameter

NN1 I1, I2, I3, Q Tmax

NN2 I1, I2, I3, Q TSD
NN3 I1, I2, I3, Q W
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The accuracy of both the training and the prediction/estimation
was evaluated by the mean absolute error (MSE), which is
expressed as Eq. (14).

eavg ¼ 1
M

XM
m¼1

Outputm � Outputr;m
�� �� ð14Þ

where eavg represents the average absolute error, M represents the
number of data points, Outputm represents the mth estimated out-
put parameter, and Outputr,m represents the mth reference output
parameter. The minimum error for the neural network estimation
was found with the number of nodes per output parameter estima-
tion layer set as two.

The training process of these three neural network models is
shown in Fig. 7. With the above neural network configuration,
the estimation performance was improved, and the three regres-
sion models achieved a desirable speed of error convergence after
initialization, during the training process.

As shown in Fig. 8, high fitting accuracy rates were obtained
after the training process. For the training process, the fitting accu-
racy rates of NN1, NN2, and NN3 were 95.123%, 82.866%, and
98.142%, respectively. For the testing process, the fitting accuracy
rates of NN1, NN2, and NN3 were 99.353%, 97.332%, and 98.381%,
respectively. The overall fitting accuracy rates of NN1, NN2, and
NN3 were 95.478%, 83.496%, and 98.049%, respectively. All of the
three neural network models achieved high accuracy rates, espe-
cially in testing; and the predicted values of the output parameters
were close to the reference values. There was a slight difference
between the measured and predicted energy consumption values,
but the difference was within the tolerance limits. The results



Fig. 7. Training process of three neural network models. (a) Training process of NN1; (b) training process of NN2; (c) training process of NN3. Mu: reduction factor; Gamk:
display frequency; ssX: inflation factor; Val fail: validation failure time.
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Fig. 8. Regression performance of the three neural network models. (a) Regression performance of NN1; (b) regression performance of NN2; (c) regression performance of
NN3. Y = T: trend line in ideal condition with 100% fitting rate; Y: output; T: target.
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indicate that the relationship between the input parameters and
output parameters was accurately modelled. With good regression
performance of these three models, further prediction/estimation
should be reliable.

The error histogram plots of these three neural network models
are shown in Fig. 9. For the three neural network models, a number
of 20 bins were distributed following the Gaussian distribution
rules, which proved the representativeness of the training data.

4. Optimal charging–cooling schedule selection and
experimental validation

4.1. Estimation of fast charging–cooling schedules based on the trained
regression model

The trained neural network regression model was employed to
estimate the results of some given input combinations. Some esti-
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mation results were compared with reference to some known
experimental data to determine the accuracy and robustness of
the trained model.

According to the current rates of fast-charging technology
features, a total of five charging current rates were selected for
the three stages of the charging process: ① 0.5C, ② 1C, ③ 1.5C,
④ 2C, and ⑤ 2.5C. Three coolant flow rates were also selected
for the charging process: ① 36 mL�min�1, ② 72 mL�min�1, and
③ 108 mL�min�1. Fig. 10 shows the composition of the
fast-charging designs.

There were 375 sets of fast charging–cooling schedules in a full
dataset; and the maximum temperature, TSD, and energy con-
sumption of these charging–cooling schedules were predicted
using the proposed three neural network regression models
(NN1, NN2, and NN3). Specific information and the SOC values of
these fast charging–cooling schedules are listed as in Appendix A
Table S1.



Fig. 9. Error histogram of three neural network models. (a) Error histogram of NN1; (b) error histogram of NN2; (c) error histogram of NN3. Errors = Targets – Outputs.
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4.2. Optimal charging–cooling schedule selection

To obtain an efficient fast-charging schedule, the thermal per-
formance of the battery module should be controlled (maximum
temperature and temperature distribution uniformity), the SOC
value of the battery module must be charged to a high level within
1173
a short time, and the energy consumption of the cooling system
should also be controlled.

In this study, the specific requirements for the optimal fast
charging–cooling schedule are listed as follows:

(1) The SOC value of the battery module increases by 0.5 after
the fast-charging process (15 min);



Fig. 10. Composition of the fast-charging designs.
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(2) The maximum temperature of the battery module should be
lower than 306.5 K (33.35 �C);

(3) The TSD should be controlled within 0.8 �C;
(4) The energy consumption of the cooling system during the

fast-charging process should be less than 0.02 J.
Addressing all of these constraints is essential for a comprehen-

sive and reliable charging–cooling schedule design. The cooling
effect, uniform temperature distribution, charging speed, and
Fig. 11. Temperature curve of the fast ch

Fig. 12. Pressure curve of the fast char
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energy consumption should all be considered as having the same
degree of importance. These selection standards are described by
Eq. (15):

DSOC � 0:5
Tmax � 33:35 �C
TSD � 0:8 �C
W � 0:02 J

8>>><
>>>:

ð15Þ

Schedule 50 was selected as the optimal fast charging–cooling
schedule, and it was validated in the experiments using the
above-described experimental setup.

4.3. Experimental validation

Figs. 11 and 12 show the temperature and pressure curves of
the fast charging–cooling design Schedule 50 in the experiments.

A comparison between the selected optimal fast charging–cool-
ing schedule and the experimental data is presented in Table 4.

As shown in the results, the differences between the predicted
and experimental data are within the limits of tolerance. The devia-
tion of maximum temperature, TSD, and the energy consumption
of the cooling system are 0.468 �C, 0.045327 �C, and 0.001694 J,
respectively. This proves the prediction accuracy of the three
arging–cooling design Schedule 50.

ging–cooling design Schedule 50.



Table 4
Comparison between the selected optimal fast charging–cooling schedule and the experimental data.

Parameter I1 (A) I2 (A) I3 (A) Q (mL�min�1) DSOC Tmax (K) TSD (K) W (J)

Predicted data 12.5 12.5 5.0 36 0.5 33.268 0.725872 0.019196

Experimental validation 12.5 12.5 5.0 36 0.5 32.800 0.680500 0.017502
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proposed neural network regression models. Consequently, these
models can be efficiently employed for fast charging–cooling cou-
pled scheduling in real applications, with much lower costs.
5. Conclusions and further work

This study proposed a neural network-based regression model
for fast charging–cooling coupled scheduling, which significantly
saves time and cost during the fast charging-and-cooling design
process. The proposed neural network model configurations
achieve the desirable regression performance, and the designed
configuration makes the estimation more realistic. The main con-
clusions of this study are listed below.

(1) The proposed model was trained based on 81 sets of exper-
imental data, which consisted of three sub-models considering
three targets: maximum temperature, TSD, and energy consump-
tion of the cooling system. The regression results achieved high
regression performance in tests, with 99.353%, 97.332%, and
98.381% accuracy, respectively.

(2) The regression model was utilized to predict three target
values for all of the combinations among a wide range of charging
current rates (0.5C, 1C, 1.5C, 2C, and 2.5C), at three different charg-
ing stages and a range of coolant rates (0.0006, 0.0012, and
0.0018 kg�s�1). Moreover, an optimal fast charging–cooling cou-
pled schedule was selected from the predicted dataset based on
the constraints of the three targets.

(3) The optimal schedule was validated by experiments, and the
results show that the battery module’s SOC value increased by 0.5
after 15 min of the fast-charging process. The energy consumption
of this process was controlled within 0.02 J, and the maximum
temperature and TSD were lower than 33.35 and 0.8 �C,
respectively.

The proposed method can be employed by the EVs industry in
real fast-charging conditions, and the experimental test data can
be used for regression training to predict the optimal fast charg-
ing–cooling schedule, which significantly promotes the efficiency
of the charging process design and controls the energy consump-
tion during the cooling process.

Further work will aim to develop and train neural network
models to cover wider applications, and the effects of temperature
changes in the environment and battery degradation may also be
included.
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