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The rapid advance of autonomous vehicles (AVs) has motivated new perspectives and potential chal-
lenges for existing modes of transportation. Currently, driving assistance systems of Level 3 and below
have been widely produced, and several applications of Level 4 systems to specific situations have also
been gradually developed. By improving the automation level and vehicle intelligence, these systems
can be further advanced towards fully autonomous driving. However, general development concepts
for Level 5 AVs remain unclear, and the existing methods employed in the development processes of
Levels 0–4 have been mainly based on task-driven function development related to specific scenarios.
Therefore, it is difficult to identify the problems encountered by high-level AVs. The essential logical
and physical mechanisms of vehicles have hindered further progression towards Level 5 systems. By
exploring the physical mechanisms behind high-level autonomous driving systems and analyzing
the essence of driving, we put forward a coordinated and balanced framework based on the brain–
cerebellum–organ concept through reasoning and deduction. Based on a mixed mode relying on the crow
inference and parrot imitation approach, we explore the research paradigm of autonomous learning and
prior knowledge to realize the characteristics of self-learning, self-adaptation, and self-transcendence for
AVs. From a systematic, unified, and balanced point of view and based on least action principles and
unified safety field concepts, we aim to provide a novel research concept and develop an effective
approach for the research and development of high-level AVs, specifically at Level 5.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the automation level of autonomous vehicles
(AVs) has been gradually increasing and motivating a demand for
further advances. Autonomy can be defined as the ability of an
intelligent system to achieve specific tasks under the uncertainty
of the system itself and its environment [1]. In realizing a specific
task, the stronger a system’s ability to deal with uncertainty while
requiring less or no human interference is, the higher its level of
automation is [2]. Various standards for measuring the level of
AV automation have been defined, and the automotive industry
usually employs a six-level classification standard ranging from 0
(fully manual) to 5 (fully autonomous) as defined by the Society
of Automotive Engineers (SAE International) [3]. The existing defi-
nitions of autonomous driving specified by the SAE for Levels 1–5
can be interpreted as follows [3]: For Level 1 vehicles, driving assis-
tance systems can sometimes assist the driver in completing some
lateral or longitudinal driving tasks; Level 2 vehicles can automati-
cally provide multidimensional assistance; at Level 3, vehicles can
execute automatic acceleration and deceleration steering in a
specific environment without the driver’s intervention; at Level
4, if a vehicle is currently in an autonomous driving state under
limited conditions, the driver is not required to continuously con-
trol the steering wheel; at Level 5, vehicles can run automatically
under any conditions and scenarios. Here, the automatic system
of a vehicle completely replaces the human driver and achieves full
automation.

In the development process of vehicles corresponding to Levels
1–5, various potential issues can hinder the realization of autono-
mous driving, including the dynamic, random, and diversified nat-
ure of traffic participants; coupled, time-varying, and complicated
traffic environments; and unstructured, vague, and even unreason-
able road infrastructures [4–6]. Three main challenges can be out-
lined as follows: ① the superposition of multiple traffic scenarios,
such as in downtown areas; ② the impossibility of implementing
ideal environmental adaptation when considering dynamically
changing weather and road conditions; and ③ uncertain traffic
conditions, such as random emergencies and other potential
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problems. Therefore, to enable higher-level autonomous driving, it
is necessary to formulate an effective development concept for
self-driving vehicles so that they can sufficiently estimate, judge,
and predict the risk degree in a traffic environment in an intelligent
manner. Moreover, they need to be capable of planning specific
driving strategies and routes, as well as realizing safe, reliable,
and high-level autonomous driving in complex and uncertain envi-
ronments while considering the intentions and decision-making
mechanisms of other road users.

The proportion of traffic accidents caused by human error dur-
ing the driving process exceeds 90%, including driver limitations in
various stages of perception, cognition, reasoning, and decision-
making [7–9]. A fundamental way to solve traffic safety problems
is to implement autonomous driving technology and gradually
increase the level of automation. Many automobile manufacturers
have specified their own research approaches to promote the
development of autonomous driving technology. Currently, the
mainstream autonomous driving technology routes include the
following [10,11]: ① the gradual evolution route, starting from
the invention of advanced driver assistance systems (ADASs) and
gradually developing to the unmanned driving stage—most tradi-
tional automobile enterprises have generally adopted this rela-
tively conservative route [12]; ② the revolutionary route,
implying that the enterprises develop Level 4 or Level 5 autono-
mous driving vehicles from scratch, such as Google, Ford, General
Motors Company (GM), Momenta, and other companies; and
③ the Tesla route, where a vehicle is equipped with autonomous
driving system hardware, auxiliary autonomous driving functions
are applied, and test data are continuously accumulated; then,
the autonomous driving system is improved through software
upgrades, and unmanned driving is eventually realized.

However, when implementing these different existing technical
routes, similar problems arise. Specifically,① AVs may violate traf-
fic rules, brake frequently, sacrifice passenger comfort, and have a
negative impact on traffic; ② the safety algorithm may rely on
insufficient influencing factors, which makes it difficult to accu-
rately judge a driving risk degree; and ③ AVs can be easily trapped
in a complex environment due to the lack of comprehensive judg-
ment ability and consequently encounter decision-making con-
flicts. These difficulties may cause a series of unreasonable self-
driving phenomena during the actual driving process [13], such
as fail to stop when encountering pedestrians, cross multiple lanes
at one time, brake frequently when encountering other vehicles,
hesitate and stop when turning left, and others. In addition, AVs
have also caused many accidents [14]. For example, in 2016, a Tesla
vehicle Model S crashed into a truck that was turning left when it
was passing through a crossroad. In 2017, a rear-end collision
occurred during the test of a Waymo AV. In 2018, Uber’s autono-
mous driving test vehicle caused an accident, as the system could
not accurately identify pedestrians outside the crosswalk.

Although the research routes adopted by various institutions
have exhibited particular emphasis, the development concepts
for high-level AVs are mainly based on scenario-driven and task-
driven approaches to perform specific function development under
predefined scenarios [5]. This concept has a certain guiding func-
tion for the development of Levels 1–3 driving assistance systems
and can serve to implement specified functions under predefined
scenes. While establishing Levels 3 and 4 autonomous driving is
task-driven, it can realize human–machine cooperative driving
under limited conditions. Concerning Level 5 vehicles, the
scenario-driven concept may cause problems due to an infinite
number of possible scenarios, implying that vehicles need to adapt
to any scenario. Further task-driven considerations will result in an
excessive number of restrictions, thereby hindering the develop-
ment of Level 5 AVs that can drive freely and unconditionally.
For example, the awareness of following traffic rules might not
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be strong enough; some road structures and traffic facilities in
the driving environment are often unreasonable and outdated.
The existence of specific behavior patterns of traffic participants
and the peculiarities of the driving environment have greatly
increased the application challenges associated with the existing
scenario-driven and task-driven development concepts.

Therefore, Level 5 AVs are expected to achieve the performance
levels beyond human drivers and considerably improve vehicle
performance. Developing Level 5 AVs generally relies on learning
and adapting to the human driving mode, and it is expected that
these vehicles will eventually overcome human driving limitations
[2]. Actually, there are few research paradigms that explore the
physical mechanisms behind high-level autonomous driving
systems and reveal the nature of driving from a brand-new
systematic, unified, and balanced perspective. Therefore, in view
of the limitations of the existing methods, we seek to outperform
the traditional research concepts by adopting a novel reasoning
and deduction method. We first focus on discussing the coordina-
tion and balance framework based on the brain–cerebellum–organ
concept, and then we explore the research paradigm of self-
learning and prior knowledge. By conducting pioneering research,
we aim to realize the characteristics of self-learning, self-
adaptation, and self-transcendence for AVs and provide novel
research concepts for the development of Level 5 AVs.
2. Limitation analysis of existing research frameworks

The general concept underlying the development of AVs is to
divide the whole system into separate interconnected layers and
functions. First, AVs need to perceive environmental parameters
and identify targets using an environment perception layer. Then,
performing a situational assessment can improve the understand-
ing of a driving environment, including driving behavior inten-
tions. Moreover, at this step, the AVs need to estimate and
predict the future driving risk level as well as assess the risk level
of the other traffic participants to understand the current state of
an environment [15]. Finally, AVs complete path planning based
on the outputs of the decision-making and executive control sys-
tems to realize the primary driving operation task.

Specifically, the existing approaches for developing AVs based
on scenario-driven or task-driven concepts can be mainly divided
into a hierarchical autonomous framework based on a
perception–decision–control paradigm and an end-to-end overall
learning framework.
2.1. Analysis of the perception–decision–control hierarchical
framework

In current autonomous driving systems, the perception, deci-
sion, control, and execution modules rely on a multifunctional
superposition design scheme used for independent design and
development. When an AV advances to a higher level, it needs to
enable a correspondingly higher level of functions. However, the
existing research framework usually directly superimposes new
elements based on the original system to integrate existing func-
tions and generate new ones. An integrated architecture corre-
sponding to hierarchical structure design and function
superposition is relatively simple and easy to implement, which
is important at the primary stage of developing autonomous driv-
ing systems [5]. However, additional factors need to be considered,
including the increasing demand for functions, the need for contin-
uous integration of subsystems, the increasingly complex system
structure, the mutual interrelations, and overlapping between the
functions and structures of different embedded systems. These fac-
tors can cause various problems such as a redundant configuration
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of structures, a low utilization rate of resources and an increase in
system costs.

In particular, the rule-based method is often utilized for
decision-making in a hierarchical framework. This method can
effectively realize the decision-making process for AVs correspond-
ing to Levels 2–4 and is deemed applicable to the specific
scenario-driven and task-driven autonomous driving modes. Its
representative techniques include finite state machines and others.
The key concepts of this approach are intuitive, comprehensible,
and easy to implement. In simple scenes, its applicability is supe-
rior compared with other feasible methods. However, the obvious
disadvantage of these methods is that they lack the ability to sum-
marize unknown situations, which makes it difficult to extend
them to the complexity of real-world driving, specifically concern-
ing high-level autonomous driving. In a hierarchical framework,
the specific characteristics and limitations of each subsystem are
summarized in Table 1 [16–22]. In view of the current difficulties
of these systems, many challenges will also be encountered in
the process of moving towards Level 5 AVs.
Table 1
Characteristics of the perception–decision–control framework.

System Method Characteristics Limitatio

Perception Single-sensor
perception

Consider the physical principle and data
type of each sensor

Limited p
targeting

Virtual
perception

Simultaneous localization and mapping
(SLAM) system: build map based on sensor
data in virtual environment
Vehicle to everything (V2X): collaborative
perception

SLAM: de
fail in dr
condition
accuracy
V2X: rely
transform
commun
reliability

Multiple
sensor fusion

Realize the complementary advantages of
multiple sensors

Fusion p
light cha
Sensor d
heteroge

Decision Hierarchical
decision-
making [18]

Divided into three levels: situation
assessment, behavior decision, and motion
planning

Consider
or explos
Difficulty
expectat
Without
perceptio

End-to-end
decision
making [19]

Based on machine learning, the vehicle
control information is directly output from
the input of environment perception
information

Simple a
Unclear d
Limited g
scenes
Lack of c
between

Control Lateral control
[20]

The vehicle lateral control is realized by
means of adaptive control, fuzzy logic
control, sliding mode control, etc.

Tradition
the prob
AVs

The cont
modeling
Challeng
nonlinea

Longitudinal
control [21]

The vehicle longitudinal control is realized
by means of incremental proportion–
integration–differentiation (PID) control,
adaptive cruise control, etc.

Multiobjective
cooperative
control [22]

Combined with learning methods (i.e.,
deep reinforcement learning),
multivehicle cooperative control can be
realized for complex scenarios considering
multiobjects

Realize in
personal
multiobj
poor real
complex
The stabi
cannot b
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2.2. Analysis of the end-to-end learning framework

Many innovative companies and institutions have researched
and promoted end-to-end training in the field of autonomous driv-
ing by combining in-depth learning with enhanced learning
[19,23]. The end-to-end learning method can directly export the
input information obtained from sensors to the vehicle bottom
controller (brake, throttle, steering, etc.). Concerning an existing
end-to-end learning framework, its continuous exploration and
learning attributes can enable AVs to realize the process of self-
adaptation and self-learning [24]. However, due to the hidden
characteristics of the intermediate links of the end-to-end frame-
work, various problems, such as unclear learning content, uncon-
trollable learning direction, and irrelevant learning strategies,
eventually occur in the case of unknown and uncertain situations
in actual traffic scenarios. Due to the black box problem of the
end-to-end intermediate process, the transparency is not high,
resulting in a high degree of inconsistency between the corre-
sponding functions and expectations. Meanwhile, the potential
ns Level 5 challenges

erceptual performance and
specific scenarios [16]

Poor perception performance in complex
environments
No single type of sensor to cover all
scenarios

nse and complex computation;
amatically changing road
s; strongly depend on the
of the input perception data
on the infrastructure
ation; require high
ication performance and high

Dynamic traffic will seriously affect the
accuracy and real-time robustness of
positioning
No uniform standard for infrastructure
deployment

erception of severe weather and
nges is unreliable
ata is imperfect, inconsistent, and
neous [17]

No fusion algorithm to simultaneously deal
with multiple sensor data problems
A reliable sensor fault detection and
isolation method still needs to be added to
deal with sensor failure

limited interactivity, uncertainty,
ion
in meeting the driver’s

ions
considering the impact of limited
n and control ability

Dependent on data to adapt to high-
dynamic and random real traffic scenarios
Limited self-learning ability hinders its
decision-making performance in a high-
level autopilot
Low computational efficiency to apply to
high-level AVs

pplication scenarios
ecision mechanism
eneralization ability of multiple

onsideration of the interaction
traffic participants

Massive and comprehensive data need to be
collected in advance for training
The uninterpretability makes it a great
uncertainty in the application of advanced
automatic driving

al control methods fail to solve
lem of multiobjective control of

rol effect is sensitive to the
accuracy

es in solving high-dimensional
r analysis

High-level AVs need to improve the safety
and efficiency of overall traffic rather than
control in single direction

Complex scenes require many
computations in control process

telligent adjustment of
ized parameters and achieve
ective collaborative control while
-time performance occurs in
scenes
lity and convergence of the model
e guaranteed

How to obtain the optimal solution of
dynamic multiobjective control for high-
level AVs; optimize the operation
performance of complex conditions; and
obtain the real-time, robust, and optimal
control results
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physical mechanism behind the learning methods is usually not
clear, leading to many potential risks in developing vehicles at
higher levels. Furthermore, the interpretable problems caused by
the failure to deeply reveal the physical mechanism behind the
model can become bottlenecks hindering the further development
and application of the learning methods. Specifically, problems
such as difficult to combine with rules; high computational cost
and high hardware requirements; insufficient samples, insufficient
completeness, and high training cost further hinder end-to-end
learning in practical applications [25].

Therefore, just based on end-to-end exploration or the existing
hierarchical framework, we cannot effectively deal with these
abnormal situations. Complex traffic scenarios usually have con-
tained these uncertain, unpredictable, and unconventional ele-
ments. If high-level AVs follow the current development trend
driven by a single function, specific scenes and tasks, they will not
be able to effectively dealwith commonabnormal traffic conditions.
Traditional research methods aimed at specific scenes and single
traffic environment cannot fully reflect the decision-making and
control ability of drivers in real traffic environments, and it is diffi-
cult to provide a guidance foundation for the development of
anthropomorphic driving algorithms for high-level intelligent
vehicles.

3. Re-examination of research on the difference between Level
4 and Level 5 AVs

3.1. The target of Level 5 AVs

According to the specified definitions, there is an essential dif-
ference between Level 4 and Level 5. Namely, Level 4 can realize
highly automated driving, but its limited conditions make Level 4
approach driver behaviors only under the premise of covering var-
ious scenes as much as possible. However, it cannot realize 100%
practicality and the unconditional universality requirements
assumed in Level 5. According to the SAE International classifica-
tion standards, the difference between Level 4 and Level 5 AVs is
the operational design domain (ODD), meaning that Level 4 vehi-
cles can only operate in a predefined operating range, while Level
5 can operate under any possible condition with ethical norms.
However, if Level 4 and Level 5 are distinguished in terms of scene
coverage and operating conditions, the definition of Level 5 can be
blurred, thereby inducing a series of discussions on whether it is
necessary to develop Level 5.

Therefore, on the basis of SAE International standards and other
promulgated classifications of AVs, we will reclarify the essence of
Level 5 vehicles. Level 5 AVs will no longer be a traditional vehicle,
but a new type of vehicle with self-learning, self-repairing,
self-configuring software, autonomous social interaction, and
autonomous driving capabilities that can handle different
scenarios. The characteristics of self-learning, self-adaptation, and
self-transcendence can be applied to AVs corresponding to Levels
2–4; however, this process is one-way, and Levels 1–4 vehicles
can be considered as special cases of Level 5. Further analysis
shows that in the development of Levels 1–5 vehicles, Levels 1–3
vehicles can be understood as a task agent focusing on perception.
Then, Level 4 realizes decision-making tasks in a given complex
scene, providing a certain task processing boundary. The main
reason for the occurrence of this task boundary is that the Level
4 self-driving system makes decisions based on the statistical
information instead of facilitating logic-based decision-making.
We can also consider the Level 4 vehicle as corresponding to a
partial sample. After achieving Level 4 technology, it can be
verified in a partial sample but cannot cover the whole range of
samples. Level 4 vehicles operate under a limited working
condition. However, concerning infinite uncertain scenarios, the
1316
primary goal does not imply listing all possible examples that
can be realized rather than enabling a self-exploration ability.

Therefore, Level 5 requires the self-driving system to incorpo-
rate a decision-making ability capable of dealing with unknown
driving scenes. Themain difference between Level 4 and Level 5 lies
in the question of whether it is capable of reasoning and logic-based
self-learning, which can also be referred to as a self-correcting abil-
ity. Unlike a machine learning mode, this capability not only
enables an autonomous driving system to extract features from
driving experience by statistical methods but also facilitates further
refinement of an interaction mechanism between the controlled
vehicles and a traffic environment. Therefore, a correction logic
can be considered capable of systematically adjusting the autopilot
system (as opposed to the adjustment of a single module).

3.2. Difficulties in realizing Level 5 AVs

In the real traffic environment, there are a large number of vari-
ous traffic participants; the time variation and behavior uncertainty
corresponding to each participant increase the complexity of a traf-
fic system. As described in Ref. [26], some common challenges in
developing AVs mainly include bottlenecks in existing technologies
and inadequate infrastructure. As mentioned in previous studies
[6,10], according to the current situation of perception, decision-
making and control technologies, these various technologies are
indispensable for the actual realization of Level 5 AVs. For example,
Chen et al. [27] introduced a novel concept of event-based autono-
mous driving neuromorphological vision, which can help high-level
AVs acquire more accurate visual perception information. This is
essential for the development of higher-level AVs, especially Level
5 AVs. However, there is a gap between the technical conditions
required by high-level AVs and the current development status. In
addition to technical and infrastructure challenges, AVs are still
unable to reach Level 5 for the following reasons:

(1) Difficulties in understanding the action mechanism of
traffic elements. In a complex environment, the mechanism of
each factor’s influence on driving risk is unclear, and it is challeng-
ing to explore the coupling mechanism between each factor. For
example, the cognition and judgment mechanism of drivers on sta-
tic and dynamic traffic elements is not clear, the adaptability and
manipulation level of drivers to vehicle dynamic characteristics
are difficult to quantify, and the dynamic interference mechanism
of various traffic factors to drivers is uncertain. Therefore, high-
level AVs need to fully recognize the coupling risks in driver–
vehicle–road traffic systems. Furthermore, AVs also need to apply
the laws of driver cognition of potential risks caused by various
elements of the driving environment to intelligent vehicle risk
assessment and realize accurate risk identification under a com-
plex traffic environment.

(2) Difficulties in understanding the dynamic rule of traffic
systems. In the dynamic uncertain environment, there are many
uncertainties in the driver–vehicle–road system. For example, the
uncertainty brought by people’s participation and the randomness
of drivers make the traffic complex system more uncertain. Envi-
ronmental changes lead to difficulties in traffic cognition. The
uncertainty of road conditions leads to the uncertainty of vehicle
performance adaptation. The uncertainty of information acquisi-
tion (the uncertainty of communication means and safe communi-
cation level) brings the uncertainty of the information scope of
complex traffic systems. Therefore, the development of high-level
AVs needs to fully explore the changing laws of the traffic environ-
ment, consider the dynamic intentions of other road users,
estimate, judge, and predict the risk degree in the traffic
environment, and improve the decision-making level and ability
of intelligent vehicles in complex environments by planning speci-
fic driving strategies and trajectories.
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(3) Difficulties in understanding the mechanism of imple-
menting decision-making. In a complex traffic environment,
solidified autonomous decision-making has difficulty conforming
to the driving habits of excellent drivers, and it is difficult to adapt
to the driving needs of different personalities to reduce people’s
acceptance of the autonomous system. Learning human wisdom
to solve challenges is a feasible approach for the development of
AVs. Levels 1–4 AVs do not fully learn the thinking of drivers,
and the development of Level 5 AVs can be better supported by
truly analyzing human decision-making mechanisms. However, it
is difficult to learn the decision-making mechanism of human dri-
vers. How to analyze the decision-making mechanism of drivers
and how to make logical judgments at the decision-making level
still require further discussion. Especially after the unified expres-
sion of various elements of environmental perception is given at
the front end, how to accurately and meticulously reflect the dri-
ver’s decision-making mechanism and the realization of an anthro-
pomorphic decision-making strategy are critical to the
development of Level 5 AVs.

In addition to the technical and mechanistic problems, the
existing research concepts still need to be further explored.
Currently, the hierarchical structure of autonomous driving can
effectively ensure that each task (perception–cognition–
evaluation–decision–control) in the driving process can be
completed independently. Furthermore, the completion of a single
task can be accurately evaluated. At the beginning of the develop-
ment of technology, this modularized and layered task structure is
an inevitable requirement for realizing complete functions.
However, this modularized and layered design structure may lead
to the possibility that the self-correction of the self-driving system
only exists in a single module. For example, advanced decision-
making modules can already have a certain self-adjustment
capability; however, they can only consider how to perform self-
optimization and self-adaptation during driving. Therefore, they
fail to effectively evaluate and influence other modules in the
system. The current decision module design process usually takes
the input provided by the perception and the output required by
the control as the existing and fixed conditions. The modules are
rigidly bridged, which means that the decision-making module
cannot fulfil the requirement for collaborative correction with
other modules. In addition, it cannot provide feedback to perform
the correction process aligned with the other modules.

However, the lack of a feedback mechanism among the modules
leads to the self-driving system losing the ability of cooperative
growth as well as a systematic self-correcting ability. Moreover,
the advance of a single module is unpredictable and even not
necessarily beneficial concerning the overall system performance.
An autonomous driving system with the ability of single module
growth may even lose the overall coordination of the system
due to the independent learning of each module during the self-
learning process.

4. Realization of Level 5 AVs

The autonomous driving system is considered an integrated
framework equipped with a large number of hardware structures
and software algorithms [28]. In a traditional hierarchical superpo-
sition framework including various functions, the physical struc-
tures corresponding to different functions correspond to different
subsystems. Each part of the structure and its corresponding func-
tions are launched according to problems faced by the integrated
framework in practical applications. The physical structure ontol-
ogy is controlled through information transmission and energy
transportation to realize the system functions with different
extents of intelligence. However, the series of challenges associ-
ated with the existing hierarchical design framework require
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new ideas for the research and development of high-level autono-
mous driving systems from the perspective of system theory. To
achieve this, we need to think about the following questions:
How can we actually analyze behavior patterns of human drivers,
explore their decision-making and control mechanisms, and enable
autonomous driving systems to perform autonomous learning and
exploration; how can self-driving vehicles acquire the wisdom of
learning and imitating people and surpass people’s decision-
making abilities; and how can we integrate consciousness and
function into the autonomous driving system to output more intel-
ligent and reasonable driving behavior?

These problems induce us to avoid considering each function of
an autonomous driving system discretely by decomposing it into its
components. In contrast, we need to analyze the common princi-
ples and structures in each system, components and substructures
from the perspective of the vehicle system as a whole. Furthermore,
we also need to apply brain and consciousness theories, such as glo-
bal workspace theory (GWT) [29] and integrated information the-
ory (IIT) [30], to design and optimize a unified system structure.
As shown in Fig. 1, the function of an autonomous driving system
can be described as an overall attribute of the system to the envi-
ronment. It is the function and capability that the system can play
in a certain environment. It is the external connection of the system
and constitutes the relationship set between the system and the
environment. Furthermore, it can be realized in the dynamic oper-
ation of the system and expressed as the input and output of mate-
rial flow, energy flow and information flow. Following a systematic
thinking mode, it should be possible to provide a better solution for
the development of high-level AVs, especially Level 5 vehicles.
Meanwhile, the research on high-level AVs is expected to form
the concept of learning from, simulating, surpassing, and serving
humans. The ultimate goal is to place humans at the center and
serve them. Therefore, the development of high-level AVs can be
promoted in the external environment of vehicle–road–cloud coor-
dination by systematic thinking and human-centered ideas.

However, at present, the development path for high-level AVs is
mainly developed from the application scenarios and the require-
ments of different driving tasks. Scenario-driven and task-driven
methods eventually bring problems such as decision conflict and
functional redundancy due to the continuous superposition of
functions of a layered framework. Therefore, an AV developed
under this concept will be difficult to break through Level 4 with
the limit of operating range, and it will be challenging to realize
Level 5. Therefore, we set aside the concepts of the existing frame-
work, regard an AV as a whole, and establish a unified and univer-
sal framework based on hybrid intelligence from the perspective of
a human-like system. First, we develop an open brain-like system,
and then the factors that can affect traffic safety are input with uni-
fied situation awareness. Finally, the real-time decision and control
are output to provide feasible ideas for the realization of Level 5.

4.1. Brain–cerebellum–organ coordination and balance framework

The brain–cerebellum–organ coordination and balance frame-
work can be used to develop a self-managing brain-like module
as a system layer by considering the technologies of perception,
evaluation, decision-making, and control as different functional
layers. Specifically, decision corresponds to the cerebellum, per-
ception corresponds to eyes, and control corresponds to hands
and feet. Considering the deployment of the brain-like module,
the regions of interest can be selected using the perception tech-
nology of AVs to analyze the environment selectively and inten-
tionally. Moreover, driving risk can be quantified in a real-time
manner using the assessment technology implemented in self-
driving vehicles to ensure a particular level of safety. The
decision-making technology of autonomous driving vehicles is



Fig. 1. System overview flowchart. The existing scenario-driven and task-driven approaches will be difficult to break through the Level 4 AVs limited by the operating
domain, so it will be challenging to realize the Level 5 AVs. Therefore, we consider AV as a whole system and establishes a unified and universal framework based on hybrid
intelligence from the perspective of a human-like system. LKA: lane keeping assist; ACC: adaptive cruise control; AEB: autonomous emergency braking.
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integrated to optimize decision-making and balance various func-
tions. Finally, reliable driving can be realized through the steady
control and execution of the control technology. However, the
scenario-driven development concept corresponding to the exist-
ing hierarchical framework and end-to-end frameworks relies on
the feedback transmission structure. This means that the autono-
mous brain-like system implies not only exchanging two-way
feedback related to an individual stimulus–response with each
part of the structure but rather relies on a complex structure
network characterized by intention diffusion. As shown in Fig. 2,
in the brain–cerebellum–organ coordination and balance frame-
work, the AV senses the traffic environment to stimulate the brain
through the sensory organs and translates the large amount of his-
torical data to be stored in the brain for memory. The cerebellum,
on the basis of the principle of minimum action, performs the func-
tions of thinking and coordination by invoking the internal state.
Finally, the brain and cerebellum output the activation state
together and complete the control process by controlling organs
such as hands and feet.

As shown in Fig. 3, we can assume that the training process of
autonomous driving is similar to that of a boxer. The perception
technology corresponding to autonomous driving can enable him
to input external information and perceive potential risks. Control
technology can be used to train boxers to exercise skills and mus-
cles. Decision-making technology corresponds to the cerebellum
and plays a balancing role in the coordination of various skills.
However, relying solely on the cerebellum, sense organs, hands,
and feet do not enable a boxer to achieve the skills possessed by
a high-level boxer. Each skill only corresponds to the cerebellum
and various physical abilities but does reflect the brain’s ability
to enable attacking and protecting actions. Similarly, in the case
of autopilot, its core allows achieving self-learning, self-
adaptation, and self-transcendence characteristics to build a com-
plete autopilot brain-like module.
1318
The main function of the brain is to allocate various skills—to
explore, to learn, to think, to dominate all activities in the body
and to regulate the balance between the body and the surrounding
environment. When an autonomous driving system has control
and perception modules, the control and information processing
center is required as well to manage the whole system. If the
upper-level system is defined as the autonomous brain-like mod-
ule, then the control and perception system corresponds to the
cerebellum and organs of autonomous driving. Only with the
development of the brain, cerebellum and organ systems together
can the autopilot system be established appropriately. Moreover,
to implement a driving function that meets the social expectations
of humans, the autonomous driving system needs to behave as
human as possible, which requires an internal understanding of
human behavior patterns and the social expectations of the group.
The other issue hindering further development under the existing
framework is the difficulty of overcoming bottlenecks, such as
generalization of scenes, integration of multirisk factors, the
coupling of solving objectives, and therefore, it is impossible to
fully understand the physiological and psychological mechanisms
of driver decision-making. The autonomous brain-like module
should be able to simulate and learn driver behavior patterns to
complete tasks by organizing the whole system to make full use
of various human cognitive activities in a specific environment.
Furthermore, due to self-awareness in the brain, the ability to
self-explore and actively solve problems in uncertain situations is
often realized. Therefore, the autonomous brain can also effectively
deal with nonideal situations. For example, in the driving process,
the autonomous brain can quickly take effective measures to deal
with the random parking of other surrounding obstacles or other
behaviors that do not follow traffic rules such as another vehicle’s
cut-in, overtaking, and lane changing.

In fact, these behavior patterns are very common in many parts
of the world. For example, if vehicles need to deal with situations



Fig. 2. The brain–cerebellum–organ coordination and balance framework. In this framework, the external states stimulate the brain, the traffic information is stored, the
cerebellum calls the internal state to complete the thinking, and finally the brain and cerebellum output the activation state together with the feedback to complete the
control.

Fig. 3. The correspondence relation between drivers and AVs. AV requires some
basic skills of a driver as well as an internal understanding of human behavior and
their social expectations. It can be understood that the artificial intentionality of a
driver corresponds to the intelligent digitization of an AV.
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requiring complex observation and interaction, such as highway
merging and unprotected left turn, it is also a challenge for human
drivers. For a long time, AVs and human drivers will drive together
in the same environment, so AVs are expected to understand the
intentions of human drivers and respond in a predictable and
interpretable manner. Although turning left on an empty road
may be considered a simple and feasible task for AVs, it is still dif-
ficult in complex traffic environments. For human drivers, these
unprotected left turns often occur when a driver slows down and
gives up, implying that another driver can turn safely. This is a
great challenge to the currently developed autonomous driving
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system. Therefore, the application of scenario-driven research con-
cepts is limited to the above challenges, and it fails to break
through the limitations of achieving real high-level intelligence.
Intelligence is a phenomenon that can be expressed in the interac-
tion and behavior process of individuals, nature, and social groups.
Therefore, from the perspective of system science, the essence of
driving is understood from a systematic point of view to achieve
general intelligence.

4.2. Crow inference and parrot imitation research paradigm

Tsien [31] noted that the human body can be considered an
open system that interacts with the outside world, for example,
through breathing, eating, excretion, and so on, aiming to exchange
materials with the external environment. Moreover, it can
exchange information through vision, hearing, taste, smell, touch,
etc. In addition, a human body consists of hundreds of millions
of molecules, comprising an enormous complex system. The
components of this system are of different natures, and their
interactions are extremely complicated, constituting a large,
complex, and sophisticated system. Therefore, during the process
of developing an autonomous driving system, it is necessary to
refine the existing problems corresponding to the systems and to
conduct the research in a systematic way.

Actually, with an increase in the extent of how open a system is,
its ability to deal with high complexity improves as well as its abil-
ity to adapt according to a changing environment. Zhu [32] at the
University of California, Los Angeles, has introduced two illustra-
tive models for artificial intelligence (AI). One is referred to as
the parrot paradigm and considers that parrots can talk to humans
but do not understand what they say. For example, when you say
‘‘Hello,” it responds ‘‘Hello,” but it does not know what it means.
The other concept is denoted as the crow paradigm. It is evident
that crows know to keep throwing stones into water bottles to
raise the water level to drink the water. There are significant



Fig. 4. The crow inference and parrot imitation framework. Parrot imitation can
achieve the adaptability through data-driven deep learning method, while crow
inference is supposed to be inadaptable to the traffic environment. By combining
both of them, AVs can achieve interaction and evolution along with the changes of
the environment.
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differences between the parrot-like imitation learning paradigm
and the crow-like inference learning paradigm. For parrots, it is a
simple and rough imitation learning, which can realize human-
like behavior mechanically without acknowledging the underlying
reasons behind learning. In contrast, crows can study causal rela-
tionships and infer solutions to complete a task autonomously.
Crows rely on their own observation, perception, cognition, learn-
ing, reasoning, and execution to live a completely independent life.
Therefore, it can be understood that crows have the ability to learn
independently and explore the unknown. Correspondingly, in the
development process of AVs, intelligence can be considered a phe-
nomenon, which is reflected in the behavior process of individuals
and social groups. The improvement of the intelligence of AVs
depends on the objective reality and causal chain of the physical
environment. For example, the outer physical environment pro-
vides living boundary conditions for crows. In different environ-
mental conditions, the form of intelligence will be different. Any
intelligent machine needs to understand the physical world and
its causal chain and adapt to the world. Meanwhile, the intelli-
gence of AVs can meet the specific tasks they need to complete.
Tasks represent values and decision functions, which are the rigid
needs of biological evolution. Intelligence is not only adaptive (for
example, just stimulus and response, without prediction and infer-
ence) but also suitable for low-level AVs limited in ODD. For high-
level AVs, inadaptability is more important to some extent; for
example, it can reason, evolve, and surpass the limitations of a
human being itself. High-level AVs can create a new type of possi-
bility to adapt to interaction to achieve transcendence. Therefore,
when developing a high-level autonomous driving system, espe-
cially for Level 5 vehicles, it is necessary to effectively combine
the two different learning models corresponding to crow and
parrot and to develop a third mixed model referred to as the
crow inference and parrot imitation model. According to the
aforementioned understanding of the concept of ‘‘intelligence,”
real intelligence is not only adaptable but also nonadaptable, thus
creating a new possibility to realize the ultimate goal from
self-adaptation to interaction to self-transcendence, thus creating
a series of new possibilities: freedom, change, and interaction.
The shortcoming of the Turing machine is that it implies only
stimulus-based response but no selective mechanism, as well as
only adaptation but no assimilation mechanism, which is similar
to the parrot paradigm. The evolution mechanism of humans
corresponds to the crow inference paradigm, which can infer and
evolve autonomously. However, we consider that it is necessary
to combine the two paradigms together to actually transcend the
limitations of human reasoning, improve the computational power
of intelligent systems, and integrate the advantages of intelligence,
as shown in Fig. 4. Therefore, we consider the proposed crow infer-
ence and parrot imitation hybrid paradigm as a future trend of
developing high-level AVs, specifically, Level 5 AVs.

5. A feasible way of developing Level 5 AVs

5.1. Open evolution of the brain-like system

We assume that the considered brain system corresponds to
open evolution. The crow and parrot hybrid paradigm is open
and divergent. Therefore, it can rely on open evolution, thereby
overcoming the limitations of the existing technologies and ways
of thinking. In the conventional architecture, each function is
solved within layers. However, the development of a brain-like
system requires enabling autonomous learning and exploring
unknown concepts on the basis of existing knowledge using AI
[2]. The development mode corresponding to ‘‘autonomous learn-
ing and prior knowledge” enables the brain to continuously
explore personalized requirements of drivers or passengers while
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based on a large number of common decision-making mechanisms
and control laws, thereby realizing the goal of self-learning, self-
adaptation, and self-transcendence.

There are two main approaches to planning the development of
AVs: ① the autonomous learning approach [24,33] and ② the
logical judgment (prior knowledge) method [24]. Concerning the
former, deep neural networks (DNNs) have achieved remarkable
results in autonomous driving. However, when a DNN is applied
to safety–critical modules, such as behavior definition, prediction,
and decision-making, it may lack interpretability and causality,
and thus it has difficulty merging with domain knowledge. In addi-
tion, building an accurate DNN requires a large amount of relevant
data for training and cannot be applied to unfamiliar scenes, specifi-
cally concerning extreme cases. The probability and logical
explanatory models can be used to clarify causal relationships
through logical judgment and have the capability to model uncer-
tainty. However, these inherent logic models have low adaptability
and relatively low representation ability in the case of complex
scenes. Therefore, to address these issues, we propose a hybrid
framework combining the advantages of learning methods and
probability and logic models to achieve interpretable and efficient
behavior definition. Within this framework, we propose a develop-
ment mode based on autonomous learning and prior knowledge, as
shown in Fig. 5, which can be used to establish a driving behavior
control layer by using low-dimensional representations of the
dynamic real-world conditions estimated using probability models
and observed values. Therefore, the proposed brain-like system can
transfer the prior knowledge stored in a human brain and explore
unknown concepts using the self-learning framework, thereby
constructing more complex and high-level knowledge reasoning.

5.2. Unified input of situation awareness

We assume situation awareness as the unified input of state–
trend–sense–cognition. The systematic concept forming the
unified safety field [34] can effectively solve the comprehensive
situation awareness and risk assessment in a complex environ-
ment. Moreover, it may be used to realize a unified assessment
function under the multidimensional scale of the multidomain
integration between time and space. The driving process in
intelligent vehicles is planned to be influenced by many factors



Fig. 5. The unified AV framework combining rules-based and learning-based methods. High-level AVs are supposed to transfer from the hierarchical framework to the unified
autonomous driving framework.
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corresponding to drivers, vehicles, and roads. Due to the complex-
ity of a traffic environment, we note that road conditions are
changeable; drivers vary in character and behavior; moreover,
the complexity of a vehicle system may cause various potential
risks associated with the driving process. Therefore, all of these
potential influencing factors may make a safety situation time-
varying, complex, and coupled.

In the scheme presented in Fig. 6, we define a ‘‘state” corre-
sponding to situational awareness as all types of subjective and
objective data representing an individual state of a driver–road–
environment system. Here, ‘‘trend” is defined as a development
trend of an event. ‘‘Sense” is regarded as the awareness of the
‘‘state” in a system, while ‘‘cognition” is defined as the understand-
ing of ‘‘trend.” The theoretical model of deep situational awareness
can be used to handle information differently in various situations.
Previous studies dedicated to situational awareness have fully
demonstrated the importance of providing situational awareness
in a real-time manner; that is, the process needs to be updated
and iterated continuously over time. Traditional situation assess-
ment or perception technology in the driving process can mainly
start from the perspectives of macro traffic management and micro
vehicle dynamics [35]. However, the former is an after-the-fact
evaluation that relies on massive historical accident data. It is diffi-
cult to evaluate the current risks in the driving process in time, to
describe the current driving safety level, and to reflect the real-
time nature. The latter considers incomplete risk factors and simple
applicable scenes, whichmakes it challenging to apply to a complex
and changing traffic environment. The mechanism of interactions
among the elements of the driver–vehicle–road system within an
environment has not been thoroughly studied [36], and conse-
quently, the possibilities of its practical application are limited.
Therefore, the existing research concepts corresponding to situa-
tion awareness still have certain limitations. In the present study,
we aim to analyze the relationship between the elements of the
driver–vehicle–road system from a unified viewpoint.

In view of the time-varying, complex, and coupling characteris-
tics of the safety situation, the physical mechanism of the driving
process are explored according to field theory, and a concrete
model of the driving safety field is constructed. The driving risks
associated with vehicles, traffic facilities, driver behavior patterns,
and various factors in a traffic environment can be evaluated, and
the internal factors affecting the driving risk distribution are deter-
mined to be the change of risk sources themselves and the change
of risk gradient. Therefore, we can use the unified field model to
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quantitatively evaluate the driver–vehicle–road comprehensive
risk and then effectively solve the problem of real-time driving risk
modeling, which is difficult to implement in a comprehensive mul-
tifactor environment.

5.3. Optimal output of real-time decision and control

We assume that the output of the real-time decision-making
and control module pursuits the optimal result. In a comprehensive
traffic environment, due to the complexity and variety of driving
scenes, the unpredictable behavior of traffic participants and the
necessity to improve the requirements for driving safety, efficiency
and comfort, an intelligent decision-making system of an AV can be
viewed as equivalent to the cerebellum of a human driver. It is
expected to coordinate and balance the control terminals of various
operations. Specifically, a driver decomposes the driving path into
several operations corresponding to a steering wheel, an accelera-
tor and a brake pedal, thereby executing a planning operation.
Analyzing the decision-making process of a driver under a compre-
hensive traffic scene, we extract the relevant attributes concerned
by the driver during driving and analyze the main objectives
pursued by the driver during the operation. Through the judgment,
evaluation, and acquisition of driver behavior patterns, we can align
the decision-making process of an AV with the thinking process of
human drivers [2]. By establishing a feasible path-planning model
based on simulation of human driving behavior, we aim to enable
a real-time planning procedure according to the expected
trajectory, which can effectively explore the optimal paths of the
individual vehicle and multivehicle systems.

As shown in Fig. 7, by estimating the key parameters of the driv-
ing process based on the real data, we can confirm that an extreme
value phenomenon is exhibited in the main motion parameters
that reflect the decision-making behavior of drivers. The intrinsic
reason underlying the extreme value phenomenon is that drivers
follow the basic decision-making strategy of seeking gains and
avoiding losses. Therefore, each driver seeks to achieve an optimal
tradeoff between efficiency and safety during the driving process.
Inspired by the fact that many extreme phenomena in nature,
including physical and biological behaviors, follow the principle
of least action, a hypothesis that the driver decision-making strat-
egy is based on this principle is formulated [37]. We attempt to
connect the physical characteristics of mechanical systems in
nature with the inherent attributes of traffic systems and combine
the purpose of seeking the best in nature with the characteristics of



Fig. 6. The state–trend–sense–cognition unified input framework. In the driver–vehicle–road system, the integrated situational awareness and risk assessment can be
realized through four steps of state–trend–sense–cognition by taking into account the unified input of multiple factors. ER refers to the potential risks posed by stationary or
inherent traffic participants in a traffic scenario, such as the risk constraints imposed by road conditions; ED represents the potential risk of different drivers’ perception/
cognition biases; EV means the evolutionary risk of traffic participants changing dynamically over time and space.

Fig. 7. A personified overall decision-making and control framework. Through inputting the discrete information in traffic environment into the optimal decision-making
system, combined with the input of data-driven driver behavior pattern, the multiobjective cooperative control strategy can be output systematically. Gi: virtual attractive
force; Ri: resistance force; Fji: external force; hi: angle of inclination; i: ego vehicle; j: external traffic participants.
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seeking gains and avoiding losses of drivers to propose a decision-
making algorithm based on the least action [38]. Specifically, when
selecting the optimal trajectory, we can propose an objective
function based on the principle of least action by adopting a
decision-making method that allows an AV to simulate the driver
and by summarizing driver control characteristics [39]. The
considered objective function comprehensively addresses driving
expectations, such as high safety and efficiency, and screens the
path by calculating the action amount of each feasible trajectory,
thereby selecting a path with the least action and optimizing the
speed of a vehicle accordingly.

The existing research on driver decision-making is not
appropriate to fulfil the development needs corresponding to intel-
ligent vehicle technology. The traditional driver behavior modeling
approach, which is usually aimed at specific scenes and a simpli-
fied traffic environment, cannot fully reflect the decision-making
ability of drivers in real traffic environments. It also fails to
accurately quantify the decision-making behavior of drivers [40].
Furthermore, it is even more challenging to provide guidance for
the development of anthropomorphic driving algorithms for
high-level intelligent vehicles. Focusing on the limitations of
existing methods, we plan to integrate the driver characteristic of
seeking gains and avoiding losses in the driving process into the
decision-making layer of the AV. By employing the driver’s
manipulation thinking, we can control the bottom end and
complete the driving task. In addition, the developed algorithm
comprehensively considers the objective environment and
surrounding obstacles (dynamic and static), is not limited to a
single scene or static obstacles, and has a wider application range.

5.4. A feasible idea for the realization of Level 5 AVs

As an independent agent that interacts with information from
the outside world, a high-level AV needs to be able to transcend
Fig. 8. System overview flowchart evaluating and acquiring the driver’s driving behavio
the perception–cognition–assessment module, integrate various sensors for informatio
decision cerebellum collaboratively balances the control terminal of various manipulat
process of human drivers by judging, evaluating, and acquiring the driver’s driving beha
learning and prior knowledge, and finally realizes open evolution through the control o
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human limitations and possess the abilities of consciousness and
intelligence while following the expected operation rules of human
beings. Here, ‘‘consciousness” refers to the ability of agents to per-
ceive and understand things, and ‘‘intelligence” refers to the ability
of agents to infer and solve problems. As shown in Fig. 8, high-level
AVs are usually expected to have strong environmental perception,
such as human eyes. Therefore, the perception–assessment module
carries out dynamic information perception on the driver–vehicle–
road system and provides sensory information input for the brain
center. Meanwhile, intelligent vehicles are expected to be able to
accurately predict the behavior of the surrounding traffic partici-
pants and adapt to the dynamic changes of the surrounding
environment. As the core control unit of the vehicle, the decision
system needs to be coordinated and balanced like the human
cerebellum. The decision system provides a dynamic balance of
discrete traffic participants, constraints, dynamic evolution trends,
and inputs to the brain control center. As an independent agent
that can interact with information in the outside traffic environ-
ment, high-level AVs need to be able to transcend the limitations
of human beings while obeying the expected operation rules and
possess the ability of consciousness and intelligence. Therefore,
AVs need to be based on the development models of independent
learning and prior knowledge. Furthermore, AVs can employ con-
sciousness theory, such as GWT and IIT, and achieve closed-loop
interaction from the perspective of the system. In this way, vehicle
execution can be realized through hands and feet and timely
adjustment of brain terminal actions. Based on the hybrid
paradigm of crow inference and parrot imitation, there is an
open-loop self-evolution process in closed-loop feedback.

However, it is challenging for the existing research ideas to
develop high-level autonomous driving. Under the current frame-
work, it is difficult for us to comprehensively list all driving situa-
tions and potential dangers that AVs will face. Furthermore, the
complexity of the higher level and the implicit driving task of the
r pattern. High-level AVs acquire complex traffic environment information through
n fusion, and ensure the stability of vehicle environmental sensing system. The
ions, and makes the behavioral decision-making process conform to the thinking
vior pattern. The brain system is based on the development mode of independent
f other subsystems.
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high-level AV will make it difficult to demonstrate the complete-
ness and correctness of safety requirements at each stage of the
development of the high-level AVs. Therefore, it is not feasible to
thoroughly test the system to ensure super reliable system opera-
tion, and the overall development from a system perspective will
be of great significance for high-level AVs, especially Level 5.

6. Conclusions

Improving the intelligence of AVs has recently seen rapid
growth in interest. This has come with some level of confusion
with regard to how high-level AVs can be achieved, the feasible
solution to task-driven or scenario-driven frameworks, and how
the unified principles can make a difference. In this paper, we have
sought to distinguish these issues by analyzing the existing devel-
oping techniques for high-level autonomous driving, comparing
the differences between Level 4 and Level 5. Finally, we propose
the unified principles and a feasible approach to achieve Level 5
in developing AVs.

Specifically, we consider the theory of system science as the
core concept of developing an autonomous driving system and
regard an AV as an intelligent living body capable of self-
learning, self-adaptation, and self-transcendence. As a result of
clarifying the foundation of driving, a coordination and balance
framework based on the brain–cerebellum–organ concept and a
hybrid model relying on the crow inference and parrot imitation
research paradigm can provide a new perspective in developing
high-level AVs. Furthermore, a feasible way to develop the brain-
like system module is proposed by considering it as a hybrid
framework combining the advantages of autonomous learning
and prior knowledge, which can support AVs in complex environ-
ments to achieve fully autonomous driving. A feasible way to
develop the situational awareness module is proposed, implying
the concept of establishing a unified safety field, which could sup-
port AVs to achieve accurate risk assessment under the condition
of multifactor coupling. Moreover, a decision-making and control
module based on the principle of the least action can provide a
brand-new concept of developing Level 5 AVs from a systematic
perspective.

Through these analyses, we conclude that scenario-driven and
task-driven research concepts are challenging to achieve Level 5
AVs, but the system, combined with the principles proposed, can
provide a new approach for developing high-level AVs. We hope
that under the guidance of this research paradigm, it is possible
to break through the limitations of existing technologies and
achieve high-level autonomous driving.
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