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AI-Driven Robotic Laboratories Show Promise
Fig. 1. A snapshot of a live view of IBM’s RoboRXN for Chemistry
synthesizing a molecule. On the lower-left quadrant of the picture, som
automated-synthesis workstation’s six reaction chambers are visible. Ph
taining ingredients are on the right, with blue caps. Credit: IBM Robo
Chemistry, with permission.
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Elaborate proof-of-principle experiments in several laboratories
around the world have recently offered glimpses of a future in
which high-throughput automatic laboratories guided by artificial
intelligence (AI) might enhance the process for discovery of new
materials, such as those for clean energy technologies. And in
chemical engineering, using AI to aid in synthesis planning and
performance offers the prospect of scientists needing little more
than an idea and an internet connection to generate novel mole-
cules in state-of-the-art, remote laboratories.

Announced in August 2020, International Business Machine
Corporation (IBM)’s RoboRXN for Chemistry provides a high-profile
example of the potential for combining AI and laboratory automa-
tion [1]. The system not only provides chemical recipes to produce
organic molecules of interest but can also synthesize those mole-
cules automatically using commercially available hardware—in
the case of IBM’s demonstrator, a Flex-category automated-synthe-
sis workstation (Fig. 1) manufactured by Chemspeed Technologies
(Füllinsdorf, Switzerland).

RoboRXN is best considered in two parts, the synthesizer hard-
ware and its ‘‘brain” of AI algorithms trained using experimental
procedures for chemical synthesis extracted from approximately a
million patents using a machine learning approach based on
natural language processing. The process converts even
unstructured experimental procedures, written in English, into the
structured steps required to conduct those experiments, including
directions such as shaking, stirring, and heating [2,3]. The system’s
AI can also predict the outcomes of complex organic chemistry
reactions [4].

Importantly for scientists interested in designing and producing
specific novel molecules, the system can suggest retrosynthesis
routes. In other words, a user tells it what molecule is required,
and the system offers practical recipe options to produce it, focus-
ing on reaction routes that use commercially available ingredients.
IBM was already offering this degree of insight freely through its
cloud-based application RXN for Chemistry. ‘‘The challenge was,
can you train models that are capable of predicting how to synthe-
size a molecule using all the knowledge gathered in the last
200 years and, at the same time, transform that knowledge into
instructions that can be executed by commercial automation hard-
ware?” said Teodoro Laino, Manager, Accelerated Discovery at IBM
Research Europe in Zurich, Switzerland.
RoboRXN provides proof-of-principle that this, in essence, can
be done. It converts its chemical recipes to machine-readable
instructions, which can then be carried out by an automated labo-
ratory able to synthesize the desired molecule. How might such a
system be used? ‘‘A major attraction is for the pharma space,
where chemical manufacturing has been extensively outsourced
in recent years. The concept of being able to make your own chemi-
cals in-house is gaining traction,” said Laino. ‘‘The AI component is
taking the place of the chemical experience that scientists must
otherwise develop over several decades, and the automation hard-
ware is providing the possibility to scale the execution of the dif-
ferent processes to 24 h per day.”

Another way to approach an AI-powered robotic laboratory is to
automate both the research and the instruments. In a demonstra-
tion reported in March 2020, a team led by Andrew Cooper, profes-
sor of chemistry and director of the Materials Innovation Factory at
the University of Liverpool, Liverpool, UK, used a dextrous mobile
robot manufactured by Kuka (Augsburg, Germany) to search for
novel photocatalysts to produce hydrogen from water (Fig. 2).
The robot ran autonomously for eight days and performed 688
experiments, in batches of 16, testing mixtures composed of ten
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Fig. 2. The ‘‘automated researcher” in action at the Cooper Group laboratory at the
University of Liverpool, Liverpool, UK. The KUKAMobile Robot moves freely and has
a reach of 82 cm. It identifies its relative position using a combination of laser
scanning and touch feedback for fine positioning. It moves slowly, for safety
reasons, but the system’s experimental throughput is rapid compared with a human
experimenter because it performs experiments in batches, and ‘‘thinks at lightning
speed,” said Professor Andrew Cooper. Credit: Andrew Cooper, with permission.

Fig. 3. The University of Columbia’s Ada robotic laboratory platform, a ‘‘self-
driving” system designed to accelerate the discovery and development of novel,
thin-film materials for clean energy technologies. The light-colored column to the
left-of-center has an articulated robot arm on top. The black column in front of it is
a substrate storage rack, and the light-colored cylinder just right-of center is the
spin coater. Credit: UBC, with permission.
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different chemical solutions including a catalyst, two surfactants,
and three dyes. Each individual experiment was evaluated with
gas chromatography to ascertain its performance [5]. ‘‘Before we
had the automation, students would do about one experiment a
day by hand,” said Cooper. ‘‘The robot actually moves slowly for
safety reasons, but it is like the Terminator—it just does not stop.
It works 24/7, doing 16 experiments at a time.”

The ability to deal with so many variables is where machine
learning shows its unique strength, Cooper said. Because the
‘‘research space” for this experiment contained nearly 100 million
possible combinations of ingredients, the automated system used a
Bayesian optimization algorithm to evaluate the results of each
experiment—based on hydrogen production—and then decide on
which mixtures of ingredients to try in its next batch. When the
system found a promising combination, it attempted to optimize
that while also continuing to prospect in other areas of the
research space. ‘‘It is very hard for a human to be optimizing some-
thing while simultaneously trying other things. The number of
dimensions is way too high for it to even be conceptualized by
human brains,” said Cooper. While human chemists prefer to test
one variable at a time, he said, this AI method does exactly the
reverse—it changes everything all at once, refining its machine
learning models with every batch. The experimental run delivered
photocatalyst mixtures six times more active than the initial for-
mulations [5].

One big benefit of automating the research is that it becomes
easier to add further capabilities to the laboratory space, said
Cooper. ‘‘Every month we are adding a new station, making it
much more complex. We are working on X-ray diffraction now,
which is important because it allows you to determine the struc-
ture of materials—not just what do they do, but what they are.”
Cooper’s 400 m2 laboratory now includes two robots, with two
more on order, all of which could work together as a team.
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Researchers at the University of British Columbia (UBC) in Van-
couver, BC, Canada, have developed another AI-powered auto-
mated materials-science platform, this one conceived to
accelerate the discovery of advanced materials for clean energy
[6]. Named Ada, the ‘‘self-driving” robotic platform produces and
tests novel thin-film materials without human supervision
(Fig. 3). Tasked in one experiment with maximizing the carrier
mobility of electron-hole transport materials frequently used in
perovskite solar cells, Ada fabricated films by creating mixtures
of three solutions, including an oxidant and a dopant [7]. The sys-
tem deposited these mixtures onto glass substrates and then
annealed them, with the relative concentration of dopant and the
annealing time as the input variables. After annealing, the electri-
cal and optical characteristics of each sample were measured auto-
matically. Each experimental cycle took 20 min, at which point the
system used a Bayesian optimization approach to decide for itself
which combination of variables to try next. It took 35 cycles
(~12 h) for Ada to identify the optimal cobalt concentration and
annealing time [7].

As with the robot in Cooper’s laboratory, Ada was successful in
combining AI and automation to rapidly navigate a broad experi-
mental space. The Canadian team behind Ada currently has six of
these platforms, working on different projects, said Ada Project
Manager Amanda Brown, including one designed to develop elec-
trolysers for carbon dioxide to facilitate direct air capture of car-
bon. ‘‘It is an enormously multidisciplinary effort,” said Curtis
Berlinguette, lead principal investigator and UBC professor of
chemistry and chemical and biological engineering. ‘‘We have
mechatronics engineers, mechanical engineers, chemists, material
scientists, programmers, and machine learning experts all working
together to build out our platforms.”

Though the work shows promise, there remain many limita-
tions for AI-powered robotic laboratories to navigate. ‘‘Collectively,
the field is starting to tackle more ambitious and harder problems,
but I feel we have been stuck in this proof-of-concept stage for
quite a while,” said Connor Coley, assistant professor of chemical
engineering at the Massachusetts Institute of Technology (MIT)
in Cambridge, MA, USA, and part of the Machine Learning for Phar-
maceutical Discovery and Synthesis Consortium, an MIT collabora-
tion with the pharmaceutical and biotechnology industries. There
are a range of challenges for automation to deal with, said Coley,
whose work includes combining AI-powered synthesis planning



S. O’Neill Engineering 7 (2021) 1351–1353
with robotic automation to produce medicinal compounds [8]. ‘‘If
you are not doing things at a very small scale, then exothermic
reactions are a problem. And we are still relatively bad, as a
community, at dispensing solids robotically. Some reactive solid
powders tend to clump, so accurately dispensing those and
weighing out precise quantities remains an issue.”

With IBM’s RoboRXN, the hardware currently used by the team
cannot perform the sort of purifications often needed in multistep
chemical processes. ‘‘If you want to purify it, you must take it out
of the loop, purify, and then restart the automation process,” Laino
said. ‘‘This has a big impact on the performance of the entire
chemical synthesis.”

Should these challenges, and many others, be overcome in the
years ahead, AI-driven robotic laboratories could deliver not only
high-throughput chemistry and materials research, but also more
adventurous investigations. ‘‘I sometimes regret emphasizing the
speed of AI-powered robotic research, because it is not really the
point,” said Cooper. ‘‘The underlying goal was always to look at
thingswe simply could not look at. Because the rate of enhancement
is so big with automation, you can afford to do really speculative
things and take some chances.”

Laino, however, has a different vision for the future of RoboRXN,
based on a combination of remote access and scaling-up. ‘‘Imagine
a big warehouse, where instead of a big data center full of comput-
ers, you have robots doing chemistry-on-demand. Suddenly, you
see the potential of bringing this technology into a field like
1353
chemistry. It is a revolution that is going to definitely take some
time, but this is going to dramatically change the way we see
and do chemistry.”
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