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Early detection of hepatocellular carcinoma (HCC) while in its early stages is critical for reducing HCC
mortality in high-risk patients. However, highly sensitive and specific surveillance biomarkers for
early-stage HCC detection are still lacking. In recent years, great efforts have been made to research
tumor-derived molecular features that are detectable in circulation, such as circulating tumor deoxyri-
bonucleic acid and circulating tumor ribonucleic acid, in order to explore their potential as non-
invasive biomarker candidates in many tumor types. In this review, we summarize current studies on
these new approaches and their application in early HCC detection.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hepatocellular carcinoma (HCC) accounts for 90% of liver can-
cers and is one of the most common and deadly cancers world-
wide, with new cases still rapidly increasing in many countries.
The major risk factors of HCC are chronic hepatitis B virus (HBV)
infection, hepatitis C virus infection, alcohol use disorder, and
non-alcoholic fatty liver disease (NAFLD). Cirrhosis of different
causes predisposes patients to HCC at an annual incidence of 2%–
4% [1]. The five year net survival rate of HCC patients was in the
range of 5%–30% throughout 2000–2014, and has changed very lit-
tle during the 20 year period from 1995 to 2014 in most countries
[2]. If HCC was detected and treated in its early stages, the five year
survival rate could increase to 70% [3]. Because many HCC patients
are asymptotic in the early stages, almost half of them are diag-
nosed at an advanced stage [4], when the window for curative
treatment is very narrow. Therefore, early HCC detection in the
context of surveillance programs has been shown to decrease
HCC mortality in high-risk patients [5].

Highly sensitive and specific surveillance biomarkers for early-
stage HCC detection are still lacking. Currently, HCC surveillance
depends on imaging examinations and serological tests. An
abdominal ultrasound with or without serum alpha-fetoprotein
(AFP) are the mainstream for HCC surveillance, as they are recom-
mended by the American Association for the Study of Liver Dis-
eases [6] and the European Association for the Study of the Liver
guideline 2018 [7]. At a cutoff value of 20 lg�L�1, AFP has shown
limited sensitivities ranging between 41% and 65% and specificities
between 80% and 94% in cirrhotic patients, and the sensitivity of
AFP for early-stage tumors is even lower, at only 32%–49% [8].
On the other hand, ultrasound is sub-effective for detecting
early-stage HCC, with a sensitivity of 63% [9]. A recent comprehen-
sive meta-analysis of more than 10 000 patients found that ultra-
sound and AFP have a pooled sensitivity of 63% for the detection
of early-stage HCC [10]. Additional serum protein targets such as
AFP-L3 and, des-c-carboxy-prothrombin (DCP) (also known as pro-
tein induced by vitamin K absence or antagonist-II) have also been
explored as biomarkers for early HCC detection [11], but their clin-
ical utility has not been established in the setting of cohort studies.
A diagnostic model named GALAD (namely, gender, age, AFP-L3,
AFP, and DCP) involving the above three serum protein biomarkers
as well as age and gender has been developed, with an area under
the curve (AUC) of 0.95 and 0.98 for early and late TNM (where T
describes the size of primary tumor, N describes whether regional
lymph nodes are affected, and M describes whether distant metas-
tasis is present) stages of HCC, respectively [12]. In early 2020, the
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US Food and Drug Administration granted Breakthrough Device
designation to the GALAD score to support earlier diagnosis of
HCC [13].

In recent years, tumor-derived molecular features that are
detectable in circulation, other than serum proteins, have been
studied as potential biomarkers in many tumor types. In this
review, we summarize current studies on these new approaches
and their application in the early HCC detection space. As depicted
in Table 1 [14–26], many new biomarkers have been identified and
tested for HCC detection, and some have shown potential in early
detection.

2. Circulating tumor deoxyribonucleic acid (DNA)

Circulating tumor DNA (ctDNA) refers to tumor-derived DNA
fragments that are released into the bloodstream as a result of cel-
lular death, through either apoptosis or necrosis. Such fragments
carry tumor-specific alterations, including single nucleotide vari-
ants (SNV), insertion/deletion (In/Del), structural variations, and
epigenetic alterations, and thus have potential as a biomarker.
The biggest challenge in using ctDNA for the early detection of can-
cer is that it makes up only a minority of the total circulating cell-
free DNA (cfDNA). It is estimated that the percentage of ctDNA in
cfDNA of early cancer is below 1%, and could be as low as 0.01%
[27]. Numerous technological advances have attempted to address
this issue, such as the use of digital droplet polymerase chain reac-
tion (PCR) or unique molecular identifiers in next-generation
sequencing (NGS) [28]. In HCC, there is evidence that ultra-deep
sequencing can detect tissue mutations in the blood of patients
at early stages [29].

DNA methylation normally refers to 5-methylcytosine (5mC)
modification, which is an epigenetic regulator of gene expression
that usually results in gene silencing. Increased DNA methylation
of tumor-suppressor genes is an early event in many tumors, mak-
ing DNA methylation a potential biomarker for early detection.
Unlike the limited number of DNA mutation events and sites avail-
able in each sample, DNA methylation occurs in multiple target
regions and multiple altered cytosine-phosphate-guanine (CpG)
sites within each targeted genomic region [30], and thus provides
more potential targets than DNA mutations. Several groups have
developed techniques for methylation detection and have explored
their usefulness in early HCC detection. In 2015, Wen et al. [14]
developed a methylated CpG tandem amplification and sequencing
(MCTA-Seq) method that can detect hypermethylated CpG islands
in cfDNA genome-wide, with a sensitivity of 0.25% allele frequency.
Using this technique, they analyzed a small cohort of 27 HCC
patients, 17 cirrhosis, and 28 normal individuals, and identified
19 high-performance markers in the blood for detecting small
HCC (� 3 cm), with four (regulator of G-protein signaling 10
(RGS10), ST8 alpha-N-acetyl-neuraminide alpha-2,8-
sialyltransferase 6 (ST8SIA6), RUNX family transcription factor 2
(RUNX2), and vimentin (VIM)) concordant with hypermethylation
in tumor, and the other 15 already hypermethylated in normal
liver tissues. A classifier model composed of these biomarkers
achieved a sensitivity of 94% and a specificity of 89% for the plasma
samples from 36 HCC patients and control subjects of 17 cirrhosis
patients and 38 normal individuals. Notably, all 15 AFP-negative
HCC patients were successfully identified, indicating that there is
potential in combining these DNA methylation biomarkers with
AFP in the future. In 2017, Xu et al. [15] conducted the methylation
profiling of cfDNA samples from a much larger cohort consisting of
1098 HCC patients and 835 normal controls in order to identify and
validate an HCC-specific methylation biomarker panel for early
detection, with targeted bisulfite sequencing. Using so-called
methylation-correlated blocks as the unit to quantify the CpG
1370
methylation level, the group constructed a diagnostic prediction
model consisting of ten methylation markers (cg10428836,
cg26668608, cg25754195, cg05205842, cg11606215,
cg24067911, cg18196829, cg23211949, cg17213048, and
cg25459300) with an AUC of 0.944 (95% confidence interval (CI),
0.928–0.961) in a validation cohort with 383 HCC patients and
275 normal individuals. The combined diagnosis score (cd-score)
was highly correlated with tumor burden, treatment response,
and stage. However, the majority of HCC cases in this study had
tumors at advanced stages, which limits the extrapolation of these
results to the early-detection clinical scenario. Another DNA
methylation-based detection method also reported sensitivity
and specificity higher than 90% [16], which could outperform the
current recommended tools for HCC surveillance. A positive corre-
lation of detection rate and tumor stages was also seen by the Cir-
culating Cell-free Genome Atlas (CCGA) Consortium, which
conducted bisulfite sequencing targeting a panel of more than
100 000 methylation regions in the plasma DNA of more than 50
types of cancers, including liver cancers [31], suggesting the subop-
timal utility of DNA methylation biomarkers in early detection.

5-hydroxymethylcytosine (5hmC) is another type of epigenetic
marker. It is a stable product of demethylation, generated through
the oxidation of 5mCs by the 10–11 translocation family dioxyge-
nases [32]. 5hmC modifications in enhancers, promotors, and gene
bodies impact gene expression. The techniques for detecting 5hmC
modification in cfDNA, hMe-Seal, and 5hmC-Seal, reported in 2017
from two different laboratories, involve the selective chemical
labeling of 5hmC followed by enrichment and sequencing
[33,34]. In 2019, Cai et al. [17] used the 5hmC-Seal technique to
profile genome-wide 5hmCs in cfDNA samples from 1204 HCC
patients, 392 chronic hepatitis B (CHB) infection/liver cirrhosis
(LC) patients, and 958 healthy individuals/benign liver lesion
patients. Focusing on the change of 5hmC in gene bodies, they
developed a 32 gene classifier for distinguishing early HCC (stage
0/A, Barcelona Clinic Liver Cancer (BCLC)) from non-HCC at an
AUC of 88.4% (95% CI, 85.8%–91.1%) and from a high-risk group
at an AUC of 84.6% (95% CI, 80.6%–88.7%), both independent of
potential confounders, such as smoking or alcohol intake history.

Structural variations are the hallmark of cancers. Several groups
have developed methods to evaluate copy number variation (CNV)
in ctDNA for the early detection of HCC. In 2015, Xu et al. [35] ana-
lyzed CNVs in a small cohort of plasma samples with 31 HCC and
eight chronic hepatitis/cirrhosis patients based on low-depth
whole-genome sequencing (WGS) of 0.1�–0.2�. By CNV Z score
analysis, they identified several differential variables (e.g., gain in
1q, 7q, and 19q in HCC) and some less differential variable (e.g.,
loss in 4q, 13q, gain in 17q, 22q) regions, based on which they pro-
posed a CNV scoring method that generated a positive result in 26
of the 31 HCC patients (83.9%), or in 11 of the 16 HCC patients with
a tumor dimension of up to 50 mm (68.8%), or in four of the seven
HCC patients with a tumor dimension of up to 30 mm (57.1%).
Notably, all eight samples with chronic hepatitis or cirrhosis scored
negative. Although CNV analysis alone was not good enough for
the early detection of HCC, it might serve as a parameter in model
building. In 2020, Tao et al. [18] conducted a deeper low-depth
WGS of 5� to profile CNVs in a larger cohort with 384 plasma sam-
ples of HBV-related HCC and cancer-free HBV patients. They used
machine learning to develop a model with a discovery cohort of
209 patients, achieving an AUC of 0.893, with 0.874 for early stages
(BCLC stages 0–A) and 0.933 for more advanced stages (BCLC
stages B–D). The performance of the model was validated in two
cohorts (76 and 99 patients) that only consisted of patients with
stages 0–A HCC and HBV infection, with an AUC of 0.920 and
0.812, respectively. In addition, the researchers found that, for
early detection, lowering the sequencing depth decreased the



Table 1
Candidate biomarkers for HCC early detection.

Molecular candidate Biomarkers Technology Performance Validation cohort EDRN
phase

Reference

DNA methylation (5mC) 19 markers MCTA-Seq 94% sensitivity and 89% specificity for
HCC versus non-HCC

36 HCC/17 LC/38 normal 2 [14]

Ten markers (cg10428836, cg26668608,
cg25754195, cg05205842, cg11606215,
cg24067911, cg18196829, cg23211949,
cg17213048, and cg25459300)

Targeted
bisulfite
sequencing

AUC of 0.944 (95% CI, 0.928–0.961) 383 HCC/275 normal 2 [15]

Six markers (HOXA1, EMX1, AK055957,
ECE1, PFKP, and CLEC11A) normalized by
B3GALT6

TELQAS AUC of 0.96 (95% CI, 0.93–0.99) for HCC
versus non-HCC
HCC sensitivity of 95% (88%–98%) with
75% stage 0 and 93% stage A, at
specificity of 92% (86%–96%)

95 HCC (4 stage 0, 42
stage A)/51 LC/98
healthy

2 [16]

5hmC modification 32 markers 5hmC-Seal AUC of 88.4% (95% CI, 85.8%–91.1%) in
cohort 1 for HCC versus non-HCC
AUC of 84.6% (95% CI, 80.6%–88.7%) in
cohort 2 for HCC versus controls

Cohort 1: 220 early HCC/
129 CHB or LC/256
control
Cohort 2: 24 early HCC/
180 control

2 [17]

CNV Global Low-depth
WGS

AUC of 0.920 in cohort 1
AUC of 0.812 in cohort 2

Cohort 1: 38 early HCC/
38 HBV
Cohort 2: 51 early HCC/
48 HBV

2 [18]

Fragment size Global Low-depth
WGS

AUC of 0.88 for HCC versus non-HCC 90 HCC/32 healthy/67
HBV/36 LC

2 [19]

miRNA Seven markers (miR-122, miR-192, miR-
21, miR-223, miR-26a, miR-27a, and miR-
801)

qPCR AUCs for BCLC stages 0, A, B, and C
versus non-HCC were 0.888, 0.888,
0.901, and 0.881, respectively
AUCs for HCC versus healthy, CHB, and
cirrhosis were 0.941, 0.842, and 0.884,
respectively

196 HCC/66 healthy/72
CHB/z 56 LC

2 [20]

Eight markers (miR-206, miR-141-3p,
miR-433-3p, miR-1228-5p, miR-199a-5p,
miR-122-5p, miR-192-5p, and miR-26a-
5p)

qRT-PCR AUCs of 0.879 for HCC versus non-HCC,
0.893 for HCC versus healthy, and
0.892 for HCC versus cirrhosis

103 HCC/78 LC/60
healthy

2 [21]

Seven markers (miR-29a, miR-29c, miR-
133a, miR-143, miR-145, miR-192, and
miR-505)

qPCR AUC of 0.817 (0.769–0.865) in cohort 1
and 0.884 (0.818–0.951) in cohort 2 for
HCC versus non-HCC
74.5% sensitivity and 89.9% specificity
for HCC versus CHB/LC; 85.7%
sensitivity and 83.3% specificity for
HCC versus inactive HBsAg carrier
Sensitivity of 29.6%, 48.1%, 48.1%, and
55.6% in 12, 9, 6, and 3 months for HCC
before clinical diagnosis in cohort 3

Cohort 1: 153 HCC/60
healthy/68 CHB/71 LC
Cohort 2: 49 HCC/48
healthy/42 IHC
Cohort 3 (nested case-
control study): 27 HCC/
135 controls (CHB or LC)

2,3 [22]

lncRNA Three markers (LINC00152, RP11-
160H22.5, and XLOC014172)

qRT-PCR AUC of lncRNA panel was unavailable
AUC of 0.986 and 0.985 for HCC versus
CH and HCC versus healthy,
respectively, when combine with AFP

100 HCC/100 CHB/100
healthy

2 [23]

Viral exposure signature Unique epitopes corresponding to 61 viral
strains

Serological
profiling
with
VirScan

AUC of 0.91 at baseline and 0.98 at
diagnosis

Prospective at-risk
cohort: 44 HCC/129
cancer-free

3 [24]

Multi-analyte DNA mutation, HBV integrations, cfDNA
concentration, protein markers, gender,
and age

PCR-based
sequencing
and CLIA

17% PPV Prospective AFP/
ultrasound negative
cohort: 24 HCC/307
cancer-free after 6–
8 months

3 [25]

5hmC, end motifs, fragmentation, and
nucleosome footprints

5hmC
sequencing
and
low-pass
WGS

Sensitivity of 95.42% and specificity of
97.83% for HCC versus LC
Sensitivity of 95.42% and specificity of
97.91% for HCC versus non-HCC

131 HCC/1800 LC/116
healthy

2 [26]

DNA: deoxyribonucleic acid; cfDNA: cell-free DNA; 5mC: 5-methylcytosine; 5hmC: 5-hydroxymethylcytosine; MCTA-Seq: methylated cytosine-phosphate-guanine (CpG)
tandems amplification and sequencing; CNV: copy number variation; BCLC: Barcelona Clinic Liver Cancer; HBsAg: hepatitis B surface antigen; EDRN: Early Detection Research
Network; TELQAS: target enrichment long-probe quantitative amplified signal; CI: confidence interval; WGS: whole-genome sequencing; LC: liver cirrhosis; CHB: chronic
hepatitis B; IHC: inactive HBsAg carrier; CH: chronic hepatitis; qPCR: quantitative polymerase chain reaction; qRT-PCR: quantitative reverse-transcriptase polymerase chain
reaction; PCR: polymerase chain reaction; RNA: ribonucleic acid; miRNA: microRNA; lncRNA: long non-coding RNA; CLIA: chemical luminescence immunity analyzer; PPV:
positive predictive value; HOXA1: homeobox A1; EMX1: empty spiracles homeobox 1; ECE1: endothelin-converting enzyme 1; PFKP: phosphofructokinase; CLEC11A: C-type
lectin domain containing 11A; B3GALT6: beta-1,3-galactosyltransferase 6.
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sensitivity, which suggested that an adequate sequencing depth
might be required for stable performance of the model.
3. Fragmentomics

cfDNA is highly fragmented due to the endonuclease digestion
of nucleosome free regions. Fragmentation of cfDNA is not random,
and may carry tissue or tumor-specific signatures. Fragmentomics
refers to the analysis of the molecular characteristics of cfDNA
fragmentation patterns, including plasma DNA sizes, end points,
and nucleosome footprints [36]. These molecular characteristics
of cfDNA can be readily analyzed from WGS data.

To understand the size distribution of cfDNA fragments for HCC,
in 2015, Jiang et al. [37] performed a genome-wide analysis of
cfDNA size profiles in 90 HCC patients, 67 CHB patients, 36
hepatitis B-associated cirrhosis patients, and 32 healthy controls.
They found that the cfDNA of patients with HCC is more variable,
with aberrantly short or long length. The short ones preferentially
carried the tumor-associated copy number aberrations. The
researchers also found that there were elevated amounts of
mitochondrial DNA in the plasma of HCC patients. Such molecules
were much shorter than the nuclear DNA in plasma. In 2019,
Cristiano et al. [38] evaluated the fragmentation patterns
of cfDNA across the genome and found that the profiles of healthy
individuals reflected the nucleosomal patterns of white blood cells,
whereas patients with cancer had altered fragmentation profiles. A
machine learning model using genome-wide fragmentation
features was found to have detection sensitivities ranging from
57% to more than 99% among seven cancer types at 98% specificity,
with an overall AUC of 0.94. Unfortunately, this study did not
include liver cancer samples.

To explore the utility of the end position of cfDNA fragments, in
2018, Jiang et al. [19] investigated whether there was a ctDNA sig-
nature in the form of preferred plasma DNA end coordinates asso-
ciated with early HCC detection. Studying the DNA end
characteristics in the plasma of patients with HCC and CHB, they
identified millions of tumor-associated plasma DNA end coordi-
nates in the genome. The ratios of tumor- to non-tumor-
associated preferred ends were significantly increased in the
plasma samples of the 90 HCC patients compared with those of
non-HCC participants (32 healthy controls, 67 HBV carriers, and
36 LC), with an AUC of 0.88 to distinguish HCC patients from con-
trols. Plasma DNA end coordinates were more readily detectable
than somatic mutations as a specific cancer signature in plasma.
To explore the utility of fragment end information, in 2020, the
group further looked into the 50 end motif of HCC and found a sig-
nificant increase in the diversity of plasma DNA end motifs in HCC
patients [39]. In particular, the abundance of the plasma DNAmotif
CCCA was much lower in patients with HCC than those without.
Through a comparison of the aberrant end motifs with those of
other cancer types, the researchers observed that the profile of
plasma DNA end motifs originating from the same organ, such as
the liver, placenta, and hematopoietic cells, generally clustered
together, indicating that such markers carry tissue-of-origin infor-
mation. Although a preferential pattern of 4-mer end motifs was
identified for HCC, its role in distinguishing HCC from LC was not
clear.

cfDNA reflects nucleosome footprints. In actively transcribed
genes, the promoter region and downstream gene body are free
of nucleosome, resulting in reduced frequencies of mapped reads.
Nucleosome spacing inferred from cfDNA in healthy individuals
correlates most strongly with the epigenetic features of lymphoid
and myeloid cells [40]. Ulz et al. [41] demonstrated that nucleo-
some occupancy around the transcription start site in cfDNA
could result in different read depth coverage patterns for
1372
expressed and silent genes. Most recently, Chen et al. [26]
explored nucleosome footprints along with other genomic fea-
tures in cfDNA for liver cancer detection, and found that nucleo-
some footprints alone could achieve an AUC of 0.973 in
differentiating HCC from LC.
4. Circulating tumor ribonucleic acid (RNA)

Circulating microRNA (miRNA) and long non-coding RNA
(lncRNA) are also potentially good biomarkers for cancers. miRNAs
are a class of endogenous small non-coding RNA transcripts of
about 22 nucleotides in length, while lncRNAs are longer non-
protein coding transcripts of more than 200 nucleotides in length.
Both miRNAs and lncRNAs are important regulatory molecules for
gene expression as they are involved in multiple cellular processes,
and their dysregulation is related to multiple diseases, including
cancers. miRNAs and lncRNAs can be found in the circulation in
healthy and diseased individuals, and studies of circulating RNA
in HCC early detection have been carried out much earlier than
those of ctDNA.

There are dozens of publications of studies of miRNA as HCC
biomarkers; some have identified targets from microarray
or NGS profiling, while others have tested miRNA candidates from
a literature search. The method used to quantify miRNA targets is
usually quantitative reverse-transcriptase polymerase chain reac-
tion (qRT-PCR) assay. As early as 2011, Zhou et al. [20] conducted
a study with three independent cohorts including 934 participants
(healthy, CHB, cirrhosis, and HBV-related HCC). The researchers
first profiled plasmamiRNA expression with a microarray targeting
723 miRNAs in 137 samples and identified seven potential
biomarkers (miR-122, miR-192, miR-21, miR-223, miR-26a, miR-
27a, and miR-801) for distinguishing HCC from non-HCC. Then
they evaluated the expression of the miRNA panel by means of
quantitative polymerase chain reaction (qPCR). A logistic regres-
sion model built on a training cohort of 407 samples showed an
AUC of 0.888 in a validation cohort of 390, which was independent
of disease status, with AUCs for BCLC stages 0, A, B, and C of 0.888,
0.888, 0.901, and 0.881, respectively. The miRNA panel showed a
better performance in differentiating HCC patients from healthy
controls (AUC 0.941) than from CHB patients (AUC 0.842) and cir-
rhosis patients (AUC 0.884).

In 2014, Tan et al. [21] conducted a similar study with a total of
667 samples (261 HCC patients, 233 cirrhosis patients, and 173
healthy controls), in which the initial screening of miRNA expres-
sion was done by NGS using serum samples pooled from HCC
patients and controls. The group identified eight miRNAs (hsa-
miR-206, hsa-miR-141-3p, hsa-miR-433-3p, hsa-miR-1228-5p,
hsa-miR-199a-5p, hsa-miR-122-5p, hsa-miR-192-5p, and hsa-
miR-26a-5p), and the panel with a logistic regression model had
an AUC of 0.887 and 0.879 for the training (357) and validation
(241) sets, respectively, which was similar to the panel of Zhou
et al. [20]. Unlike the panel of Zhou et al. [20], this miRNA panel
had almost the same power in differentiating HCC patients from
healthy controls (AUC = 0.893) as from cirrhosis patients
(AUC = 0.892). However, it is not clear whether this panel was
independent of HCC stage. In 2015, Lin et al. [22] reported a study
testing their identified panel for predicting preclinical HCC. After
discovery and validation phases using retrospective cohorts of
HCC, cirrhosis patients related to HBV infection, inactive hepatitis
B surface antigen (HBsAg) carriers, and healthy controls, they came
up with a serum miRNA classifier (Cmi) of a seven miRNA panel
(miR-29a, miR-29c, miR-133a, miR-143, miR-145, miR-192, and
miR-505). The panel had a sensitivity of 74.5% and a specificity of
89.9% for distinguishing HCC from CHB plus LC patients, and a sen-
sitivity of 85.7% and a specificity of 83.3% for HCC patients versus



G.K. Abou-Alfa, L. Wu and A. Villanueva Engineering 7 (2021) 1369–1374
an inactive HBsAg carrier group, respectively. The report included a
nested case-control study of 27 cases, which found that the sensi-
tivity of Cmi in detecting HCC was 29.6%, 48.1%, 48.1%, and 55.6% at
12, 9, 6, and 3 months before clinical diagnosis.

Compared with studies on circulating miRNA, studies on circu-
lating lncRNA as an HCC biomarker are fewer and have much smal-
ler cohorts. For example, in 2017, Yuan et al. [23] tested ten
candidate circulating lncRNAs selected from the literature with
qRT-PCR and identified four lncRNAs in a training set of 20 HCC
patients and 20 controls, which were further narrowed down to
three (LINC00152, RP11-160H22.5, and XLOC014172) in a valida-
tion set of 100 each of HCC patients and controls. The combination
of three lncRNAs with AFP could distinguish the HCC patients from
either chronic hepatitis patients or healthy controls with an AUC of
0.986 and 0.985, respectively.

5. Viral exposure signature

HCC is a virus-related malignancy, and virus infection may
shape host immunity, thus defining the onset of the cancer.
Therefore, a unique viral exposure signature resulting from
virus–host interactions could reflect a cascade of events that
may alter the risk of developing HCC. To test this hypothesis,
Liu et al. [24] performed serological profiling of the viral infection
history of 899 individuals from a National Cancer Institute–
University of Maryland (NCI–UMD) case–control study using a
synthetic human virome, VirScan. They developed a viral expo-
sure signature and validated the results in a longitudinal cohort
with 173 at-risk patients who had long-term follow-up for HCC
development. The viral exposure signature was significantly asso-
ciated with HCC status among the at-risk individuals in the vali-
dation cohort, with an AUC of 0.91 at baseline and 0.98 at
diagnosis. The viral signature identified HCC patients prior to a
clinical diagnosis and was superior to AFP.

6. Multiple analytes

Due to the inherent molecular heterogeneity of cancer, an early-
detection biomarker may need to encompass multiple molecular
dimensions in order to achieve a competitive performance. For
example, Cohen et al. [42] developed a blood test called Cancer-
SEEK to detect eight common cancer types through an assessment
of the levels of mutations in cfDNA and 39 circulating proteins. The
mutations were detected with a 61 amplicon panel, with each
amplicon querying an average of 33 base pairs within one of 16
frequently mutated genes in common cancers. The sensitivity of
CancerSEEK for liver cancer is as high as 98%, with an overall speci-
ficity of greater than 99%. However, the sensitivity of CancerSEEK is
dependent on the stage of the cancer, and few HCC early-stage
samples were included. In addition, a follow-up study from the
same group reported relatively low positive predictive values using
a blood-only test for the detection of different tumor types [43].

For the early detection of liver cancer, different approaches with
multiple analytes have been reported. Qu et al. [25] developed an
HCC screen assay, which includes DNA mutation, HBV integrations,
cfDNA concentration, protein markers, gender, and age. The assay
robustly separated HCC from non-HCC patients with a sensitivity
of 85% and a specificity of 93% in the training set and with a 17%
positive predictive value in the validation cohort. Chen et al. [26]
developed a HIFI method by integrating four genomic features of
cfDNA: 5hmC modification, end motifs, fragmentation, and nucle-
osome footprints. This method achieved high accuracy in differen-
tiating HCCs from LC, with a sensitivity of 95.42% and a specificity
of 97.83% in a test set, irrespective of demographics and clinical
1373
features including age, HBV status, Child–Pugh score, BCLC stage,
tumor size, and AFP status.

7. Outlook

The need for better tools for early HCC detection cannot be
overemphasized. In recent years, a number of new molecular
approaches have been aimed at the detection of tumor compo-
nents releases into the bloodstream, in the broader context of liq-
uid biopsy applications in biomedicine. These new attempts have
shed a bright light onto the early detection of HCC because, while
direct comparison were available, these molecular biomarkers
showed better AUC than AFP. Due to the heterogeneity of HCC
and the relatively low ratio of tumor-specific genetic materials in
circulation in the early stage, an early-detection model comprised
of only one type of biomarker has limitations in terms of sensitivity
and specificity. Although a combination of multi-dimensional
parameters has barely been explored, it holds the promise of sig-
nificantly increasing early-detection rates. Multi-dimensional
parameters may also include traditional tools such as clinical
pathological index, protein biomarkers, and molecular imaging.

Biomarker development for early detection generally requires
five phases [44]. As listed by the Early Detection Research Network
(EDRN) guideline, these are: a preclinical exploratory study, clini-
cal assay development for clinical disease, a retrospective longitu-
dinal repository study, a prospective screening study, and a cancer
control study. Most of the early-detection methods summarized
herein are still in phase 2, in which the ability to distinguish HCC
from non-HCC is assessed using clinical samples. Several studies
have progressed to phase 3, in which the capacity of the biomarker
to detect preclinical disease is evaluated. All of them are retrospec-
tive, in the sense that no referral has been made based on these
tests; thus, clinical usefulness needs to be further tested in
prospective screening studies.

It should be noted that the new tools reviewed herein are for
early detection, not for diagnosis, as patients with a positive
early-detection test should undergo a definitive diagnostic proce-
dure (e.g., magnetic resonance imaging and biopsy) according to
the recall policy of the surveillance program. With this in mind,
there are several challenging issues in the development and clini-
cal use of cutting-edge techniques for the early detection of HCC:

(1) The population targeted. The targeted population com-
prises individuals at risk of HCC, including those with LC, chronical
hepatitis virus infection, alcohol abuse, NAFLD, or a family history
of HCC. Such individuals should take these tests every six months,
as is currently done with AFP/ultrasound.

(2) The selection and cost efficiency of the combination of
multiple cutting-edge techniques and biomarkers. A combina-
tion of multiple techniques and biomarkers can be selected based
on the added detection value as well as the cost of each tech-
nique/biomarker. Cost reduction due to technological development
should also be taken into consideration.

(3) Acceptance of at-risk individuals for multiple biomarker
examinations. The acceptance of at-risk individuals for the prac-
tice of multiple biomarker examinations would mainly depend
on the detection rates of the detection tools, the individual’s cur-
rent health situation and health awareness, the cost of the test,
and governmental policy.
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