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Lithium-ion batteries (LIBs) have emerged as the preferred energy storage systems for various types of
electric transports, including electric vehicles, electric boats, electric trains, and electric airplanes. The
energy management of LIBs in electric transports for all-climate and long-life operation requires the
accurate estimation of state of charge (SOC) and capacity in real-time. This study proposes a multi-
stage model fusion algorithm to co-estimate SOC and capacity. Firstly, based on the assumption of a nor-
mal distribution, the mean and variance of the residual error from the model at different ageing levels are
used to calculate the weight for the establishment of a fusion model with stable parameters. Secondly, a
differential error gain with forward-looking ability is introduced into a proportional–integral observer
(PIO) to accelerate convergence speed. Thirdly, a fusion algorithm is developed by combining a multi-
stage model and proportional–integral–differential observer (PIDO) to co-estimate SOC and capacity
under a complex application environment. Fourthly, the convergence and anti-noise performance of
the fusion algorithm are discussed. Finally, the hardware-in-the-loop platform is set up to verify the per-
formance of the fusion algorithm. The validation results of different aged LIBs over a wide range of tem-
perature show that the presented fusion algorithm can realize a high-accuracy estimation of SOC and
capacity with the relative errors within 2% and 3.3%, respectively.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With growing concerns over energy shortage and air pollution,
the world’s top automotive countries have successively announced
the plans to ban fuel vehicles, which leads to inevitable electrifica-
tion of transports worldwide [1]. Lithium-ion batteries (LIBs) have
become the common on-board energy storage systems for electric
vehicles, electric boats, electric trains, and electric airplanes due to
their long lifetime, high energy density, and low cost [2,3]. In these
electrified transports, battery management systems (BMSs) play a
critical role in the safe operation of LIBs. The key function of these
BMSs is to provide an accurate estimation of state of charge (SOC)
and capacity in real-time. Since LIBs are the complicated chemical
systems, there is the coupling effect between battery SOC and
capacity [4]. Furthermore, there is significant influence of ageing
and a wide range of temperature on LIBs in electrified transports.
These issues make co-estimation of SOC and capacity difficult.
1.1. Literature review

The existing SOC estimation methods are mainly classified into
three groups [5] as shown in Fig. 1(a). They are basic methods,
model-based methods, and data-driven estimation methods. Basic
methods include the looking-up table and Ampere–hour integral
methods. The looking-up table method requires high accuracy of
voltage measurement and long rest time [6], which is not suitable
for real-time use. The Ampere–hour integral method is applied to
calibrate SOC once the initial SOC and true capacity of LIBs are
known, which requires highly accurate current sensors [7].
Model-based methods are developed based on electrochemical
models (EMs), equivalent circuit models (ECMs), and fractional
order models (FOMs) [8]. In these methods, observers are designed
to estimate SOC in real-time with high accuracy and strong robust-
ness [9], which include the Luenberger observer [10], the sliding
mode observer [11], the H infinity observer [12], the unscented
particle filter [13], and the proportional–integral observer (PIO)
[9]. According to Ref. [14], the PIO has higher accuracy of SOC esti-
mation than the other observers, but it has slower convergence and
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Fig. 1. Overview of SOC and capacity estimation methods: (a) main category of SOC estimation methods, (b) main category of capacity estimation methods, and (c) the
problems of the existing SOC and capacity estimation methods and the focus of this paper. ICA: incremental capacity analysis; DVA: differential voltage analysis; SOH: state of
health; OCV: open-circuit voltage; FOM: fractional order model.

R. Xiong, J. Wang, W. Shen et al. Engineering 7 (2021) 1469–1482
overshoot. Data-driven estimation methods for SOC apply black-
box models. They require a large amount of training data. Since
these methods heavily rely on training data, they are prone to
over-fitting [15]. The data-model fusion method is one of the
data-driven estimation methods, which combines the online data
training and model fitting to estimate SOC [4]. It has a certain
limitation when it is applied in aged batteries operating over a
wide range of temperature.

Battery capacity is strongly related to the estimation of state of
health (SOH), remaining life, and SOC. The existing capacity esti-
mation methods are mainly divided into three categories as shown
in Fig. 1(b), namely data-driven methods, model-based methods,
and data analysis methods [16]. Data analysis methods include
charging curve method [2], incremental capacity analysis (ICA)
method [17], and differential voltage analysis (DVA) method [18].
They highly depend on constant-current charge/discharge profiles
which can rarely be used in practical applications. Model-based
methods commonly use EMs [19], ECMs [5], and FOMs [20] to
determine capacity, which have the closed-loop feedback to ensure
estimation accuracy. Generally, when batteries are operating over
a certain range of temperature, these methods exhibit high
1470
accuracy. However, when batteries are operating over a wide range
of temperature, the accuracy of these methods starts to deteriorate.
The data-driven methods mainly include machine learning meth-
ods [21] and empirical methods [22]. These methods require a
large amount of training data to ensure stable and accurate estima-
tion results.

1.2. Motivations and original contributions

The existing studies on SOC and capacity estimation have
achieved their goals, such as short-term operation (i.e. ignoring
battery ageing) and the specific temperature ranges. Fig. 1(c) sum-
marizes the problems of the existing SOC and capacity estimation
methods. To solve these problems, the following efforts have been
made:① To achieve stable model parameters through online iden-
tification during low current conditions, the mean and variance of
the residual error from a multi-stage model are extracted to calcu-
late the probability density function (PDF) based on the assump-
tion of a normal distribution, which is then used to determine
the fusion weights for the establishment of a fusion model. The
parameters of the fusion model can be updated in real-time for a
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wide range of current profiles. ② A differential error gain with a
forward-looking ability is introduced into a PIO/proportional–
integral–differential observer (PIDO) to accelerate the convergence
speed. ③ A new algorithm is proposed to combine a fusion model
and PIDO to achieve accurate co-estimation of SOC and capacity for
aged batteries operating over a wide range of temperature.
Hardware-in-the-loop (HIL) validation results show that the pro-
posed algorithm achieves a good trade-off between estimation
accuracy and real-time performance.

1.3. Paper organization

The remaining part of the paper is organized as follows:
Section 2 introduces experiments, battery model, and the fusion
model. The PIDO design and multi-stage fusion method are elabo-
rated in Section 3. Section 4 demonstrates validation results and
the corresponding discussions, followed by HIL validation results.
Conclusions are drawn in the final section.
Table 1
Parameters of OCV–SOC–T model at Cycle 0.

Parameter Coefficient

K9(T) �1.415T2 + 100.506T � 822.714
K8(T) 7.014T2 � 504.21T + 4125.619
K7(T) �14.69T2 + 1070.851T � 8739.83
K6(T) 16.901T2 � 1252.23T + 10180.88
K5(T) �11.619T2 + 878.238T � 7114.06
K4(T) 4.867T2 � 377.507T + 3053.534
K3(T) �1.217T2 + 97.745T � 791.834
K2(T) 0.172T2 � 14.472T + 117.182
K1(T) �0.0124T2 + 1.116T � 8.377
K0(T) 0.000377T2 � 0.0361T + 3.698
2. Battery model and fusion

2.1. Battery test

A battery experimental platform is established to collect data
for the establishment of battery model and the verification of the
proposed algorithm. The platform includes a BT2000 tester and a
thermal chamber [23]. The BT2000 (Arbin Instruments, USA) is
used to charge/discharge batteries and is controlled by a host com-
puter. It has high voltage and current measurement accuracy
(0.02%–0.05% full-scale range). The thermal chamber is used to
ensure the tested batteries working at a constant temperature. In
this study, the LIBs with the capacity of 25 A are tested, whose
lower and upper cut-off voltages are 2.8 and 4.2 V, respectively.
The battery tests include ageing cycle tests and characterization
tests at different temperatures. The ageing cycle test is conducted
repeatedly by charging and discharging the batteries at 12.5 A to
accelerate battery ageing [24]. The characterization test is con-
ducted periodically, which includes a static capacity test, an
open-circuit voltage (OCV) test, a hybrid pulse power characteristic
(HPPC) test [25], and a loading profile test. The static capacity test
is used to determine battery capacity to indicate ageing levels in
terms of SOH. The OCV test is used to obtain the OCV–SOC curve
which plays a vital role in the SOC estimation method. The HPPC
test is used to identify the model parameters. The loading profile
tests are used to validate the estimation algorithm. After 600 age-
ing cycles, the capacity of the tested batteries has decayed below
80% which is defined as the end of life for LIBs in electric
transports.

2.2. Battery model

To balance the real-time performance and estimation accuracy,
an ECM with a resistor–capacitor (RC) network is adopted to
simulate battery dynamic behaviors [26]. The discrete governing
formula can be expressed as [27]

xkþ1 ¼ Axk þ BiL;k
Utk ¼ Cxk þ DiL;k

�
ð1Þ

where k is the sampling moment, xk+1 is the state vector at time
k + 1, xk is the state vector at time k, A is the state transition
matrix, B is the input matrix, C is the output matrix, D is the

feed-forward matrix, xk = [zk, Ud,k]T, A ¼ 1 0
0 exp � Dt

Td

� �" #
,
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B ¼
� gDt

Cmax

Rd 1� exp � Dt
Td

� �h i" #
, C ¼ @Uocv;k

@zk
�1

h i
, D = R0, iL,k is the input

current at time k, Utk is the terminal voltage at time k, Uocv,k is
the OCV at time k, Ud,k is the polarization voltage at time k, R0 is
the ohmic resistance, Td is a polarization time constant, Rd is a
polarization resistance, zk is SOC at time k. A positive input current
(iL) indicates discharge. Cmax indicates the maximum available
capacity, Dt is the sampling time, g is the Coulombic efficiency.
These parameters can be determined by using experimental data
at different temperatures. For example, the OCV (UOCV) is calculated
by Eq. (2) and R0, Rd, and Td are generally expressed by Eq. (3),
where the OCV coefficient Kn (the OCV coefficient number n =
0, 1, . . ., 9) and the parameters coefficient Sm (the parameters
coefficient number m = 0, 1, . . ., 5) are the fitted parameters
identified through the least-squares algorithm [28].

UocvðT;zÞ ¼ K9ðTÞz9 þ K8ðTÞz8 þ K7ðTÞz7 þ K6ðTÞz6 þ K5ðTÞz5
þ K4ðTÞz4 þ K3ðTÞz3 þ K2ðTÞz2 þ K1ðTÞz þ K0ðTÞ

ð2Þ

where T is surface temperature of batteries, z is SOC.

f ðT; zÞ ¼ S5ðTÞz5 þ S4ðTÞz4 þ S3ðTÞz3 þ S2ðTÞz2 þ S1ðTÞz þ S0ðTÞ
ð3Þ

where f is the parameters function.

2.3. Parameter identification

After 600 cycling, the testing data of the batteries at multi-
temperatures and eight ageing points (Cycle 0, 100, 200, 300,
400, 480, 550, and 600) are selected to establish battery model
and verify the proposed algorithm. To balance the complexity of
battery models for a full life cycle and accuracy, the testing data
of the batteries at three ageing levels collected at Cycle 0
(SOH = 1), Cycle 300 (SOH = 0.91), and Cycle 600 (SOH = 0.76)
are employed to establish three models, respectively, named as
Models 1, 2, and 3 and identify the parameters of the three models.
As the capacity is affected by temperatures, the tested capacity
value at 25 �C is used to calibrate the SOH. The examples of these
model parameters are provided at Cycle 0 as follows. Table 1 shows
the parameters of the OCV–SOC–T model. Table 2 shows the
parameters of the R0–SOC–T model. Fig. 2 shows the model param-
eters at SOH = 0.76.

2.4. Limitation of a single model

A single model depends on the testing data at a certain ageing
level, such as Model 2 corresponding to the data at Cycle 300,
which has high accuracy for this ageing level. As batteries are
operating under different ageing levels in their full cycle life, the
precision of this single model will deteriorate, as shown in Fig. 3.

In Fig. 3(a), the blue line indicates the simulation error of Model
1 built by using the data from the new battery at Cycle 0. This



Table 2
Parameters of R0–SOC–T functions at Cycle 0.

Parameter Coefficient

S5(T) 0.00062T2 � 0.0338T + 0.3238
S4(T) �0.00169T2 + 0.0915T � 0.841
S3(T) 0.00172T2 � 0.0918T + 0.796
S2(T) �0.000793T2 + 0.0414T � 0.324
S1(T) 0.000156T2 � 0.00778T + 0.0451
S0(T) �0.000004T2 + 0.000014T + 0.00931
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model enjoys high simulation accuracy at Cycle 0. With the
increase of ageing levels its root means square error (RMSE)
increases. The green line demonstrates the performance of Model
2 established by using the data from the battery at Cycle 300. It
has higher accuracy from Cycles 100 to 400, but lower accuracy
for the new and severely aged battery. The red line represents
Model 3 constructed from the data of the severely aged battery
at Cycle 600. The RMSE of Model 3 decreases when the battery
turns old. For example, Model 3 has high accuracy from Cycles
480 to 600. The same phenomenon occurs at another temperature
as shown in Fig. 3(b). Therefore, the battery model established at
the single ageing level cannot guarantee the accuracy of SOC esti-
mation over a long-term operation.

2.5. The feasibility of the fusion model

To circumvent the limitation of a single model, the multi-stage
model fusion method is proposed to ensure high accuracy model
for a long-term operation. The error between the measured voltage
and simulation voltage can be used to calculate the weight of each
model for the establishment of a fusion model. The parameters of
the fusion model are calculated by Eq. (4).

R0;F;k ¼
Pp

i¼1#i;kR0;i;k

Rd;F;k ¼
Pp

i¼1#i;kRd;i;k

Td;F;k ¼
Pp

i¼1#i;kTd;i;k

8><>: ð4Þ
Fig. 2. Model parameters map of the tested battery at Cycle
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where p is the total number of model to be fused; i is the fused
model number; #i;k is the weight of the ith model at time k; R0,i,k
is the ohmic resistance of the ith model at time k; Rd,i,k and Td,i,k
are the polarization resistance and the time constant of the ith
model at time k, respectively; R0,F,k is the ohmic resistance of fusion
model at time k; Rd,F,k is the polarization resistance of fusion model
at time k; Td,F,k is the polarization time constant of fusion model at
time k. These parameters are determined by Eq. (3), which build the
dynamic constraint boundary of the parameters.

Due to the low computation burden and real-time performance,
the recursive least square (RLS) algorithm is often used for online
identification of battery parameters [29]. The main challenge of
this kind of method is that the estimation error will increase under
small excitation input [30]. The identified model parameters from
both the fusion method and the RLS with forgotten factors are
shown in Fig. 4. Since the testing current is zero in the first
315 s, the parameters of the model cannot converge by only using
voltage information. To tackle this issue, the RLS is interrupted and
the historical parameters are used to estimate SOC [28]. In contrast
to the RLS, the fusion method provides the stable parameters for
the fusion model under low current conditions due to their existing
boundary constraints. The weights for three models are shown in
Fig. 4(d). According to the single model accuracy in Fig. 3(b), the
RMSE of Model 2 is the smallest and the RMSE of Model 3 is the
biggest, therefore the weight of Model 2 is the biggest and that
of Model 3 is the smallest. These results indicate that the presented
approach can effectively calculate the weight by residual analysis
based on the assumption of a normal distribution.

The validation of the fusion model is observed in Fig. 5. Models
1, 2, and 3 are established at Cycles 0, 300, and 600, respectively.
The RMSEs of the fusion model at 25 �C are within 0.018 V in the
whole range of 600 cycles, which are less than those of an individ-
ual Models 1, 2, or 3. Similarly, the maximal RMSE of the fusion
model is 0.04 V, which is also less than those of an individual Mod-
els 1, 2, or 3 at 10 �C. The validation results indicate that the fusion
model can achieve more accurate voltage simulation than a single
model at different temperatures for a long-term operation.
0: (a) OCV map, (b) R0 map, (c) Rd map, and (d) Td map.



Fig. 3. Accuracy analysis of simulation voltage based on the parameters of the models at different ageing levels: (a) validation results at 25 �C and (b) validation results at
10 �C. RMSE: root means square error.

Fig. 4. Identified model parameters at Cycle 100 and 10 �C: (a) ohmic resistance, (b) polarization resistance, (c) time constant, and (d) weight value.

Fig. 5. Fusion model accuracy analysis: (a) validation results at 25 �C and (b) validation results at 10 �C.
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3. State estimation method

3.1. Proportional–integral–differential observer

The PIO was firstly utilized to estimate battery SOC in Ref. [9].
Since the derivative of error is ignored, the PIO exhibits overshoot
and slow convergence speed. To accelerate the convergence and
suppress the overshoot, the derivative of error is introduced into
the PIO, leading to the improved observer named as a PIDO as
shown in Fig. 6.

The discrete equations of the PIDO are used to observe the state
of LIBs by following the terminal voltage:

bxkþ1 ¼ Abxk þ BiL;k þ KPek þ K Ixk þ KD
ek�ek�1

DtbUtk ¼ Cbxk þ DiL;k

ek ¼ Utk � cUtk
xkþ1 ¼ xk þ ekDt

8>>>><>>>>: ð5Þ

where ek is the measurement error at time k;xk is the integration of
errors at time k; KP, KI, and KD represent the proportional, integral,

and differential gains, respectively; cUt is the observed terminal
voltage. The observed internal states x̂k incorporates SOC and
polarization voltage. If the differential gain is zero, the PIDO will
degrade to a PIO.

For a real state xk, its estimation error (ck) is ck ¼ xk � x̂k. Thus,
the error system can be derived from Eqs. (1) and (5).

ckþ1 ¼ A� KPC � KDC
Dt

� �
ck � K Ixk þ KDC

Dt
ck�1

xkþ1 ¼ xk þ CckDt
ek ¼ Cck

8>>><>>>: ð6Þ

By defining the state vector of the error system as

Rk ¼ ck ck�1 xk½ �T, Eq. (6) can be rewritten as

Rkþ1 ¼ AeRk

Ae ¼
A� KPC � KDC

Dt
KDC
Dt �K I

I2�2 02�2 01�2

CDt 02�1 1

264
375

8>>><>>>: ð7Þ

where KP, KI, KD 2 R2�1, A 2 R2�2, C 2 R1�2. The state transition
matrix of the error system, Ae 2 R5�5, has full rank. I is the unit
matrix.

To prove the estimation error is convergent, Ae can be changed
to the following equation:
Fig. 6. Schematic diagram of (a) PIO and (b) PIDO. Ut: terminal voltage; Kp: proportiona
observed state vector;

R
: integral operation; d/dt: differential operation.

1474
Ae ¼ A0 � B0KC0

A0 ¼
A 02�2 02�1

I2�2 02�2 02�1

CDt 01�2 1

264
375

B0 ¼ I2�2 02�2 01�2½ �T

C0 ¼
C 01�2 0

01�2 01�2 1
C=Dt C=Dt 0

264
375

K ¼ KP K I KD½ �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð8Þ

where K is gain matrix to be determined. A0, B0, and C0 are defined
process matrices.

Theorem 1: The estimation error is convergent if there exist P

and K
�

satisfying the following linear matrix inequalities. P and K
�

are the determined matrices.

P A0P � CT
0K
� T

BT
0

PA0 � B0 K
�
C0 P

24 35 > 0

P ¼
P11 0 0
0 P22 P23

0 P32 P33

264
375 > 0

K
�

¼ P11K

8>>>>>>>>>>><>>>>>>>>>>>:
ð9Þ

Proof: Define a Lyapunov function:Wk ¼ RT
kPRk. The Lyapunov

function can be changed to the following form:2

DWk ¼ Wkþ1 �Wk ¼ RT
kðAT

ePAe � PÞRk ð10Þ
If there exists a matrix P, which makes

AT
ePAe � P < 0 ð11Þ

where KP, KI, and KD are determined by using the genetic algorithm
(GA) in this paper, the fitness function of the GA is defined as

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

XL

k¼1

cTkck

vuut ð12Þ

where J is the fitness function, L is the data length for optimization
calculation.
l gains; KI: integral gains; KD: differential gains; cUt: observed terminal voltage; bx:
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Then, the error system is asymptotically stable and would con-
verge to the equilibrium point. Thus, the state observer would con-
verge to the true states.

3.2. Co-estimation method

The fusion idea is usually adopted by multiple measurement
information to provide a reference for decision-making in the field
of remote sensing prediction and environmental perception [31].
The fusion model identified at different ageing levels can be
applied to estimate SOC for a long-term operation of batteries.
The key to the fusion model is to use the weights of different mod-
els to calculate the state of fusion model. In Ref. [32], Eq. (13) was
used to calculate the fusion state.

The weights are determined by statistics of residual error of the
terminal voltage (RETV). qi;k is the state vector of the ith model at
time k. ‘k is a fusion state at time k. In this paper, the ‘ refers to the
SOC and capacity. When the value of RETV increases, the accuracy
of SOC estimation deteriorates.

‘k ¼
Pp

i¼1#i;kqi;kPp
i¼1#i;k ¼ 1

(
ð13Þ

The Bayes theorem is used for weight calculation. This method
assumes that the error follows a normal distribution, thus the PDF
of the model i is determined by Eq. (14).

f YðkÞhi ;Yðk�1ÞðYðkÞ hi;Yðk� 1Þj Þ ¼ 1

ð2pÞ12 si;k
�� ��12 expð�1

2
rTi;ksi;kri;kÞ ð14Þ

ri;k ¼ Utk � bUti;k

si;k ¼ 1
p�1

Pk
j¼k�Lmþ1 ri;j � �ri;k

	 
2
8<: ð15Þ

where Y is the output of model, h is the vector of parameters model,cUti,k the observed terminal voltage of ith model at time k. ri,k is the
residual error of the RETV of model i at time k, �ri;k is the mean resid-
ual error of the RETV of model i from time j to time k, and si,k is the
variance of the RETV of model i at time k, which is determined by
the window length Lm. Generally, the larger Lm is, the more objec-
tive evaluation of the model is. However, a larger Lm affects the per-
formance of the algorithm. The optimized Lm is chosen based on the
investigation of the influence of the length Lm on calculation time
and SOC estimation accuracy. The residual error and the variance
can be calculated by Eq. (15). If the step time k is less than Lm,
the initial value is 1.

Existing methods to calculate weights depend on the condi-
tional probability which represents the weight of each model’s
contribution [32]. The conditional probability severely limits
weight change in real-time. To resolve this issue, the variance of
residual error is used to improve weight calculation:

#i;k ¼ 1
p� 1

1� f YðkÞ hij ;Yðk�1ÞðYðkÞ hi;Yðk� 1Þj Þsi;kPp
j¼1f YðkÞ hjj ;Yðk�1ÞðYðkÞ hj;Yðk� 1Þ�� Þsi;k

24 35 ð16Þ

Fig. 7 shows the multi-stage model fusion estimation frame-
work. Battery current, voltage, and temperature are sampled in
real-time and fed into Models 1–3 together with the estimated
SOC at the last moment to calculate model parameters by using
Eqs. (2) and (3). Then, these parameters, including the ohmic resis-
tance, polarization resistance, the time constant, and capacity, are
fed into the PIDOs. The outputs of the PIDOs are the estimated
states and voltage error. The weights of Models 1, 2, and 3 are
calculated to determine the SOC and capacity. Cai is the capacity
of model i which is determined by the ageing conditions and
temperatures. Therefore, the decoupling of capacity and SOC is
1475
realized. Finally, the fusion state is calculated by Eq. (13). The
summary of the proposed framework for the multi-stage model
fusion method is shown in Algorithm 1. The main parameters of
this method are listed in Table 3.
4. Results and discussions

4.1. SOC validation

The true capacity can be obtained by the static capacity tests
and the true SOC can be determined by Ampere–hour integral
method with the known initial SOC. The SOC estimation is vali-
dated under different cycles with the initial SOC setting to 0.5
although the true SOC is 1. From Figs. 8 and 9, it can be seen that
the fusion approach provides the most accurate SOC than any
one of the three models. For example, the SOC maximal error
(MAXE) of the fusion method is within 3% at 25 �C over the whole
range of 600 cycles, which is superior to those of an individual
Models 1, 2, or 3. Model 1 has satisfying accuracy at Cycle 0. With
the increase of cycles, the MAXE of Model 1 increases to 4.8%.
Model 2 has a high precision from Cycles 100 to 480, but at Cycle
600 the MAEX of Model 2 increases to 3.6%. Model 3 only has good
performance at Cycle 600. Similar phenomena also appear in the
verification results at 10 �C as shown in Table 4. Although the esti-
mation accuracy of the fusion model is lower than that of a single
model at some ageing level, overall the fusion method provides the
improved estimation accuracy for a long-term operation, which is
the main advantage of the fusion method. Additionally, as the
observer parameters of three models are consistent, the conver-
gence time of the fusion method is similar to those of three single
model based methods. The window length Lm affects not only the
complexity of the algorithm but also the estimation accuracy.
The optimized Lm value should be a compromise between these
two factors. The results for the influence of different Lm values on
the average calculation time and SOC estimation accuracy are
listed in Table 5. The algorithm computing platform is a laptop,
whose configuration is the Intel Core i7-8550U central processing
unit (CPU) 1.8 GHz and 8 GB random access memory (RAM). When
the length Lm is greater than 600, the SOC accuracy is not improved
greatly, but the computing time increases significantly. Therefore,
the optimized Lm is taken as 500 in this paper.
4.2. Joint validation of SOC and capacity

4.2.1. Validation at SOH = 0.94
The initial value of SOC is 0.5 and the initial capacity is set to 20

A�h, and they deviate from their true values of 1.0 and 24.09 A�h,
respectively. The SOC and capacity joint estimation results at
10 �C are shown in Fig. 10. The MAXE of the estimated SOC for
the fusion method is 1.76%. Model 1 has similar accuracy to the
fusion method in the first 100 min. As the inaccurate capacity is
set initially, the estimated SOC errors for Model 1 can increase
up to 3.6%. Model 2 has better accuracy than the other two models,
which shows that the collected voltages at the present condition
are closer to the output voltages of Model 2. However, it has a
longer convergence time of up to 35 min than the other two mod-
els. Model 3 has the worst accuracy, indicating that Model 3 is not
able to accurately simulate the terminal voltage at the present con-
dition. Fig. 10(c) shows that the presented method can calculate
the capacity accurately, where the mean absolute error (MAE) of
the estimated capacity is 1.48% and the RMSE of the estimated
capacity is 1.78%.

Fig. 11 shows the estimated SOC and capacity results at 25 �C,
which indicates that the proposed approach has the same
convergence time as the capacity estimation results at 10 �C.



Fig. 7. The multi-stage model fusion estimation framework. Tk: the surface temperature of battery at time k; zF,k: the fused SOC at time k; CaF,k: the fused capacity at time k;
si,initial: the initial variance of the ith model.

Algorithm 1. Proposed framework for the multi-stage model fusion method.

Initialization: x̂1;0; x̂2;0; x̂3;0;KP;KI;KD;x1;0;x2;0;x3;0; s1; initial; s2; initial;s3; initial;Lm
Computation: for k = 1, 2, . . .
� Feedback correction based on PIDO: for i = 1, 2, 3
State correction:
x̂i;kþ1 ¼ Aix̂k þ Bi iL;k þ KPei;k þ K Ixi;k þ KD

ei;k�ei;k�1
Dt

Measurement update: cUti;k ¼ Cibxi;k þ DiiL;k

Feedback error: ei;k ¼ Utk � cUti;k; ri;k ¼ ei;k
Error integral: xi;kþ1 ¼ xi;k þ ei;kDt

� Weight update: for i = 1, 2, 3
If k > Lm
Calculate the variance of the RETV si;k ¼ 1

p�1

Pk
j¼k�Lmþ1 ri;j � �ri;k

	 
2
Else
Variance not updated: si;k ¼ si;initial
End
Calculate the PDF:
f YðkÞ hij ;Yðk�1ÞðYðkÞ hi;Yðk� 1Þj Þ ¼ 1

ð2pÞ12 si;kj j12
expð� 1

2
�rTi;ksi;k�ri;kÞ

Weight update:

#i;k ¼ 1
p�1 1 � f YðkÞ hij ;Yðk�1Þ ðYðkÞ hi ;Yðk�1Þj Þsi;kPp

j¼1
f
YðkÞ hjj ;Yðk�1Þ ðYðkÞ hj ;Yðk�1Þj Þsi;k

" #
Results fusion:
SOC estimation: zF;k ¼

Pp
i¼1#i;kzi;k

Capacity estimation: CaF;k ¼
Pp

i¼1#i;kCai

Table 3
Parameters of the proposed algorithm.

Index (i = 1, 2, 3) Value

Initial value of state x̂i;0 [0, 0.5]T

Integral error xi;0 0
Proportional gains KP [0.01, 0.00095]T

Integral gains KI [0.000045, 0.000066]T

Differential gains KD [0.004, 0.005]T

Initial value of variance si;initial 1
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Furthermore, the SOC estimation of the fusion method has the
MAXE of only 2.1% and the RMSE of 1.12% while the capacity
estimation from the fusion method has the MAXE of 2.11% and
the RMSE of 2.2%.
4.2.2. Validation at SOH = 0.89
The SOC and capacity estimation results and their errors at

10 �C are shown in Fig. 12. The presented method closely follows
the true SOC with the smallest error among all the models. It has
an MAE of 0.31%, the RMSE of 0.39%, and the MAXE of 1.21%.



Fig. 8. SOC estimation results under Cycle 550 at 25 �C: (a) SOC estimation results and (b) estimation error.

Table 4
SOC estimation error under different ageing levels at 10 �C.

Cycle Model 1 Model 2 Model 3 Fusion model

MAXE RMSE MAXE RMSE MAXE RMSE MAXE RMSE

0 0.02160 0.0051 0.0333 0.0180 0.1026 0.0646 0.0420 0.0254
100 0.03570 0.0120 0.0170 0.0056 0.0870 0.0553 0.0227 0.0124
200 0.04430 0.0170 0.0080 0.0018 0.0761 0.0505 0.0146 0.0075
300 0.04220 0.0220 0.0113 0.0062 0.0625 0.0413 0.0099 0.0043
400 0.05090 0.0204 0.0099 0.0042 0.0689 0.0459 0.0106 0.0051
480 0.05596 0.0308 0.0280 0.0176 0.0425 0.0285 0.0328 0.0146
550 0.08460 0.0487 0.0549 0.0344 0.0169 0.0100 0.0491 0.0259
600 0.14320 0.0780 0.1156 0.0709 0.0246 0.0130 0.0874 0.0517

Table 5
The influence of different Lm values on average calculation time and SOC RMSE.

Length of Lm Average calculation time (s) SOC RMSE

300 1.690 0.00791
400 1.714 0.00772
500 1.732 0.00753
600 1.833 0.00748
700 1.921 0.00742
800 1.922 0.00741
900 1.923 0.00740

Fig. 9. SOC estimation under different ageing levels at 25 �C: (a) MAXE and (b) RMSE. MAXE: maximal error.
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Furthermore, the fusion method for capacity estimation has the
errors all within 3%. It has the MAE of 1.45%, the RMSE of 1.59%,
and the MAXE of 2.37%. In contrast, Models 1, 2, and 3 have larger
SOC estimation errors than the fusion method. The main reason is
that these models cannot simulate the present terminal voltage of
batteries comparing with the fusion model.

Fig. 13 shows the SOC and capacity estimation results and their
estimation errors at 25 �C. The proposed method for SOC estima-
tion has the MAE, the RMSE, and the MAXE of 0.55%, 0.74%, and
1.55%, respectively. Furthermore, the proposed method for capac-
ity estimation has errors all within 3.3%. It has the MAE of 1.19%,
the RMSE of 1.41%, and the MAXE of 3.25%.
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4.3. Robustness evaluation

4.3.1. Convergence analysis
The convergence performance is important to practical applica-

tions, especially when the BMS is suddenly cut off without saving
calculation results. To simulate these scenarios, the proposed
method is tested when the battery is at different initial SOCs, such
as 1.0, 0.9, 0.8, 0.7, 0.6, and 0.4, while its true initial SOC is 0.5. The
proportional gain KP and integral gain KI are the same for both PIO
and PIDO, listed in Table 3. The validation results are demonstrated
in Fig. 14. It can be seen that the PIDO can quickly and steadily con-
verge to the true value within 5 min while the PIO only converge
after 30 min. Although the convergence speed of the PIDO is
reduced in the middle and low SOC range, it is still better than that
of the PIO. Therefore, the PIDO converges much faster than the PIO,
indicating that the convergence speed can be improved by adding
the derivative of the error into the feedback gain.
4.3.2. Noise immunity test
In the hardware application, the measurement accuracy of dif-

ferential voltage will determine the measurement error of voltage
and current for BMSs. It mainly depends on the white noise caused
by analog to digital converter. According to the measuring



Fig. 10. SOC and capacity estimation results at 10 �C and SOH = 0.94: (a) SOC results, (b) SOC error of different models, and (c) capacity results and errors.

Fig. 11. SOC and capacity estimation results at 25 �C and SOH = 0.94: (a) SOC
results, (b) SOC error of different models, and (c) capacity results and errors.

Fig. 12. SOC and capacity estimation results at 10 �C and SOH = 0.89: (a) SOC
results, (b) SOC error of different models, and (c) capacity results and errors.

R. Xiong, J. Wang, W. Shen et al. Engineering 7 (2021) 1469–1482
principle of a Hall current sensor, the measurement deviation of
the signal is caused by the zero drift of the components, which is
a bias noise with a non-zero mean [33].

To investigate the influence of voltage sensor noise on the accu-
racy of the fusion approach, the white noises with the variance
from 0.001 to 1 are added to the voltage signal [34]. The estimation
errors of SOC and capacity are shown in Fig. 15(a). It can be seen
that after adding the white noise with the variance of 0.1 to the
voltage signal the MAE and RMSE for SOC estimation increase by
60% and 51%, respectively, whereas the MAE and RMSE for capacity
estimation increase by 125% and 93%, respectively. Therefore, the
voltage white noise has less influence on SOC estimation errors
than capacity estimation errors. The main reason is that the mea-
sured terminal voltage after adding white noise is quite different
from the real terminal voltage, which cannot be represented well
by Models 1–3. Consequently, the weight values are more distorted
for the fusion model, resulting in large capacity estimation errors.
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To investigate the influence of the current sensor noise on the
accuracy, the bias noise with the mean value of 0.5, 0.2, 0.1, 0.05,
or 0.005 A is injected into the current signal, respectively, and
the variance of the noise is 0.01 A2. The estimation errors for SOC
and capacity are shown in Fig. 15(b). The results show that the bias
noise has little influence on the performance of the fusion method.
The main reason is that this method uses terminal voltage as the
only tracking target, and the current signal is used for the single-
step prior estimation of SOC. Therefore, the proposed method is
more dependent on voltage measurement accuracy but more
robust against current interference.

4.4. HIL validation

4.4.1. HIL testing bench
To fully test the application of the proposed fusion algorithm, an

HIL testing bench is established to conduct the validation test



Fig. 13. SOC and capacity estimation results at 25 �C and SOH = 0.89: (a) SOC
results, (b) SOC error of different models, and (c) capacity results and errors.

Fig. 14. Performance of convergence: (a) SOC estimation results and (b) estimation
errors. PI: proportional–integral; PID: proportional–integral–differential.

Fig. 15. Performance with noise: (a) voltage white noise and (b) current bias noise.

Table 6
The technical parameters of BMS.

Index BMU BCU

Micro-controller unit MC9S12XS256 MPC5644A
Kernel 16-bit HCS12 32-bit e200z4
Memory 4 Kb RAM, 256 Kb flash 192 Kb RAM, 4 Mb flash
CAN channel 1 3
Frequency (MHz) 48 150

Table 7
The calculation time of different method [36,37].

Method Calculation
time (s)

Simulation
length (s)

Core processor

Muti-scale framework
with extended
Kalman filter [36]

2.210 27 000 Intel Core i5 760 CPU
2.8 GHz and 4 GB
RAM

Joint unscented Kalman
filter [37]

3.813 8 500 Intel Core i7-6700
CPU 3.4 GHz and
8 GB RAM

Proposed fusion method 1.732 12 714 Intel Core i7-8550U
CPU 1.8 GHz and
8 GB RAM

RAM: random access memory.
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based on a developed BMS. The battery management hardware
platform includes an BT2000, a temperature chamber, an upper
computer, a power supply, a battery cell, a controller area network
(CAN) board, and a BMS [35], as shown in Fig. 16. The BMS is
comprised of a battery monitor unit (BMU) and a battery control
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unit (BCU). The BMU is used to collect the cell voltages and
temperatures. The BCU is used to control the safety and uniformity
of LIBs. The core algorithm such as SOC and SOH is executed in the
BCU. The main specification of the BMS hardware is listed in
Table 6. The voltage of the cell is measured by the LT6804 chip
in the BMU, which has a high accuracy with the resolution of
3 mV. The CAB-300C (LEM, Switzerland), a professional current
sensor, is used, whose maximum measurement noise is within
0.5 A [23]. The other cells after several cycles are used for the
algorithm validation. The testing temperature is 40 �C, where the
real capacity of the cell is 26 A�h.
4.4.2. Application in BMS
Before validation in the HIL, the calculation time of the pro-

posed method is discussed and listed in Table 7 [36,37]. Results



Fig. 16. Platform of HIL validation. PC: personal computer.
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indicate that the complexity of the fusion method is superior to the
joint unscented Kalman filter. The proposed method is implemented
in Matlab/Simulink shown in Fig. 17, where the label "voltage,"
infer that the voltage and current data from real-time BMS. The
standard embedded C code is automatically generated by the
Simulink code toolbox. In the integrated development software,
the input, output, and execution cycle of the algorithm are set.

The input is the cell voltage, current, and temperature. Voltages
and temperatures are collected by the BMU at the sampling period
of 100 ms. The current value is measured at 100 Hz by the CAB-
300C. The output is the estimated SOC and capacity. The execution
cycle is 1 s. Additionally, to calculate the weight of each model, the
historical RETV should be saved in real-time. If the window length
Lm is set to 500, the micro-controller unit (MCU) needs to store
1500 floating-point data, the current mainstream 32-bit MCU can
meet this requirement.

4.4.3. Results analysis
The SOC range of the tested cell is 0.5–1.0. There are two valida-

tion tests, one for the accuracy named as HIL1 and the other for the
convergence named as HIL2. The initial SOC is set to 0.5. The
Fig. 17. Simulink model o
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validation results are shown in Fig. 18. In HIL1 test, the MAXE of
the estimated SOC is 0.88% and that of the capacity is 3.1%. In
HIL2 test, it simulates the process of a BMS to turn on and off. When
the BMS is initially turned off and then on at the 76th minute, the
algorithm starts to estimate SOC and capacity, and it converges
within a specified error of 3% at the 86th minute.

Therefore, the accuracy validation test shows that the fusion
algorithm can accurately estimate SOC and capacity. The conver-
gence test shows that when the BMS is initially powered off and
then on suddenly the SOC and capacity estimation results can
quickly and steadily converge to the true values. The main features
of the proposed fusion algorithm are as follows:

(1) The parameters of the fusion model at different ageing levels
are a function of SOC and temperature, which can ensure the
stability of the model parameters. The weight updating method
makes the identified parameters have good real-time performance.

(2) The RETV of the model is used to determine the real-time
fusion weight.

(3) The proposed framework realizes an independent estima-
tion of SOC and capacity. As the model input SOC is the front-
end fusion result, the input capacity is the maximum available
capacity under the ageing stage, which realizes the decoupling of
SOC and capacity.
5. Conclusions

In this paper, a novel framework including the multi-stage
fusion model and a PIDO is presented to accurately estimate SOC
and capacity under a complex application environment. The
experimental and HIL results have verified the effectiveness of
the proposed algorithm. In addition, we also achieve the following
three conclusions:

(1) By using the fusion method to identify parameters, stable
values can be obtained in real-time, which overcomes the defi-
ciency of the RLS algorithm sensitive to working conditions. Com-
pared with a single model, the multi-stage model achieves more
accurate battery voltages at different temperatures and ageing
levels. The RMSE of predicted voltage is within 40 mV at 10 �C.

(2) The proposed framework based on the fusion model and
PIDO can accurately estimate SOC and capacity for aged batteries
f the fusion method.



Fig. 18. Results of the HIL test: (a) SOC estimation and (b) capacity estimation.
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over a wide range of temperature range. The MAXE of SOC estima-
tion is within 3% at 25 �C under the long-term cycles. The HIL tests
show that the proposed method can be effectively used in the real-
time SOC and capacity estimation with high accuracy. The maxi-
mum SOC estimation error is 0.88% and the maximum capacity
estimation error is 3.1%.

(3) Compared with PIO, the proposed PIDO algorithm can
improve the convergence speed by up to six times while suppress-
ing current noise.
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