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Optical deep learning based on diffractive optical elements offers unique advantages for parallel process-
ing, computational speed, and power efficiency. One landmark method is the diffractive deep neural net-
work (D2NN) based on three-dimensional printing technology operated in the terahertz spectral range.
Since the terahertz bandwidth involves limited interparticle coupling and material losses, this paper
extends D2NN to visible wavelengths. A general theory including a revised formula is proposed to solve
any contradictions between wavelength, neuron size, and fabrication limitations. A novel visible light
D2NN classifier is used to recognize unchanged targets (handwritten digits ranging from 0 to 9) and tar-
gets that have been changed (i.e., targets that have been covered or altered) at a visible wavelength of
632.8 nm. The obtained experimental classification accuracy (84%) and numerical classification accuracy
(91.57%) quantify the match between the theoretical design and fabricated system performance. The pre-
sented framework can be used to apply a D2NN to various practical applications and design other new
applications.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep learning is a type of machine learning method that can be
used to achieve data representation, abstraction, and advanced
tasks by simulating a multi-layer artificial neural network in a
computer [1]. Recent advances in deep learning have attracted
much attention. In some fields, deep learning performance has
been shown to be superior to that of human experts. Deep learning
has revolutionized the fields of artificial intelligence (AI) and com-
puter science, and great advances have been made in these fields.
Deep learning has been widely applied to computer vision [2],
voice/image recognition [3–5], robotics [6], and other applications
[7–9]. However, electronic and active deep learning is strongly
limited by the von Neumann architecture in terms of processing
time and energy consumption [10,11]. In the last several decades,
optical information processing, which implements the operations
of convolution, correlation, and Fourier transformation in an
optical system, has been found to exhibit unique advantages for
parallel processing and has been widely investigated [12–17].
Computer-based deep learning has been achieved in optical
systems by use of diffractive optical elements, and optical deep
learning based on diffractive optical elements has been validated
using image classification [18–21]. The terahertz diffractive deep
neural network (D2NN) based on three-dimensional (3D) printing
technology is the landmark method for optical deep learning [18].

Based on deep learning-based design and error back-
propagation methods, D2NN is trained using a computer. During
the training period, each pixel in the diffractive optical element
layer is a neuron. The transmission coefficients (or complex ampli-
tude distribution) for these pixels are optimized by the computer
to control diffraction light from the input plane to the output plane
to perform the required task. When this training phase is complete,
these passive diffractive optical element layers can be physically
fabricated. By stacking these layers together to form an all-
optical network, these diffractive layers can execute the trained
function without the use of energy, except for the coherent illumi-
nation light that is used to encode the input object’s information
and the output detectors. Various nonlinear functions, such as
Fourier-space D2NN, where the optical nonlinearity is introduced
using ferroelectric thin films [17], and linear functions, such as
handwritten digits and a fashion product classifier [18–20] without
the use of nonlinear optoelectronic materials, have been performed
using a D2NN [18–21].

A 3D-printed terahertz D2NN has been proven to be a great suc-
cess. The promising performance and validity of D2NN for terahertz
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platforms has been verified in many studies [18–20]. Despite the
huge advantages, terahertz itself suffers from some well-known
limitations in practical applications, such as material losses [22]
and limited interparticle coupling [22]. Therefore, there is a grow-
ing requirement to revise the terahertz scheme for use with visible
or near-infrared [23] wavelengths. Extension of the working wave-
length from the terahertz bandwidth range to visible light has the
potential to offer more novel perspectives [24–29]. However, some
restrictions and shortcomings must be addressed to adapt a D2NN
from a long wavelength to a short wavelength. Some contradic-
tions exist between the working wavelength, neuron size, and fab-
rication limitations. A shorter wavelength has a smaller neuron
size, which makes the process more difficult, and traditional max-
imal half-cone diffraction angle theory cannot be used to overcome
this contradiction [18–20].

In this work, a new general formula containing detailed analysis
of the D2NN framework, including the different parameters
required for the design space, is proposed to overcome the above-
mentioned contradiction. This new formula is proposed by intro-
ducing a formula that includes related variables based on the
traditional maximum half-cone diffraction angle theory. The pro-
posed general formula is a quantitative analysis on how to expand
D2NN for visible light sources such as a helium (He)–neon (Ne)
laser source. A series of simulation analyses are designed to verify
the proposed formula. As an example, a D2NN classifier is used
with a subset of handwritten digits from the Mixed National Insti-
tute of Standards and Technology (MNIST) training dataset to
reduce the training time and training complexity. The digital clas-
sifier is used to recognize handwritten digits from 0 to 9. In this
situation, a phase-only, five-layer D2NN is used and a total of
32000 neurons are used to prevent overfitting. The numerically
blind testing accuracy for different cases with a new test dataset
is used to verify the proposed formula.

Based on the proposed general formula, a novel visible light
D2NN classifier was designed and further experimentally verified.
The working light was a He–Ne laser with a wavelength of 632.8
nm. In contrast with existing D2NN classifiers [18–20], the pro-
posed visible light D2NN classifier can classify handwritten digits
from 0 to 9 even for a changing target, such as the digits being cov-
ered or altered, which are two common cases. The visible light
D2NN’s identification capability can be improved by extending
the training dataset period. For this test, a total of 55000 handwrit-
ten digits in the MNIST training dataset were extended to a new
training dataset with 80 000 images of handwritten digits. The
incremental 25000 handwritten digits were used as the deformed
MNIST training dataset, which were covered or altered. By using
the five-layer, phase-only D2NN with five million neurons, a
numerically blind testing accuracy of 91.57% was achieved in the
new test dataset of 11000 images. The visible light D2NN was fab-
ricated using a multi-step photolithography-etching process on a
silicon dioxide (SiO2) substrate. The inputs for the experiment
were 50 transmissive digital objects that were fabricated using
micro-fabrication technology. A blind testing accuracy of 84%
was achieved. The experimental classification accuracy (84%) and
the numerical classification accuracy (91.57%) quantify the match
between theoretical design and the fabricated system perfor-
mance. The relatively small reduction in the performance of the
experimental network compared to the numerical testing proves
the validity of the design theory for the visible light D2NN.

By using these systematic advances for designing a D2NN, the
reported method and the improvement set the state of the art for
visible light D2NNs. Deep neural networks are sometimes called
black boxes [30], as the hidden layers can be difficult to extract
to explain how data is processed. The proposed D2NN may provide
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some insights into this issue. Additionally, understanding the
interaction between biological neurons in the human brain is of
fundamental interest when building deep neural networks [31].
The proposed D2NN may provide insight into the current under-
standing of the interactions between biological neurons. The pre-
sented framework and theory can be used to apply D2NNs to
various practical applications for human–computer interaction
equipment and AI interaction devices and can promote progress
in biology and computational science.
2. Material and methods

2.1. Deep learning and D2NN architecture

The proposed visible light D2NN follows optical diffraction the-
ory and a deep learning structure [32–35]. Compared with tradi-
tional deep learning systems, the D2NN system has some
differences: ① The D2NN system obeys optical diffractive theories,
such as Huygens’ principle and Rayleigh–Sommerfeld diffraction
[36], for the forward-propagation model; ② the training loss func-
tion used in this system (i.e., the softmax-cross-entropy (SCE) loss
function), is based on the light power incident on different detector
regions in the output plane. Therefore, based on the calculated
error with respect to the target output and according to the desired
loss function, the network structure and its neuron phase values
can be optimized using an error back-propagation algorithm.

Generally, in deep learning, the phase values for the neurons
in each layer are iteratively adjusted (or trained) to perform a
specific function by feeding training data to the input layer fol-
lowed by computing the network’s output through optical
diffraction. Before a specific analysis of the forward-propagation
model within a D2NN, some definitions are provided for the lth
layer as follows (where l represents the layer number of the
network):

� tl is the lth layer’s complex transmission function. The complex
transmission coefficient of the ith neuron, where i represents
the neuron located at (xi, yi, zi) of layer l (where (xi, yi, zi) is
the spatial coordinate of the ith neuron along the x-, y-, and
z-axis, respectively), is composed of amplitude and phase
terms. It can be further defined as ti

l(xi, yi, zi) = ai
l(xi, yi, zi)

exp(jUi
l(xi, yi, zi)), where ai

l(xi, yi, zi) is the amplitude term,
Ui

l(xi, yi, zi) is the neuron phase term, j is an imaginary number
and j =

ffiffiffiffiffiffiffi
�1

p
. For a phase-only D2NN architecture, the ampli-

tude ai
l(xi, yi, zi) is assumed to be a constant value equal to 1.

� Wl+1 is the secondary diffractive wave just after the lth layer.
The secondary diffractive wave after the ith neuron located at
(xi, yi, zi) for layer l is Wi

l+1. The amplitude and phase of Wl+1

are determined by the product of the input wave to layer l
and its complex transmission coefficient tl, which are
complex-valued functions.

� Yl+1 is the output function when the secondary diffractive
wave function Wl+1 propagates across the distance between
the diffractive layers l and l + 1. Yl+1 is also the input function
for the next layer l + 1. When the input function Yl is verti-
cally irradiated at the lth diffraction layer, the complex
amplitude distribution of Wl+1 is the product of the transmis-
sion function of tl and the input function Yl:
Wlþ1 ¼ Yl�tl ð1Þ
where � is the Hadamard product operation.
After the secondary diffractive wave Wl+1 propagates from the

diffractive layer l to the diffractive layer l + 1, a phase shift is intro-
duced with a corresponding phase factor as follows:
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expðjkdlcoscÞ ¼ exp jkdl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðcos2aþ cos2bÞ

q� �
ð2Þ

where dl is the distance between the diffractive layer l and l + 1; a, b,
and c are the angles for the propagation direction of the secondary
diffractive wave Wl+1 along the x-, y-, and z-axis, respectively; k is
the wave number and k ¼ 2p=k, k is the wavelength.

Assuming that u ¼ cosa
k

and v ¼ cosb
k

, where u and v are spatial

frequency, the corresponding phase factor after propagation of the
secondary diffractive wave Wl+1 from the diffractive layer l to the
diffractive layer l + 1 can be expressed as follows:

expðjkdlcoscÞ ¼ exp jkdl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2ðu2 þ v2Þ

q� �
ð3Þ

We then obtain

Ylþ1 ¼ Wlþ1 � exp jkdl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2ðu2 þ v2Þ

q� �
ð4Þ

Therefore, the overall analysis of the forward-propagation
model within a D2NN is given as follows:

Ylþ1 ¼ ðYl�tlÞ � exp jkdl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2ðu2 þ v2Þ

q� �
ð5Þ
2.2. TensorFlow-based design for a D2NN and processing flow

The proposed visible light D2NN was realized using Python
(v3.7) and the TensorFlow (v1.12.0, Google Inc., USA) framework.
The proposed D2NN systemwas trained for 20 epochs using a desk-
top computer with a GeForce GTX 1080 Ti graphical processing unit
(GPU) and an Intel�CoreTM E5-2650 central processing unit (CPU)
@2.00 GHz and 128 GB of random access memory (RAM), running
the Windows 10 operating system (Microsoft Corporation, USA).

The trainable parameters in a diffractive neural network are the
modulation values for each layer, which, here, were optimized
using the back-propagation method of the adaptive moment esti-
mation (Adam) optimizer with a learning rate of 10�3. Further-
more, the number of network layers and the axial distance
between these layers are also design parameters. The training time
for a five-layer visible light D2NN to classify both unchanged and
changed (covered or altered) handwritten digits was approxi-
mately 20h.

The input digit objects were encoded based on the input ampli-
tude into the D2NN and were fabricated by laser direct writing
(LDW). The target objects were fabricated on a soda glass sub-
strate. The glass substrate was first cleaned using acetone and iso-
propyl alcohol. The clear substrate was coated with a layer of
chromium (Cr) with a thickness of a few hundred nanometres
using electron beam evaporation. After spin-coating positive pho-
toresist and a prebake process, the handwritten digit patterns were
exposed using LDW technology. The exposed resist was stripped
using a developer and the uncovered Cr was stripped using chrome
mordant. Finally, any remnant resist was also cleaned using
acetone and isopropyl alcohol.

To enhance the fabrication of the visible wavelength D2NN, a
sigmoid function was applied to limit the phase value of each
neuron to 0–p, which enabled the neurons to be easily fabricated
using a traditional multi-step photolithography-etching method.
Before processing, the neuron phase valuesU need to be converted
into a relative height map Dh (Dh = kU/(2pDn), where Dn is the
refractive index difference between the fabricated substrate and
air). The D2NN layers were fabricated onto a SiO2 substrate using
a similar cleaning process as above. After cleaning, equipment
pre-treated with hexamethyldisilazane was used to change the
surface activity of the SiO2 substrate to enhance the adhesion
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between the photoresist and the substrate. After spin-coating pho-
toresist and exposure, the exposed resist was stripped using a
developer. Then, after an oxygen plasma sizing treatment, mag-
netic neutral loop discharge etching was used. This process was
repeated until the D2NN layer structure was achieved. More pro-
cessing details can be found in Figs. S1 and S2 in Appendix A.

3. Results

By using a multi-step photolithography-etching process on a
SiO2 substrate, a D2NN was fabricated as five layers of diffractive
optical elements, which were mounted as shown in Fig. 1. The
identification capability of the visible light D2NN was improved
by extending the target dataset for the training period. For a chang-
ing target, for example, a target being covered or altered, existing
deep learning systems will falsely identify the target [18–20], even
with sufficient object recognition accuracy improvements [20].
Therefore, our D2NN was trained as a digit classifier to perform
automated classification of handwritten digits. The designed
D2NN can classify unchanged number targets from 0 to 9 as well
as targets that have been changed (by being covered or altered),
as shown in Fig. 1(a). For these tasks, a phase-only transmission
five-layer D2NN was designed by training 80000 images, compris-
ing 55000 unchanged handwritten digits that were obtained from
the MNIST training dataset and 25000 changed handwritten digits
(i.e., covered or altered digits) which were derived from the
deformed MNIST training dataset. The input digits were encoded
into the D2NN based on the input amplitude. The diffractive neu-
tral network was trained to map the input digits to eleven detector
regions, which were marked by different numbers, as shown in
Fig. 1(a). The unchanged input digits from 0 to 9 were mapped to
the No. 0 to No. 9 detector regions, respectively. The changed input
digits were all mapped to the No. X detector region. These detec-
tors are also shown in Fig. 1(a). The classification criterion was
used to find the detector with the maximum optical signal.

Once the training was completed, the improved D2NN digit clas-
sifier was numerically tested using 11000 additional images,
which were not used as training image sets and comprised
10000 unchanged handwritten digits that were obtained from
the MNIST test dataset and 1000 deformed handwritten digits
(i.e., covered or altered digits) that were derived from the
deformed MNIST test dataset. The improved system achieved a
blind classification accuracy of 91.57%.

Using the numerical phase values for the neurons in each layer,
as shown in Fig. 1(b), the designed five-layer D2NN was processed.
The phase of the neurons in each layer was physically encoded
based on the relative thickness of each layer point. Therefore, the
diffractive optical element for the D2NN was processed using a
multi-step photolithography-etching process on a SiO2 substrate.
The experimental schematic for the whole five-layer D2NN is
shown in Fig. 1(c). The experimental setup based on a He–Ne laser
(25-STP-912-230, Melles Griot, USA) is shown in Figs. 1(d) and (e).
In the experiment, a He–Ne laser beam was collimated by lenses 1
and 2, and a pinhole was used as a filter. The collimated He–Ne
laser beam was used to illuminate the target objects in the input
plane. Using the five-layer D2NN, the diffractive field for the output
plane was detected by a charge coupled device (CCD) (Beijing
Daheng Imaging Vision Co., Ltd., China). Since the training set con-
tains a large quantity of samples, each layer contains one million
neurons (1000 � 1000), and there are five million neurons in total
in the five-layer D2NN. The wavelength of the applied He–Ne laser
was 632.8nm. The power of the applied He–Ne laser was 5mW.
Each neuron had a size of approximately 4 lm and each layer
had an area of 4 mm � 4 mm. The distance between two adjacent
diffractive layers is approximately 5 cm. The details for the align-
ment of the five-layer D2NN can be found in Fig. S3 in Appendix A.



Fig. 1. Schematic diagram and experimental setup of the visible light D2NN. (a) Schematic diagram of the classifier used for the unchanged handwritten digit targets from 0 to
9 and the changed handwritten digit goals, such as the covered digit 7 and the altered digit 5. The spatial distribution of the detectors is also shown in this figure.
(b) Numerical phase values for the neurons of the five layers L1, L2, L3, L4, and L5. (c) The experimental schematic. (d, e) The experimental setup. CCD: charge coupled device.
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For the numerical testing of the 11 000 test images, the classi-
fication accuracy of the designed five-layer D2NN was determined
to be 91.57%. The confusion matrix is given in Fig. 2(a) and shows
the details and distribution of the correctly identified examples
and the incorrectly identified examples. For the 50 digital objects
fabricated by LDW, the experimental blind testing accuracy was
found to be 84%. The relatively small reduction in the performance
of the experimental network compared to the numerical testing
indicates that the design theory is correct. The confusion matrix
in Fig. 2(b) shows the experimental details for examples of correct
and incorrect identification. A CCD with a specially designed light
Fig. 2. Confusion matrix for the simulated and experimental results. (a) Confusion matrix
classification accuracy of 91.57% over around 11000 different test images. (b) Confusio
prepared by LDW. The classification accuracy is approximately 84%.
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barrier was applied to each illuminated input object to obtain
the D2NN output. The transmission regions for the light barrier cor-
respond to the detector positions from No. 0 to No. X, respectively.
The remaining regions are opaque. The first step in this test was to
assess the recognition capability of the unchanged and changed
handwritten test numbers. A handwritten 3, an altered handwrit-
ten 3, a handwritten 4, and a covered handwritten 4 were chosen
as the input objects, as shown in Fig. 3(a). The simulated results
and the experimental results in Fig. 3(b) indicate that the visible
light D2NN can be used to easily classify the deformed object
inputs. As shown in Fig. 3(c), the energy distribution shows that
for the simulated results. Numerical testing of the five-layer D2NN design achieves a
n matrix for the experimental results obtained for 50 different handwritten digits



Fig. 3. Handwritten digit classifier for a visible light D2NN. (a) Objects under an optical microscope, including a handwritten 3, an altered handwritten 3, a handwritten 4, and
a covered handwritten 4. Amp: amplitude. (b) Simulated results and experimental results showing that the handwritten digit classifier D2NN successfully classifies
handwritten input digits based on 11 different detector regions at the output plane of the network, each corresponding to one digit. As an example, the output of the
handwritten input of 3 and 4 are focused onto the No. 3 and No. 4 detectors, as indicated by the white arrows. The altered and covered handwritten input of 3 and 4 are all
indicated by the No. X detector. Max: maximal. (c) Energy distribution percentage for our experimental results and simulated results, which demonstrates the success of the
fabricated diffractive neural network and its inference capability.
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the system can identify the maximum optical signal for the correct
detector. The second step in this test was to use four different
forms of the handwritten digit 6 as input objects, as shown in
Fig. 4. The simulated results and the experimental results in
Fig. 4(c) demonstrate that the fabricated diffractive neural network
and the inference capability are valid. The average intensity distri-
bution at the output plane of the visible light D2NN can converge
the maximum input energy to the corresponding detector assigned
to that digit.

In summary, the proposed D2NN illuminated by a He–Ne laser
was demonstrated to successfully recognize unchanged targets
(from 0 to 9) and changed targets (i.e., targets that are covered
or altered) at a visible wavelength of 632.8 nm. Additionally, the
proposed visible D2NN system was shown to have a transfer learn-
ing ability, as shown in Fig. 5. When the laser is passed directly into
the D2NN system without passing through any handwritten digits,
the existing D2NN system [18–20] will still diffract light to a digital
detector. This indicates that incident light is misjudged to be a
number. When the laser is directly incident onto the proposed
D2NN system, as shown in Fig. 5(a), the proposed visible light
D2NN system focuses the incident light into the No. X detector,
which indicates that an incorrect number has been identified,
which is not part of the classification set. The experimental results
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shown in Fig. 5(b) show strong agreement with the simulated
results.

The demonstrated D2NN can be used to address the contradic-
tions that occur when adapting from a long wavelength to a visible
light source. The quantitative analysis performed here demon-
strates the building of a visible light D2NN and addresses the exist-
ing contradictions between wavelength, neuron size, and
processing difficulty.

Connectivity between layers is a dominant factor that directly
influences the diffraction of neurons. Therefore, the information
transfer and the inference performance of the D2NN were deter-
mined. A fully connected D2NN can achieve sufficient information
transfer and optical interconnection between neurons. A fully con-
nected network requires that the diffraction angle of all neurons
should be large enough to optically cover the diffractive optical
element in the next layer. The maximal half-cone diffraction angle
of a neuron (umax) governed by wavelength and the neuron size
can be qualitatively described for a fully connected structure as
follows:

umax ¼ sin�1 k= 2dfð Þ½ � ð6Þ

where df is the neuron size.



Fig. 4. Handwritten digit classifier for a visible light D2NN. (a) Objects under an optical microscope, including four different forms of the handwritten 6. (b) Simulated results
and experimental results showing that the handwritten digit classifier D2NN successfully classifies different types of handwritten input digits. Four different forms of 6 were
all focused onto the No. 6 detector, as indicated by the white arrows. (c) Energy distribution percentage for our experimental results and simulated results, which
demonstrate the success of the fabricated diffractive neural network and its inference capability.

Fig. 5. Verification of the transfer learning ability of the proposed D2NN. (a) Simulated results for the light-field distribution in the output plane when a plane wave passes
directly into our system without passing through any handwritten digits. Most of the light is concentrated in the No. X region, which indicates that an incorrect number or
incorrect case has been identified. (b) Experimental results for the light-field distribution in the output plane. The experimental results are in good agreement with the
simulated results.
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To obtain a large diffraction angle, it is necessary to have a small
neuron size and a long wavelength. In previous work [18], a tera-
hertz source wavelength of 0.75 mm, neuron size of approximately
1488
0.4 mm, and maximal half-cone diffraction angle of approximately
70� were used. However, for visible light, the wavelength of the
He–Ne laser used here is 632.8 nm, which is approximately 1200
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times smaller than the terahertz wavelength. To obtain a 70� half-
cone diffraction angle, the neuron size should be less than 330 nm,
which is also 1200 times smaller than the neuron size for the
terahertz bandwidth. The maximal unit size of 330 nm requires a
complicated fabrication technique, which can result in a contradic-
tion between wavelength, neuron size, and processing difficulty.
Therefore, a general method should be applied when designing
visible light D2NNs.

For a propagation distance D between two adjacent diffractive
layers, the radius R of the diffraction spot of each neuron can be
expressed as follows:

R ¼ D� tanumax ð7Þ
If df is the neuron size and N is the number of neurons in each

diffractive layer, the side length w of each diffractive layer is

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � d2

f

q
ð8Þ

where the diffraction layer is assumed to be a square [18–20]. To
obtain a fully connected D2NN, the condition of R � w needs to be
met. Therefore, based on the traditional maximal half-cone diffrac-
tion angle theory, a new formula is proposed as follows:

umax ¼ sin�1 k= 2dfð Þ½ �
D � ffiffiffiffi

N
p � df �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4d2

f =k
2Þ � 1

q
8<
: ð9Þ

The improved formula can be used to quantitatively analyse
the D2NN connectivity. A fully connected D2NN has better infer-
ence performance when the parameters satisfy Eq. (9). This for-
mula indicates that the connectivity of a D2NN is affected by
wavelength, neuron size, number of neurons, and the distance
between layers. The contradiction between wavelength, neuron
size, and processing difficulty can be alleviated by adjusting the
number of neurons and spacing but using a longer wavelength.
This formula provides a general case for the application of a
D2NN to any wavelength.

The experimental parameters in Figs. 2–5 were chosen using
Eq. (9) and the accuracy of this new formula was confirmed by
the experimental results. To further verify the proposed formula,
a series of simulation analyses were performed. To reduce the
training time and complexity, a phase-only, five-layer D2NN was
trained as a digital classifier to recognize only handwritten digits
from 0 to 9 using a subset of the MNIST training image dataset,
as shown in Fig. 6 (a). The training set contained 10000 handwrit-
ten digit images (from 0 to 9); there were approximately 1000
images of each type of handwritten digit, which were randomly
selected. These 10000 input digits were encoded to the amplitude
of the input field into the D2NN. The diffractive network was
trained to map the input digits to ten detector regions, with one
region for each digit. The classification criterion sought to find
the detector with the maximum optical signal. After training, the
D2NN digit classifier design was numerically tested using 500
images, which were also randomly selected from the MNIST test
dataset and not contained within the training or validation image
sets. The blind testing accuracy for the test set was used to verify
the new proposed theory.

A quantitative analysis of the D2NN connectivity was per-
formed, and the fitting curve for Eq. (9) is given in Fig. 6(b). For
example, in order to prevent overfitting, the number of neurons
in each layer was assumed to be 6400 (80 � 80) based on previous
experience. The connectivity space for the D2NN was divided using
Fig. 6(b), taking the relationship between the wavelength, distance,
and neuron size into consideration. Once the parameters are
within or above the fitting curve, as indicated by the green arrow,
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the D2NN will realize full connectivity and perfect inference is
guaranteed. For the case marked by the red arrow, the D2NN can-
not achieve full connectivity. In Fig. 6(b), cases 1 and 2 are within
the fitting curve, case 3 is above the fitting curve, and case 4 is
below the fitting curve. The blind testing accuracies for cases 1
to 3 are all above 90%, while the accuracy for case 4 is approxi-
mately 0.1%. The confusion matrix for cases 1–4 are shown in
detail in Figs. 6(d)–(g), respectively. These results prove the accu-
racy of the improved theory for the connectivity. The improved
theory can offer a quantitative analysis for building a D2NN and
demonstrates the performance advantages of a fully connected
D2NN. The simulated results shown in Fig. 6(c) are consistent with
previous studies [18–20]. By comparing cases 1 and 2, it can be
seen that the proposed fully connected theory can overcome the
contradiction between neuron size and processing difficulty by
adjustment of the distance. The D2NN performance over a long dis-
tance D (5.7 � 103k) and a large neuron size df (6k) is consistent

with that for a short distance D (15k) and a small neuron size df
(0.53k), since the neuron size df is adjusted based on the distance
D, which reduces the processing difficulty. We also analysed the
influence of alignment errors between diffractive layers and the
phase depth error for the diffractive layer. Further details can be
found in Figs. S4 and S5 in Appendix A.
4. Discussion and conclusions

In this work, a general model for a D2NN at visible wavelengths
was proposed. A visible wavelength D2NN can be used to overcome
some of the drawbacks of the terahertz bandwidth and has many
potential practical applications [25–29]. However, there are some
restrictions and shortcomings, which make it challenging to
change the bandwidth from terahertz to the visible light region.
The first difficulty is the contradiction between the working wave-
length, neuron size, and fabrication limitations. Shorter wave-
lengths require smaller neuron sizes, which make the processing
more complex. A general theory that includes a revised formula
was proposed to overcome these contradictions. A series of simu-
lation analyses were designed that were able to successfully verify
the proposed formula. Based on this theory, a novel visible light
D2NN classifier was used to recognize unchanged targets (hand-
written images of digits ranging from 0 to 9) as well as changed
targets (i.e., covered or altered targets) at a visible wavelength of
632.8nm. A numerical classification accuracy of 91.57% was
obtained and is highly matched with an experimental classification
accuracy of 84%, proving that both the theoretical analysis and the
designed system can be successfully used.

Although there has been some recent success implementing
deep neural networks for optical platforms [18–22,24], an all-
optical design has not yet been fully demonstrated and realized.
For example, computers are still required for the training process
and the advantages of low energy consumption and high speed
offered by optical information processing have not yet been
realized. Additionally, applications for optical deep learning tech-
niques are still emerging and many early attempts [18–20] use
standard machine learning models, which may not be the best
choice for an optical deep learning design. Other learning para-
digms, such as unsupervised learning [37], generative adversarial
networks [38], and reinforcement learning [39,40], should also be
integrated into an optical neural network. It is expected that faster
and more accurate optical deep learning frameworks will be pro-
posed in the future, which may be able to offer capabilities that
go beyond even current human knowledge.



Fig. 6. Schematic diagram of the D2NN classifier used to verify the improved Eq. (9). (a) Schematic diagram of the D2NN classifier used to reduce the training time for the
unchanged handwritten digit targets from 0 to 9. The location of each detector is displayed. (b) The fitting curve. (c) Four cases. The blind testing accuracy for different
parameters in (c) were investigated and the confusion matrix is shown in (d) case 1, (e) case 2, (f) case 3, and (g) case 4, which demonstrate the success of the revised theory.
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