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Urban flooding is a major issue worldwide, causing huge economic losses and serious threats to public
safety. One promising way to mitigate its impacts is to develop a real-time flood risk management sys-
tem; however, building such a system is often challenging due to the lack of high spatiotemporal rainfall
data. While some approaches (i.e., ground rainfall stations or radar and satellite techniques) are available
to measure and/or predict rainfall intensity, it is difficult to obtain accurate rainfall data with a desirable
spatiotemporal resolution using these methods. This paper proposes an image-based deep learning
model to estimate urban rainfall intensity with high spatial and temporal resolution. More specifically,
a convolutional neural network (CNN) model called the image-based rainfall CNN (irCNN) model is devel-
oped using rainfall images collected from existing dense sensors (i.e., smart phones or transportation
cameras) and their corresponding measured rainfall intensity values. The trained irCNN model is subse-
quently employed to efficiently estimate rainfall intensity based on the sensors’ rainfall images. Synthetic
rainfall data and real rainfall images are respectively utilized to explore the irCNN’s accuracy in theoreti-
cally and practically simulating rainfall intensity. The results show that the irCNN model provides rainfall
estimates with a mean absolute percentage error ranging between 13.5% and 21.9%, which exceeds the
performance of other state-of-the-art modeling techniques in the literature. More importantly, the main
feature of the proposed irCNN is its low cost in efficiently acquiring high spatiotemporal urban rainfall
data. The irCNN model provides a promising alternative for estimating urban rainfall intensity, which
can greatly facilitate the development of urban flood risk management in a real-time manner.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Occurrences of urban floods can be attributed to many factors,
including intensified rainfall due to a changing climate [1],
increased surface runoff due to urbanization [2], and complex
interactions between urban runoff and high water levels down-
stream (i.e., compound flooding events) [3]. Rainfall extremes often
lead to urban floods—especially flash floods, for which rainfall
intensity is the dominant factor [4]. It is notable that flash flooding
can often result in more serious consequences compared with
other flood types (e.g., river flooding), including a high number of
casualties [5]. Such consequences mainly occur because the rainfall
process associated with urban flash flooding is characterized by its
sudden large intensity, which often leads to inadequate prepara-
tion of flood defense resources and delayed evacuation [6].

To mitigate the impacts of urban floods, a number of different
solutions have been proposed over the past few decades [7–9].
One way is to develop a real-time urban flood warning system to
enable an accurate inundation prediction, which would allow
flooding-defense resources and evacuation to be operated in a
timely manner [10]. However, a significant challenge associated
with real-time urban flood warning systems is the lack of urban
rainfall data with high spatiotemporal resolution [11,12]. This lack
of data is because the urban rainfall process is often complex, as it
is not only affected by large-scale land–ocean interactions, but also
by local meteorological evolution [13]. As a result, urban rainfall
events often exhibit complicated temporal and spatial distribution
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Fig. 1. The concept of the proposed method.
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properties. For example, Berg et al. [14] and Wasko and Sharma
[15] have stated that the temporal distribution of many observed
rainfall events has become steeper in the changing climate, and
the intensity can vary significantly in a short time period (e.g.,
10 min). In terms of rainfall spatiality, it has been reported that
the relative difference in rainfall intensity between two locations
with a 3–5 km spatial distance can be up to 30%–50% [16–18].

The spatiotemporal properties of urban rainfall extremes can
significantly affect the distribution characteristics of urban flood-
ing, which include the inundation extent, water depths, and flood
timing in different urban regions [19,20]. Therefore, to account
for the spatiotemporal characteristics of rainfall events, it is impor-
tant and necessary to develop a real-time urban flood warning sys-
tem [21]. Such a system uses real-time rainfall data (i.e., 1 min
resolution) with a high spatial resolution across the entire city
(i.e., 100 m � 100 m), with which inundation predictions can be
temporally and spatially accurate. These accurate inundation pre-
dictions can be subsequently employed to enable the effective
operation of flood defense resources and the development of an
efficient evacuation strategy.

More specifically, a real-time urban flood warning system con-
sists of real-time rainfall data and an efficient hydrologic–
hydraulic modeling module. The latter is less of a challenge, due to
rapid developments in computing techniques in recent years [22].
A number of different methods are available to acquire or predict
urban rainfall data. These methods can be classified into two types:
model-based and equipment-based approaches. Model-based
methods, such as the weather research and forecasting model
(WRF) [23] or global climatemodels (GCM) [24], are typically unable
to provide accurate rainfall estimates with high spatiotemporal res-
olution at an urban scale [25]. Equipment-based approaches include
ground rainfall stations [26], weather radar [27], and satellite
remote sensing [28]. Ground rainfall stations can measure rainfall
data accurately, but oftenwith low spatial resolution due to the lim-
itednumberof stations in anurbanarea [29].Weather radar canpre-
dict rain intensity with a high temporal resolution based on the
scattering effect of electromagnetic waves [30]. However, the pre-
diction accuracy of the weather radar approach cannot be guaran-
teed due to a number of influencing factors, such as uneven
vertical distribution of rainfall, anomalous propagation of electro-
magnetic waves, and high buildings [27]. More importantly, since
the number of ground-based radar stations is often low in many
countries, the spatial coverage afforded by this approach is often
limited. In contrast, the satellite remote sensing approach can pro-
vide rainfall prediction at a large spatial coverage, but its spatiotem-
poral resolution is often insufficient at the urban scale [31].

In recent years, crowdsourcing methods have been considered
as an alternative way to collect rainfall data, including the uses
of smart wipers in moving cars (e.g., Tesla cars) [32] or intelligent
umbrellas with acoustic sensors [33]. Recently, a new approach
was proposed by Jiang et al. [34] to measure rainfall intensity
based on videos acquired by ordinary surveillance cameras. More
specifically, the researchers developed a convex optimization algo-
rithm to effectively decompose rainy images, followed by rainfall
intensity estimates through geometrical optics and photographic
analyses [34]. While these crowdsourcing methods are interesting,
their wide application in acquiring rainfall data with high spa-
tiotemporal resolution is difficult due to the associated high imple-
mentation complexities [32].

This study proposes a novel approach to measure urban rainfall
data with a high spatiotemporal resolution using an image-based
deep learning model. The proposed approach is motivated by the
facts that:① Images of rainfall events are widely available in cities,
as they can be acquired from transportation cameras, security cam-
eras, and smart phones at very low cost; and② rainfall images that
are highly temporally and spatially distributed across the entire city
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can be obtained by using existing sensors (cameras) or via citizen
science (smart phones). In this work, a deep learning approach
called a convolutional neural network (CNN) is adapted to predict
rainfall intensity based on images collected from urban sensors. In
recent years, deep learning methods have been wildly used in the
field of environmental remote sensing [35] and earth systems
science [36], demonstrating their great potential for solving tradi-
tional challenges in these fields. Among these deep learning meth-
ods, CNNs have been increasingly used in the hydro-meteorology
field, for applications that include increasing the prediction accu-
racy of El Niño occurrence [37], predicting cyanobacteria concentra-
tions in river water [38], extracting the velocity and pressure field
from flow field images [39], and accelerating urban flood model
computations [40]. However, to the best of our knowledge, this is
the first work in which CNNs have been adapted to model rainfall
with high spatiotemporal resolution based on urban sensors.

The most important feature of the proposed method is its extre-
mely low cost in acquiring highly spatiotemporal urban rainfall
data, which makes the development of a real-time flooding warn-
ing system possible. In addition, these rainfall data can be used to
understand how climate change and urbanization affect the local
hydrological cycle on an urban scale. It is anticipated that the pro-
posed rainfall-estimating method will be promising for mitigating
the impacts of urban floods—especially flash floods—as the
assimilation and integration of various types of urban sense data
are a growing trend in recent years toward urban ‘‘digital twins.”

The remainder of this paper is organized as follows. Section 2
introduces the methodology of the proposed method and provides
an outline of the proposed image-based rainfall CNN (irCNN)
model architecture. Section 3 introduces the data for model
development, and Section 4 discusses model training and valida-
tion. The last section presents the results and discussions.
2. Methodology

2.1. The methodological framework

Fig. 1 illustrates the overall concept of the proposed method,
which includes the collection of rainfall images and model
development and application. In a rainfall event, a large number
of images are first collected from existing sensors—mainly public
cameras that have been widely installed in cities (Fig. 1). Subse-
quently, the proposed irCNN model is employed to predict the
rainfall intensity based on these images. Finally, the rainfall
intensity for each analyzed location (i.e., each location that
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provides rainfall images) is obtained, resulting in rainfall data with
a high spatiotemporal resolution.

The development of an image-based rainfall model is challeng-
ing due to the following issues: ① Rainfall images from different
urban locations have different backgrounds; and ② the back-
ground of a single location can vary due to the weather and
changes in the environment status (e.g., traffic). Fortunately, the
CNN model has exhibited great ability in image recognition, as
demonstrated in the domain of artificial intelligence [41,42].
Therefore, a CNN model framework is adopted in this study.

The overall procedure of the proposed method includes the
model setup, data acquisition for model development, and model
training and validation. Within the model setup stage, the irCNN
framework is proposed, in which a regression layer is added to the
existing CNN architecture to enable the generation of continuous
values in the results. Given that the number of CNN parameters is
large, an open-source ImageNet dataset is used to pretrain the irCNN
before its use to estimate rainfall intensity. Subsequently, rainfall
data is collected for irCNN model development and conditioned on
the pretrained framework, with data sources including synthetic
rainfall images, images from smart phones, and images from in situ
cameras. These data are then used to further train the irCNN. Finally,
the model’s accuracy in simulating rainfall intensity is validated.
2.2. The setup of the imaged-based rainfall CNN model

2.2.1. The CNN model
A CNN is a typical deep learning method that was initially

developed for document and image recognition [43]. The CNN
model is a representation learning-based method, characterized
by using multiple levels of representations (i.e., parameters) to rep-
resent different feature levels. More specifically, the CNN model
can be fed with raw data and automatically discovers the represen-
tations needed for detection or classification.

Fig. 2 shows the typical architecture of a CNN model, which
often includes an input layer, convolutional layers, subsampling
layers, full connection layers, and an output layer. To explain the
process used by a CNN, the following example is given, which
applies a CNN to identify the number ‘‘8.” As shown in Fig. 2, the
input plane receives an image with a number (represented by a
pixel matrix) that is approximately size normalized [41]. Next,
multiple feature maps with different weight vectors are generated
within the convolution layer using a set of different convolutional
kernels (often using a 3 � 3 matrix). Subsequently, the subsam-
pling layer is used to carry out a local averaging or maxima in order
to reduce the resolution of the feature map and the sensitivity of
the output to the shift and distortion of the original input. The con-
volution and the subsampling processes must be performed many
times to identify the features of the input image. Finally, full collec-
tion layers are employed to generate the output (a probability vec-
tor for the number from 0 to 9) based on the feature maps. It
should be noted that the number of featured maps at each convo-
Fig. 2. Architecture of a typical CNN used for digit r
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lutional layer and subsampling layer need to be prespecified based
on rules. The details of a CNN architecture can be found in Ref. [43].

Due to the rapid development of computing power over the
past few decades, a number of CNN model variants have been pro-
posed in the research area of computer science and engineering,
including AlexNet [44], visual geometry group networks (VGGs)
[45], and residual networks (ResNets) [42]. These models have
been demonstrated to be effective and efficient in classifying
images and detecting objects within complex images [46,47].
2.2.2. The irCNN model
Based on the overall framework of the typical CNN architecture,

the present study proposes an irCNN model with the aim of
estimating rainfall intensity based on rainfall images. From an
intuitive perspective, rainfall intensity can be represented by the
density and size of raindrops in an image. In other words, a rainfall
image with a relatively large raindrop density and size can be gen-
erally associated with greater rainfall intensity, and vice versa. This
relationship can be mathematically expressed as follows:

I ¼ f Z d; sð Þð Þ ð1Þ

where I is the rainfall intensity (mm�h�1); Z is the rain image; d and
s are the density and size of raindrops, respectively; and f represents
the underlying nonlinear relationship between the rain image and
rainfall intensity, which must be derived using a CNN model.

In the literature, a number of different CNN types have been
developed, which differ in terms of their model architectures, such
as the number of layers, the size of convolutional kernels, the man-
ner of enabling subsampling, and so on; further details are provided
in theworkofHeet al. [42]. In this study, the irCNNmodel is basedon
the ResNet34 model type (where 34 indicates a total of 34 layers in
the model), which has been widely used in computer science and
engineering [42]. More importantly, the ResNet34 model has been
demonstrated to perform better than other alternatives, such as
AlexNet (developed in 2012), VGG 16 (developed in 2014), and
Graph NN, in many applications [48,49]. Fig. 3 outlines the irCNN
model architecture with its total of 38 layers (including additional
input and output layers). As shown in this figure, the ResNet34
model process starts with an input image with a photo (L = 1, where
L is the layer number in the irCNNmodel). In the second layer (L = 2),
64 convolutional kernels (each ofwhich is a 7�7matrix) are used to
generate 64 different feature maps (planes in Fig. 2) for the original
input image.However, it shouldbenoted that the convolutional ker-
nel is applied to the pixelmatrix of the input image bymoving every
two columns (convolutional stride s = 2) in a subsampling process to
reduce the resolution of the featuremap. Therefore, the convolution
and subsampling are jointly performed in the second layer (L = 2),
which is also the case for L = 10, 18, and 30, as represented by the
green blocks in Fig. 3.

In the irCNN model architecture (Fig. 3), a total of 29 convolu-
tional layers (excluding the layers with the subsampling process)
are used (yellow blocks), with an identical convolutional kernel
ecognition, where each plane is a feature map.



Fig. 3. The architecture of the proposed irCNN model.
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size (a 3 � 3 matrix) but an increasing number of feature maps
(ranging from 64 to 512). Two special subsampling layers (L = 3
and 36) are used in the irCNN model (blue blocks in Fig. 3), where
L = 3 and 36 respectively identify the maximum (maximum sub-
sampling method) and average (average subsampling method)
value of each 3 � 3 matrix of the feature maps. It is notable that
the values of each convolutional kernel used in Fig. 3 must be cali-
brated, resulting in a total of 6.3 � 107 parameters for calibration.
This particular architecture of the ResNet34 model was suggested
by He et al. [42] based on a comprehensive simulation analysis.

Within the irCNN model architecture, a deep residual learning
approach is used, following the work of He et al. [42], in order to
address the degradation problem (i.e., premature convergence)
that often exists in CNN model applications. More specifically,
shortcut connections (red arrow lines in Fig. 3) are involved in
the irCNN model architecture, where the shortcut connections skip
two layers, as shown in Fig. 3. These shortcut connections simply
perform identity mapping, and their outputs are added to the out-
puts of the stacked layers (Fig. 3).

Typical CNN models are mainly used for object classification;
hence, a regression layer (L = 37 in Fig. 3) is added to the proposed
irCNN model in order to estimate rainfall intensity. This adaption
can be expressed as follows:

Î ¼ WTX þ b ð2Þ

where bI represents the predicted rainfall intensity; W represents
the parameters of the linear regression layer, which will be auto-
165
matically determined within the training process of the irCNN
model; X represents the output (a vector) of the previous layer
(L = 36); and b represents the bias term.

Since the number of irCNN model parameters to be calibrated is
large, sufficient model training requires a huge number of rainfall
images, which was not available in the present study. To solve this
problem, an open-source dataset called ImageNet, consisting of
1000 classes with 1.28 million images, was used to pretrain the
irCNN model to classify objectives (e.g., different animals) in these
images [50]. In other words, the irCNN model is first trained on
images unrelated to rainfall, as they are largely available; hence,
approximate values of irCNN parameters can be obtained after
the pretraining process [50]. Once this is done, follow-up training
based on rainfall image data (Section 3) determines the final
CNN parameter values. The above approach is often used in the
CNN domain [42] because—despite the images containing different
types of objects—all these objects share certain common features
that are relevant for their detection and classification.
3. Rainfall data acquisition for irCNN model development

3.1. Synthetic rain images

A total of 4000 different publicly available images [51] without
raindrops are used to generate the synthetic rainfall images. These
public images are considered as the background layer; the image-
processing software Photoshop CC2017 [52] is then used to add the
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raindrop layer (i.e., noise layer) to these images. Within the rain-
drop layer, a range of different raindrop densities, sizes, and angles
(i.e., wind impact) can be considered to generate a sufficient diver-
sity of rainfall events. After a preliminary analysis and given that
the rainfall intensity is dominated by the raindrop density and size
(Eq. (1)), we assume the following mapping relationship between
the raindrop density, size, and intensity:
SI ¼ 100d� 1
16

s2 ð3Þ
where SI is the synthetic rainfall intensity, which is dimensionless,
and d represents the raindrop density on the background layer,
which is defined as the ratio of the pixels of the noise points relative
to the total pixels. In Photoshop CC2017 [52], d ranges from 0.1% to
100%; hence, 100d ranges from 0.1 to 100. In this study, d is
restricted to within 10%–19% with a resolution of 1%, resulting in
a total of 10 different SI values. The restriction of d to within
10%–19% is because the noise density of such a range is similar to
that of the real rainfall images through visualization; however,
other different d values can also be easily applied to the proposed
irCNN model.

In Eq. (3), s represents the raindrop size, which is defined as the
ratio of the area of the raindrop layer to the area of the background
layer [52]. In this study, three different values of s—namely, 350%,
400%, and 450%—are used for raindrop sizes; of these, s = 400% is
considered to be the default raindrop size, as this size was judged
visually to be the most appropriate in comparison with a real rain-
drop size [52].

We use the following strategy to change the sizes of the rain-
drops in the rain images: First, the raindrop layer is superposed
onto the background layer of an image with a particular back-
ground using s = 400%. The raindrop size s can then be increased
or decreased with a change rate of k by enhancing or shrinking
the area of the raindrop layer, where the area change rate is k2. This
change leads to a corresponding decrease or increase in the value
of d with a rate of k2 as the number of raindrops in the background
layer is changed as a result of the area variation of the raindrop
layer. However, the SI value is not varied within the process indi-
cated by Eq. (3). For example, when s is increased from 400% to

450%, the area of the raindrop layer is increased by 45
40

� �2 ¼ 81
64, and

the raindrop density on the background layer is reduced by
64
81; thus, the SI value stays the same (Eq. (3)).

Eq. (3) is used to generate rainfall intensities for synthetic rain-
fall images, which are used accordingly as the data labels for irCNN
model developments. Fig. 4 shows three synthetic rainfall images
that are produced for the same background layer but have different
raindrop densities. For a given raindrop density, its distribution
and relative size follow a Gaussian distribution, as stated in the
tutorial for Photoshop CC2017 [52]. While Eq. (3) is assumed in this
study to develop a mapping between raindrop density, size, and
rainfall intensity, other mapping equations can easily be applied
to generate synthetic rainfall images.
Fig. 4. Examples of synthetic rain images with the effect of increasing SI values:
(a) SI = 10; (b) SI = 13; and (c) SI = 18.
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Two different synthetic datasets are generated using the
method described above, with background images taken from
Ref. [51]. The details of the two synthetic datasets are presented
below.

Synthetic dataset 1 (SD1): This dataset is used to investigate
how an increase of background diversity affects the model perfor-
mance. In SD1, the validation sub-dataset consists of 1000 rainfall
images with different backgrounds. These are produced by using
100 different background images, with each image being super-
posed by a noise layer (i.e., a rain layer) with ten different SI values
(from 10 to 19, with a resolution of 1). For the training sub-dataset,
the number of background images (N) gradually increases from
100 to 1200 with a resolution of 100; the background images are
randomly selected from the total background dataset. Here, it
should be noted that each background image can only be selected
once for a particular N, and the images used in the validation data
are not used in the training sub-dataset. Subsequently, for each
background image, ten different SI values are used to generate
the rainfall images, resulting in 12 training sub-datasets in SD1.
For example, if N = 500, then a total of 5000 rainfall images are pro-
duced, all with different backgrounds. Additional details are pro-
vided in Table 1.

Synthetic dataset 2 (SD2): This dataset is used to investigate
how the increase of diversity in the rainfall intensity influences
the predictive performance. The validation sub-dataset of SD2 is
identical to that used in SD1. For the training sub-dataset, the
number of background images is fixed; a range of different rainfall
intensity combinations (the set of C) of varying size are selected
from the ten SI values to generate rainfall images. More specifi-
cally, in this study, the size of C increases from 2 (a combination
of two SI values) to 10 (the combination of all available SI values)
with a resolution of 1. For each SI value in C, the fixed 800 back-
ground images are jointly used to produce synthetic images using
the method described above. Additional details of SD2 are given in
Table 2.

3.2. Real rainfall images from smart phones

To further validate the performance of the irCNN model, real
rainfall images were collected using smart phones during rainfall
events on the campus of Zhejiang University, China, as shown in
Fig. 5. A tipping-bucket rain gauge with 1 min time resolution
and 0.1 mm rainfall intensity precision was installed on campus
at the location shown in Fig. 5. During rainfall events, portable
smart phones were used to capture rainfall images at different
locations, as shown in Fig. 5.

It should be noted that the rainfall gauge recorded the accumu-
lated rainfall with a resolution of every 1 min, but the exposure
time of the photos was very short (around 1/200 s); this resulted
in a potential mismatch between the rainfall recorded at a gauge
and the true intensity captured by a photo on a smart phone. To
address this issue, we use a linear interpolation method to esti-
mate the rainfall intensity. A linear interpolation is used in this
work due to its great simplicity; however, future research should
develop and use more advanced rainfall downscaling methods to
further improve the predictive performance of the irCNN model.
As illustrated in Fig. 6, the rainfall intensity at each intermediate
time (IL at time tL and IR at time tR) of the recording time interval
(from T0 to T0 + Dt, where Dt = 1 min in this study) is assumed
to be the intensity measured by the accumulated rainfall depth
at the end of the time interval (T0 + Dt, T0 + 2Dt in Fig. 6). This is
followed by the estimate of It at the photo-capturing time t using
the following equation:

It ¼ IL þ t � tL
Dt

IR � ILð Þ ð4Þ



Table 1
Average values of performance metrics over five irCNN model runs applied to SD1 (validation performance).

Number of different backgrounds in images MAE MAPE (%) R2 NSE KGE

100 1.07 7.67 0.77 0.75 0.87
200 0.73 5.27 0.88 0.87 0.87
300 0.62 4.47 0.91 0.91 0.90
400 0.60 4.28 0.91 0.91 0.91
500 0.57 4.10 0.92 0.92 0.92
600 0.56 4.01 0.91 0.91 0.96
700 0.54 3.85 0.93 0.93 0.96
800 0.54 3.81 0.94 0.94 0.96
900 0.54 3.80 0.94 0.94 0.95
1000 0.53 3.73 0.93 0.93 0.96
1100 0.52 3.65 0.94 0.94 0.96
1200 0.52 3.68 0.94 0.94 0.96

MAE: mean absolute error; MAPE: mean absolute percentage error; R2: the coefficient of determination; NSE: Nash–Sutcliffe model efficiency; KGE: Kling–Gupta efficiency.

Table 2
Average values of performance metrics over five irCNN model runs applied to SD2 (validation performance).

Number of SIs Selected SIs MAE MAPE (%) R2 NSE KGE

2 SI = 10, 19 1.47 10.29 0.81 0.59 0.65
SI = 13, 16 1.45 10.56 0.78 0.61 0.47
SI = 14, 15 2.06 15.04 0.80 0.28 0.17
Average 1.66 11.96 0.79 0.49 0.43

3 SI = 10, 15, 19 0.77 5.48 0.90 0.88 0.90
SI = 11, 14, 17 0.84 5.71 0.88 0.86 0.81
SI = 13, 14, 15 1.68 11.78 0.84 0.48 0.34
Average 1.09 7.66 0.88 0.74 0.68

4 SI = 10, 13, 16, 19 0.62 4.30 0.92 0.91 0.96
SI = 13, 14, 17, 18 0.94 7.44 0.87 0.82 0.71
SI = 13, 14, 15, 16 1.30 9.50 0.88 0.69 0.50
Average 0.95 7.08 0.89 0.81 0.72

5 SI = 10, 12, 15, 17, 19 0.54 3.81 0.94 0.93 0.98
SI = 12, 14, 15, 17, 18 0.75 5.77 0.92 0.89 0.78
SI = 13, 14, 15, 16, 17 1.07 8.29 0.90 0.77 0.59
Average 0.79 5.96 0.92 0.86 0.78

6 SI = 10, 12, 14, 15, 17, 19 0.56 3.91 0.93 0.92 0.97
SI = 11, 12, 14, 15, 16, 18 0.58 4.12 0.94 0.93 0.88
SI = 12, 13, 14, 15, 16, 17 0.83 5.95 0.92 0.87 0.73
Average 0.66 4.66 0.93 0.91 0.86

7 SI = 10, 12, 13, 15, 16, 18, 19 0.53 3.67 0.94 0.94 0.97
SI = 11, 12, 14, 15, 17, 18, 19 0.56 4.05 0.93 0.93 0.93
SI = 11, 12, 13, 14, 15, 16, 17 0.75 5.09 0.92 0.88 0.80
Average 0.62 4.27 0.93 0.92 0.90

8 SI = 10, 11, 13, 14, 15, 16, 18, 19 0.53 3.69 0.94 0.94 0.96
SI = 10, 12, 13, 14, 16, 17, 18, 19 0.53 3.76 0.94 0.94 0.97
SI = 11, 12, 13, 14, 15, 16, 17, 18 0.60 4.32 0.93 0.92 0.87
Average 0.56 3.92 0.94 0.93 0.93

9 SI = 10, 11, 12, 13, 14, 16, 17, 18, 19 0.51 3.62 0.94 0.94 0.95
SI = 10, 11, 13, 14, 15, 16, 17, 18, 19 0.53 3.73 0.93 0.93 0.96
SI = 10, 11, 12, 13, 14, 15, 16, 17, 18 0.57 3.91 0.93 0.92 0.92
Average 0.54 3.75 0.94 0.93 0.94

10 SI = 10–19 0.54 3.89 0.94 0.94 0.95
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where It is the rainfall intensity at the photo-capturing time t. IL, IR,
tL, and Dt are all illustrated in Fig. 6.

The smart phones took images of 11 rainfall events occurring
between May and July 2020 at the locations shown in Fig. 5. This
resulted in a total of 960 rainfall images with different back-
grounds. Fig. 7 presents four examples of rainfall images with the
intensity estimated using the method given in Fig. 6 and Eq. (4).
A total of 768 (80%) of the above images are randomly selected
to train the irCNNmodel; the remaining 192 (20%) images are used
to validate the model performance.
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3.3. Real rainfall images from an in situ surveillance camera

An in situ surveillance camera was installed in this study to cap-
ture rainfall videos, at the location shown in Fig. 5. Six rainfall
events occurring in June and July 2020 were recorded by this
in situ camera, and the videos were used as supplemental material.
The rainfall videos are split into rainfall frames with 1 s resolution
(i.e., still images) to enable the application of the proposed irCNN
model. Rainfall intensity data are taken from the rainfall gauge
shown in Fig. 5; the linear interpolation method described in



Fig. 5. Locations of the sensors (smart phones and cameras) used to collect rainfall images.

Fig. 6. Illustration of rainfall intensity estimation at any giving time t using the
linear interpolation method. Black lines represent the linear interpolation results
and blue histograms represent the recorded rainfall depth.

Fig. 7. Examples of rainfall images with estimated intensity from smart phones.
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Fig. 6 and Eq. (4) is employed to assign a rainfall intensity to each
video frame. A total of 7117 rainfall frames are produced from the
camera videos based on the six rainfall events. In this study, 5694
(80%) frames are randomly selected to train the irCNN model, and
the remaining 1423 (20%) frames are used to test the model’s per-
formance (this dataset is denoted as CD1). In addition, five of the
six rain events are used to train the irCNN model, while the
remaining rainfall event is utilized for model validation (this data-
set is denoted as CD2).
4. IrCNN model training and validation

4.1. Model training

While various deep learning models have been successful in a
range of applications, model training is often difficult due to the
large number of model parameters involved [53]. In this study,
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the stochastic gradient descent (SGD) method is used to train the
irCNN model, due to its previously demonstrated excellent effi-
ciency and effectiveness [53]. Within the SGD method, the cyclical
learning rate (CLR) approach is employed to speed up the training
process. The details of the model training method can be found in
the work of Ref. [53].
4.2. Performance metrics

Five metrics that have been widely used in the hydrology
domain are used to measure the performance of irCNN models
[54]. These are the mean absolute error (MAE), the mean absolute
percentage error (MAPE), the coefficient of determination (R2), the



Fig. 8. Convergence trajectories of the proposed irCNN model runs: the conver-
gence trajectories of the proposed model applied to (a) the synthetic dataset SD1
and (b) the real rainfall images from smart phones.
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Nash–Sutcliffe model efficiency (NSE), and the Kling–Gupta effi-
ciency (KGE). The equations for the MAE and MAPE are as follows:

MAE ¼ 1
n

Xn
i¼1

Yi � Ŷ i

��� ��� ð5Þ

MAPE ¼ 1
n

Xn

i¼1

Yi � Ŷ i

Yi

�����
����� ð6Þ

where n is the total number of data points, Yi is the ith observation,

and Ŷ i is the ith prediction. A lower value of MAE or MAPE indicates
a better performance. The metrics of R2, NSE, and KGE are to mea-
sure the goodness-of-fit of the model; the equations for these met-
rics are presented below:

R2 ¼
Pn

i¼1 Yi � eY� �
Yi � Y
� �� �2

Pn
i¼1 Yi � eY� �2Pn

i¼1 Yi � Y
� �2 ð7Þ

NSE ¼ 1�
Pn

i¼1 Yi � Ŷ l

� �2

Pn
i¼1 Yi � Y

� �2 ð8Þ

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � 1ð Þ2 þ rpred

robs
� 1

� 	2

þ lpred

lobs
� 1

� 	2
s

ð9Þ

where Y is the mean of the observations; r is the linear correlation
between the observations and the predictions; rpred and lpred are
the standard deviation and the mean of the predictions, respec-
tively; and robs and lobs are the standard deviation and the mean
of the observations, respectively. A higher value of R2, NSE, or KGE
indicates an overall better performance, with R2, NSE, or KGE = 1
representing perfect model performance.

5. Results and discussions

5.1. Convergence and efficiency analysis

The proposed irCNN model was implemented in this study
using the Python computer language. The implemented algorithm
was run on a personal computer (PC) with an Intel Core i9-9820X
at 3.3 GHz and 32 GB random access memory (RAM), with a
NVIDIA RTX 2080Ti 11 GB graphic processing unit (GPU). It should
be noted that the irCNN model was pretrained using the
open-source dataset called ImageNet [50]. In other words, the con-
vergence and efficiency analysis below were conditioned on the
pretrained irCNN models.

Fig. 8(a) shows the convergence trajectories of the proposed
irCNN model applied to the synthetic dataset SD1, where the
minimization of the training loss is the objective function, as defined
by Smith and Topin [53]. As shown in this figure, while different
model runs may exhibit different convergence properties, they are
all able to reach convergences between 10–50 training epochs. Fur-
thermore, it is found that, although an irCNN model with a relatively
low number of background images (i.e., low background diversity)
tends to converge within a large number of training epochs, each
training epoch requires a relatively low time budget. Using the com-
puter configuration stated above, each irCNN model run applied to
the synthetic dataset lasted between 10–20 min.

Fig. 8(b) presents the convergence trajectories of the irCNN
model applied to the real rainfall images from smart phones. It
can be seen that the number of training epochs needed for the real
data is significantly larger than the number needed for the syn-
thetic dataset. In addition, each training epoch for the former
requires approximately 3 min, which is appreciably longer than
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that for the synthetic dataset. This is expected due to the noise that
is present in the real rainfall images, which substantially increases
the training difficulties. As shown in Fig. 8(b), all the irCNN model
runs successfully converged within 3 h using the computer
configuration previously stated. Similar observations can be made
for the irCNNmodel applied to the synthetic dataset SD2, as well as
the real rainfall images obtained by the in situ surveillance camera.

The time used to estimate the rainfall intensity using the
trained irCNN model was recorded. Although it varied slightly for
different input rainfall images, the irCNN model required 1–2 s
to provide a rainfall intensity estimate for 100 images. This finding
highlights the great potential of the irCNN model for providing
real-time rainfall intensity once it has been trained using historical
observations in urban areas.
5.2. IrCNN model performance on synthetic rainfall images

Table 1 shows the performance metric for the irCNN model
applied to the synthetic datasets, where the metric values of the
validation data are presented. It can be seen that, for each fixed
number of background images in SD1, five different model runs
with different randomly selected background images are per-
formed, resulting in the averaged performance metric values
shown in Table 1. It was notable that, for a fixed number of back-
ground images, different model runs showed a low variation in
performance metric values (not shown here).

As shown in Table 1, the irCNN model performance is good
overall (e.g., the average values of R2, NSE, and KGE are all above
0.9) if sufficient background diversity can be guaranteed within



Fig. 9. Predictions vs observations based on the irCNNmodel applied to real rainfall
images from smart phones (validation data).
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the model training process. In addition, the performance of the
irCNN model improves when the number of background images
is increased from 100 to 600, followed by an overall similar model
performance for further increases in the number of background
images. In other words, the irCNN model can distinguish raindrops
from the background images as long as a sufficient number of dif-
ferent background images are used for model training.

Based on the results shown in Table 1, we decided to use 800
fixed background images to enable the analysis of synthetic data
in SD2—that is, to investigate the potential impacts of different
rainfall scenarios on model performance. Table 2 presents the aver-
age performance metric values of the validation data over five
model runs applied to each data subset in SD2. As shown in the
table, the number of rainfall scenarios significantly affects model
performance. For example, if the number of SI is 9, the average
MAE, MAPE, R2, NSE, and KGE of the irCNN model runs (for valida-
tion data) are 0.54, 3.75%, 0.94, 0.93, and 0.94, respectively. This
represents a significantly improved performance when compared
with the case that considered two or three different SI values, as
shown in Table 2.

According to Table 2, for a fixed set of SI values, if the selected
alternatives can cover a large span of the total options, the perfor-
mance of the irCNNmodel improves. This finding indicates that the
irCNNmodel may not be able to provide accurate estimates for sce-
narios with rainfall intensities beyond those provided in the train-
ing dataset. This limitation is typical for most machine learning
methods, as they tend to perform much better at interpolating
than extrapolating beyond the dataset used for their training.
Based on the results shown in Table 2, it can be concluded that
the diversity of rainfall scenarios and the span of rainfall intensities
have a significant influence on model performance. This finding
implies that a collection of a sufficiently large number of events
with different rainfall intensities is critical to the performance of
the irCNN model.
5.3. IrCNN model performance on real rainfall images captured by
smart phones

Table 3 shows the values of the performance metrics based on
the validation results of the irCNNmodel applied to the real rainfall
images captured by smart phones. To enable a rigorous analysis,
five runs with different randomly selected training data are per-
formed; the results are given in Table 3. The table shows that,
while the metric values can differ slightly over different runs, all
are acceptable in practice to accurately determine the rainfall
intensity. This result is reflected in the good average values of
MAE, MAPE, R2, NSE, and KGE achieved by the irCNN model simu-
lations for a 3.79 mm�h�1 rainfall, which are 18.53%, 0.96, 0.95, and
0.91, respectively.

Fig. 9 depicts the predictions versus observations for the results
of trial 3 shown in Table 3, with the red line representing perfect
model performance. As shown in the figure, despite some varia-
tions, the irCNN model predictions match the rainfall intensity
observations well overall. This result implies that the irCNN model
can provide acceptable rainfall intensity estimates in practice,
Table 3
Values of the performance metrics for the irCNN model runs applied to real rainfall image

Trial number MAE (mm�h�1) MAPE (%)

1 4.16 18.11
2 3.92 19.27
3 3.36 17.89
4 3.91 16.30
5 3.58 21.08
Average 3.79 18.53
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based on rainfall images captured by smart phones. While such
estimates may not be as accurate as those from a ground rainfall
station, they can be obtained at high temporal and spatial resolu-
tions with a low associated cost.
5.4. IrCNN model performance on real rainfall images from a
surveillance camera

A total of six rainfall events were recorded by the surveillance
camera (details are given in Table 4); these videos were split into
frames with a 1 s resolution to enable irCNN model application,
as previously stated. Table 4 outlines the duration, average rainfall
intensity, and maximum rainfall intensity of each rainfall event
computed based on 1 min resolution records from the rain gauge.
Following Ref. [14], rainfall data greater than 0.1 mm�min�1 (i.e.,
6 mm�h�1) are used for irCNN model development. It should be
noted that storm burst events often occur in Hangzhou (the city
where the surveillance camera was installed) between June and
July; hence, the recorded events are mainly rainfall extremes with
relatively short duration, as shown in Table 4. Such rainfall events
are more likely to cause flash floods than average rainfall events;
therefore, their spatiotemporal intensity values in an urban area
are important for real-time flood defense (which is the focus of this
paper). Nevertheless, future research should also validate the per-
formance of the irCNN model in estimating rainfall intensity for
average rainfall events (i.e., low-intensity events with a long
duration).

Five different model runs with different randomly selected
training data were performed; the validation results are given in
Table 5. As shown in the table, the irCNN model can provide rea-
sonably accurate rainfall intensity estimates based on real rainfall
images from the surveillance camera, with the average values of
MAE, MAPE, R2, NSE, and KGE being 3.10 mm�h�1, 16.54%, 0.92,
0.92, and 0.95, respectively. The irCNN model predictions versus
observations for trial 4 (Table 5) are presented in Fig. 10. While
s from smart phones (validation results).

R2 NSE KGE

0.95 0.93 0.90
0.95 0.94 0.90
0.97 0.96 0.93
0.96 0.94 0.91
0.96 0.96 0.92
0.96 0.95 0.91



Table 4
Details of six rainfall events recorded by the surveillance camera.

Rain event Date Duration (min) Average rainfall intensity (mm�h�1) Maximum rainfall intensity (mm�h�1)

1 2020/6/21 17 16.9 42.0
2 2020/6/21 69 19.0 66.0
3 2020/6/26 21 22.3 60.0
4 2020/7/10 12 11.0 36.0
5 2020/7/16 18 13.7 42.0
6 2020/7/26 33 23.6 60.0

Table 5
Values of the performance metrics for the irCNN models applied to real rainfall images from the surveillance camera (validation results).

Trial number MAE (mm�h�1) MAPE (%) R2 NSE KGE

1 3.02 15.78 0.91 0.91 0.94
2 3.21 17.17 0.91 0.91 0.95
3 2.87 15.38 0.94 0.93 0.93
4 3.10 16.71 0.92 0.92 0.96
5 3.28 17.66 0.92 0.92 0.96
Average 3.10 16.54 0.92 0.92 0.95

Fig. 10. Predictions vs observations based on the irCNN model applied to real
rainfall images from the surveillance camera (validation data).
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some variations can be observed, especially in the region with
relatively high rainfall intensities, the irCNN model predictions
match the observations well overall. It is observed that the perfor-
mance of the irCNN model when applied to real rainfall images is
deteriorated compared with the corresponding models developed
using the synthetic dataset (Tables 1, 2, 3, and 5). This is because:
① The noise in real rainfall images is typically more complex than
that in synthetic images due to the impact of the surrounding envi-
ronment, such as the brightness or the weather conditions; and
② using a linear interpolationmethod (Fig. 6) for estimating the rain-
fall intensity at the image capture time inevitably induces errors. Still,
the irCNN model exhibits a reasonable performance when handling
real rainfall images, as demonstrated in Tables 3 and 5.

To further explore the performance of the irCNN model in pre-
dicting rainfall intensity based on images from a new rainfall
Table 6
Values of the performance metrics for the irCNN models applied to independent rainfall e

Rain event for model validation Rain event for model training M

1 2, 3, 4, 5, 6 2
4 1, 2, 3, 5, 6 4
Average — 3
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event, five independent rainfall events are used for model training
and the remaining independent rainfall event is used for model
validation, with the results given in Table 6 and Fig. 11. As shown
in Table 6, rainfall events 1 and 4 are selected for model validation,
as ① the rainfall intensities of these two rainfall events are moder-
ate compared with other events; and ② the rainfall duration of
other events is relatively long, so they are used for model training
(model training often needs a sufficient number of data points). As
shown in Table 6 and Fig. 11, when trained and validated by inde-
pendent rainfall events, the irCNN model performance is worse
than when using randomly selected frames for model training
(Table 5 and Fig. 10). For example, the average values of MAE,
MAPE, R2, NSE, and KGE of the irCNN model trained and validated
using independent rainfall events are 3.78 mm�h�1, 20.23%, 0.81,
0.76, and 0.87, respectively. This result shows a slightly deterio-
rated performance compared with the results from the model that
was trained and validated using randomly selected rainfall images
(Table 5). A similar observation can be made when comparing the
results between Figs. 10 and 11.

The relative performance of the irCNNmodel when trained (and
validated) using images from independent rainfall events or using
randomly selected rainfall images is caused by the environmental
variation (e.g., brightness and wind conditions) over different rain-
fall events (this study uses only one camera with a fixed angle to
make videos). More specifically, the weather conditions during a
single rainfall event can remain similar throughout the rainfall pro-
cess, but can differ significantly among different rainfall events.
Therefore, the use of images from independent rainfall events
can increase the difficulty of model prediction. Still, in the worst
case, the irCNN model prediction has an MAPE of 21.90%, which
is still similar to the corresponding value presented by Jiang
et al. [34] (an MAPE of 21.80%), who used a decomposition-based
identification algorithm to estimate rainfall intensity. However,
the trained irCNNmodel is significantly more computationally effi-
cient than the method of Jiang et al. [34], as the proposed model
takes approximately 1 s to estimate the rainfall intensity for 100
vents with real rainfall images from the surveillance camera (validation results).

AE (mm�h�1) MAPE (%) R2 NSE KGE

.40 18.55 0.93 0.93 0.94

.35 21.90 0.69 0.60 0.80

.78 20.23 0.81 0.76 0.87



Fig. 11. Predictions vs observations based on the irCNN model applied to
independent rainfall events with images from the surveillance camera (validation
data).
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images while that of Jiang et al. takes 26.4 s to perform the same
task. This comparison highlights the great potential of the
proposed irCNN model for near real-time flood risk management.
In addition, the proposed irCNN can estimate rainfall intensity
based on images (frames) not only from a surveillance camera,
but also from other data sources such as smart phones. In compar-
ison, the method of Jiang et al. [34] can only be used to estimate
rainfall intensity based on rainfall videos from security cameras.
However, it should be noted that, when many different cameras
are used to collect rainfall images for the proposed irCNN model,
the camera types and video-making angles may also affect model
accuracy, in addition to the environmental conditions.
Fig. 12. Predictions vs observations (1 min time resolution) based on the irCNN
model applied to independent rainfall events with images from the surveillance
camera (validation data).
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It should be acknowledged that while a linear interpolation
method (Fig. 6) is used to approximate the rainfall intensity over
different times based on the rain gauge records (1 min of accumu-
lated rainfall depth), the real rainfall process may not be com-
pletely temporally linear with respect to intensity. To address
this issue, the mean of the rainfall intensity is computed based
on estimates from the irCNN model and is applied to all camera
frames within 1 min. Using this approach, the rainfall intensity
estimates of the two rainfall events (rainfall events 1 and 4 in
Table 6) with a 1 min resolution are presented in Fig. 12. The
MAE and MAPE values of these estimates are 2.55 mm�h�1 and
13.5%, which are significantly lower—that is, better than—the cor-
responding values in Table 6. This result indicates that using the
mean rainfall intensity estimate—that is, a 1 min time resolu-
tion—improves the accuracy of the irCNN model. In engineering
practice, a 1 min time resolution of the rainfall data is sufficient
to enable urban real-time flooding management and operation
[55].
6. Summary and conclusions

High-resolution spatiotemporal rainfall data in urban areas are
fundamental to the real-time management (i.e., prediction, opera-
tion, and evacuation) of urban flooding. While many approaches
are available to measure or predict rainfall intensity, including
ground rainfall stations, weather radar, and satellite remote sens-
ing, their rainfall measurements are either insufficient for the
required spatiotemporal resolution or unsatisfactory in terms of
accuracy. This paper proposed an image-based deep learning
model to measure rainfall intensity with high spatiotemporal reso-
lution. More specifically, a CNN model was developed (denoted as
the irCNN model) for which images collected from existing dense
sensors within rainfall events are the model inputs, and the corre-
sponding rainfall intensity represents the model outputs.

Two different rainfall data types were used to explore the per-
formance of the irCNN model in this study. Synthetic rainfall data
were generated to systematically investigate the irCNN’s ability in
theoretically modeling rainfall intensity under different model
development conditions such as different backgrounds and rainfall
diversities in the training data. Real rainfall images captured by
smart phones and a surveillance camera were then used to demon-
strate the irCNN’s practical utility. Based on the results, the main
findings are as follows:

(1) The results based on synthetic rainfall data show that the
irCNN model consistently provided an accurate rainfall estimate
with an MAPE below 5.0% if sufficient background and rainfall
event diversity were included in the training data. It was also
found that the performance of the irCNN model was significantly
affected by the background diversity of the images and by rainfall
event diversity.

(2) The irCNN model successfully provided rainfall intensity
estimates based on images captured by smart phones and a
surveillance camera (i.e., rainfall videos), thereby demonstrating
its great potential for engineering applications. The results based
on real rainfall images show that the irCNNmodel provided rainfall
estimates with an MAPE ranging between 13.5%–21.9% (with a
mean of 16.5%). This average performance exceeds the correspond-
ing accuracy (21.8% MAPE) of the decomposition-based identifica-
tion algorithm [34], which is currently the state-of-the-art
modeling technique. In addition, the proposed irCNN method
was significantly more computationally efficient (about 20 times
faster) than the decomposition-based identification algorithm
[34]. Finally, the method of Jiang et al. [34] can only use rainfall
videos to estimate rainfall intensity—that is, it cannot use still
images to estimate rainfall intensity, unlike the irCNN model.
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In summary, the proposed image-based deep learning model
was demonstrated to be efficient and effective in acquiring urban
rainfall data with high spatiotemporal resolution. The most impor-
tant feature of the proposed irCNN model is its low cost in acquir-
ing high spatiotemporal rainfall data in urban areas, as it uses
existing sensors to collect rainfall images. We consider that the
irCNN model provides a promising alternative to the other means
that are currently available for measuring urban rainfall intensity.
The high spatiotemporal data acquired by the model not only
facilitate real-time urban flooding risk management, but also pro-
vide an opportunity to understand how the changing environment
(i.e., due to climate change, urbanization, and the heat island
effect) affects the local urban hydrologic process.

We acknowledge that the wide application of the proposed
irCNN model can be challenging due to a number of factors. These
include ① the availability of rainfall images from various sensors
and the corresponding rainfall intensity values used for model
training; ② the transmission efficiency of rainfall images from
widely distributed sensors to the data center for processing the
irCNN application in near real-time; and ③ the quality of the rain-
fall images under various environmental conditions (e.g., daytime,
night, position of cameras under trees) and sensor conditions. Fur-
ther research is required to address the aforementioned issues and
improve the predictive capability of the irCNN model. In addition,
the uncertainty associated with different aspects of the proposed
method, as well as a comprehensive comparison over different
rainfall measurement models (e.g., Jiang et al. [34]), need to be
explored in the future. Another important future direction is to
incorporate the data from ground rainfall stations into the pro-
posed model framework, thereby further improving its accuracy
in estimating rainfall intensity. While temporal and spatial correc-
tions of rainfall intensities are difficult to quantify due to their vari-
ation over different storm events, their incorporation into the
proposed model framework is likely to improve the irCNN model’s
predictive performance. Therefore, this challenge is worth explor-
ing in the future.
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