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1. Introduction

Facilitated by cutting-edge information and communication
technologies (ICTs), smart manufacturing is emerging as an over-
whelming wave, reforming global manufacturing systems [1].
The ubiquitous connection and interoperability of manufacturing
resources can be achieved through the Industrial Internet of Things
(IIoT) [2,3], and the generated high volume, velocity, variety, verac-
ity, and value (5V) of big data can be cost-effectively utilized with
advanced data mining and deep learning techniques [4,5]. In this
situation, responding to the massive, dynamic, and personalized
customer requirements of mass personalization [6,7], the whole
manufacturing system can be governed with an ever-increasing
level of automation (i.e., ‘‘smartness”), approaching a so-called
‘‘Self-X” manufacturing network that is ‘‘self-aware, self-compar-
ing, self-predicting, self-optimizing, and self-resilient” [8].

Nevertheless, a huge gap remains between current technologies
and the ideal smartness level of a Self-X network. An attempt is
underway to emphasize cognitive intelligence in manufacturing
systems [9], which will allow machines to correctly understand,
interpret, and respond to humans’ behaviors and instructions in a
natural and timely manner. However, two main challenges have
been identified in the incorporation of cognitive intelligence within
industrial practices. One challenge is the lack of organization and
networking based on semantic information among massive and
heterogeneous manufacturing resources. This lack impedes knowl-
edge from flowing fluently through machining modules, informa-
tion systems, and stakeholders; it also obstructs the global
management and evolvement of industrial knowledge in manufac-
turing scenarios [10,11]. The other challenge is the incomprehen-
sion and absence of trust between machines and humans-in-the-
loop (i.e., humans directly involved inmachine–human interactions
and systems) [12], because it is usually not possible for amachine to
clearly communicate and persuasively explain to humans why it is
making such a prediction or decision with the input data, based on
its cognition and self-learning processes [13,14].

By organizing massive heterogeneous concepts with intercon-
nected nodes and defining their arbitrary semantic relations with
an ontology-based schema, the knowledge graph—especially the
industrial knowledge graph (IKG), which is a specialized knowl-
edge graph in an industrial scenario—holds promise for tackling
the abovementioned challenges, with its innate high expandabil-
ity and explainability [15]. Furthermore, as a key to this treasure
house of knowledge, the graph embedding (GE) technique
demonstrates strong capabilities to process complex semantic
meanings. While retaining the graphical structure in an IKG, the
GE technique represents nodes and edges with lower dimension
vectors, thereby enabling a succession of rapid and efficient
methods for concept representation, relation query, and knowl-
edge reasoning [16]. However, even though IKGs and GE have
been gradually recognized as the core for next-generation indus-
trial management information systems [17], practitioners still
regard them as a medium and tool for providing industrial infor-
mation and only focus on proposing theories and methods to
improve their technical performance [18]. Instead, this paper
takes a systematic perspective and emphasizes the necessity of
exploiting IKGs and GE to cognize every manufacturing workflow
and bridge the semantic gap between humans and machines. To
this end, a pathway empowered by IKGs and GE that introduces
more cognitive intelligence for cognitive mass personalization is
envisioned in Section 2. Section 3 then depicts three promising
IKG- and GE-enabled technologies in a Self-X cognitive manufac-
turing network, and Section 4 highlights the opportunities and
challenges in this field.
2. A pathway to cognitive mass personalization

Today’s manufacturing paradigm is rapidly moving toward
mass personalization to meet individualized on-demand
manufacturing in a more cognitive and Self-X manner, by
leveraging cutting-edge cognitive computing, IIoT, and big
data analytics techniques. This section briefly illustrates the
evolvement of manufacturing paradigms and then proposes
a pathway to achieve the cognitive mass personalization
paradigm.
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2.1. Evolvement of manufacturing system paradigms

Ever since the first industrial revolution, manufacturing has
evolved in several paradigms in terms of its production variety
(x-axis) and volume per model (y-axis), as shown in Fig. 1. The first
paradigm was craft production, in which designs were produced
for customers at a high cost and low production efficiency. Next,
the emergence of dedicated manufacturing lines in the second
industrial revolution introduced the paradigms of mass production
and lean manufacturing, in which the business model provided
very few types of products with higher efficiency and lower waste.
More recently, with the prevailing implementation of the
Internet/mobile Internet in the third industrial revolution, manu-
facturing systems with high agility, flexibility, and reconfigurabil-
ity, together with online configuration systems, have enabled
mass customization, in which customers can participate in the
design to obtain a customized product at an affordable cost in mass
efficiency [19]. Starting in 2010, with the ‘‘one-step-forward” inte-
gration of advanced manufacturing techniques (e.g., industrial
robots and three-dimensional (3D) printing) and advanced ICT
techniques (e.g., the IIoT and cloud services), the concepts of the
single-customer market and customer-made design are becoming
widely accepted as an ultimate goal of the fourth industrial revolu-
tion (i.e., Industry 4.0). We are now moving toward the paradigms
of mass personalization [20] and mass individualization [21].

Moreover, the digital capabilities of modern manufacturing sys-
tems are being empowered to transform in a step-wise fashion to
include cognitive capabilities [9]. Examples of these digital capabil-
ities include:
� Networking: the ability to connect various manufacturing
‘‘things” (e.g., multi-aspect stakeholders, cognitive machining
modules, traceable materials, digitalized manufacturing ser-
vices, and the cyber-physical environment) through communi-
cation networks;

� Analytics: the ability to configure hardware components to
sense and capture information with less human intervention;

� Intelligence: the ability to transform the data/information avail-
able into valuable insights and actionable directives [22].
Fig. 1. An evolvement pathway of manufacturing paradigms. 5C: connection, co

15
This situation is benchmarked with the 5C (connection, conver-
sion, cyber, cognition, and configuration) architecture model [23]
depicting automation levels (z-axis) in Fig. 1. Based on the prevail-
ing paradigm of mass personalization and inspired by the concept
of self-organizing networks [24], a promising paradigm of cogni-
tive mass personalization is anticipated. To achieve this paradigm,
it is necessary to embrace the next-generation manufacturing sys-
tem—that is, the Self-X cognitive manufacturing network, which
includes the following features:

(1) Self-configuration, which stands for automatic re-/config-
ured manufacturing resources that can fulfill on-demand require-
ments in a ‘‘plug-and-play” manner via standardized hardware
modules and software packages;

(2) Self-optimization, in which the manufacturing performance
is optimized as a result of automatically observing and reallocating
each manufacturing resource as a node and its correlated nodes;

(3) Self-adaptation, which aims to continuously monitor the
whole manufacturing process in order to proactively recognize
any variations and autonomously address latent disruptions with-
out human interference [23,25–27].
2.2. From cognitive computing to cognitive manufacturing

To achieve the cognitive mass personalization paradigm, cogni-
tive computing—as its key enabler—has received increasing atten-
tion in both academia and industry [28]. The IEEE Technical
Activity for cognitive computing defined it as ‘‘an interdisciplinary
research and application field, which uses methods from psychol-
ogy, biology, signal processing, physics, information theory, mathe-
matics, and statistics to constructmachines thatwill have reasoning
abilities analogous to a human brain” [29]. As a revolutionary artifi-
cial intelligence (AI) concept, cognitive computing can emulate the
human brain’s reasoning process [28]; thus, its development will
progressively promote the intelligence of Industry 4.0 toward the
level of automation known as cognitive manufacturing [30].

In essence, cognitive manufacturing includes human-level
information processing by means of cognitive computing as the
key enabler, in order to direct and evolve the manufacturing
nversion, cyber, cognition, and configuration; AM: additive manufacturing.



X. Li, P. Zheng, J. Bao et al. Engineering 22 (2023) 14–19
process toward cognitive mass personalization [31]. More
specifically, industrial data and knowledge collected from diverse
and dispersed multimodal resources (e.g., machine-sensed records
and human-generated rules) [32] will be thoroughly utilized to
create manufacturing values through rational or perceptual meth-
ods [29]. Among such methods, IKGs and GE, as promising rational
methods, can be exploited to establish an ever-learning and ever-
evolving knowledge management system in a graph-based manner
to form the cognitive manufacturing network [15]. Furthermore,
based on the all-inclusive and in-depth cognition of manufacturing
conditions at the semantic level, IKGs and GE will completely and
bidirectionally transfer acquired knowledge through appropriate
infographics, and hence bridge the semantic gap that lies between
the AI of operating machines and the intelligence of humans-in-
the-loop [12]. In this way, we will eventually achieve the Self-X
cognitive manufacturing network.
3. IKGs and GE enabling the Self-X cognitive manufacturing
network

An overview of the Self-X cognitive manufacturing network
enabled by IKGs and GE is depicted in Fig. 2. In this network (i.e.,
within the oval in the figure), all the manufacturing ‘‘things” can
be well-organized through multiscale, heterogeneous entities in
IKG nodes, and all their in-between semantic-rich connections
can be freely and completely established via GE-based computing.
Based on this network, several IKG- and GE-enabled techniques are
operatable, namely: ① multifaceted knowledge synthesis; ② a
‘‘know-how” to ‘‘know-why” transition; and ③ a semantic-based
ecosystem. Together, these techniques produce a human-compara-
ble industrial autonomy that bridges the semantic gap between
human intelligence and machine intelligence to achieve human–
machine co-evolvement, as elaborated below.

3.1. Multifaceted knowledge resources synthesis

The knowledge resources involved in the Self-X cognitive
manufacturing network must be multifaceted; that is, there must
Fig. 2. The IKG- and GE-enabled Self-X
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be multisource, multichannel, multiform, multimodal, multidisci-
plinary, multigranular, and multilingual types of knowledge
resources, as briefly listed in Table 1. To effectively exploit these
massive and complicated knowledge resources and offer appropri-
ate decisions and insights in a timely manner within the self-con-
figurating manufacturing process, a synthesis of knowledge, which
‘‘comprehensively evaluates and summarizes all available evi-
dence, explicitly provides refined and consistent understandings
of recognized entities and extracted relations,” and ‘‘dynamically
adjusts their unseen properties through continuous enrichment,”
is critical and inevitable [33,34].

Large-scale IKGs supporting novel GE techniques, may be the
most promising choice for storing, processing, and digesting these
multifaceted knowledge resources for the Self-X cognitive manu-
facturing network. As several domain-specific ontologies and
industrial taxonomies have already been predefined and estab-
lished for typical manufacturing scenarios with clarified standards
and specifications [13,15], fine-tuning the pretrained embedding
models with prior knowledge and few-shot datasets will be the
mainstream. More specifically, inspiring attempts at GE-enabled
IKG-based knowledge synthesis have involved on open informa-
tion extraction for schema semi-auto construction [35]; complex
named-entity recognition (especially discontinuous entities,
nested entities, and overlapping entities) [36]; end-to-end entity-
relation joint extraction [37]; multinary relation extraction (i.e.,
defined on more than two entities) [38]; and representation learn-
ing for multimodal contents [39]. With these novel approaches, it
is expected that the time consumed in domain-specific schema
engineering and knowledge graph completion can be significantly
reduced from multiple weeks to several days. The quality of IKGs
will also be improved, with fewer duplicated nodes but more syn-
thesized relations and semantic-rich properties, thus fulfilling the
requirements for Self-X cognitive manufacturing.
3.2. A transition from ‘‘know-how” to ‘‘know-why”

Trust is a major gap between human intelligence in performing
manufacturing tasks and machine intelligence in operating
cognitive manufacturing network.



Table 1
Multifaceted types of knowledge resources in the Self-X cognitive manufacturing
network.

Multifaceted
knowledge resources

Typical examples

Multisource
resources

Digital twins, CAx (CAD/CAE/CAM/CAPP) systems,
supporting knowledge bases/rule bases, open-access
repositories, domain experts

Multichannel
resources

Machine cognition, self-learning by AI systems,
human regulation

Multiform resources Decision trees, computational algorithms, taboos and
constraints, extracted features in photos and videos,
frequent data patterns

Multimodal resources Linguistic, symbolic, pictorial, algorithmic, virtual
resources

Multidisciplinary
resources

Mechanics, materials, electronics, informatics,
logistics, ergonomics

Multigranular
resources

Issue–topic–paradigm level; machine–shopfloor–
enterprise level; sentence–paragraph–document
level

Multilingual
resources

Human languages (e.g., English, Chinese); computer
numerical control languages (e.g., STEP-NC, function
block diagram); general-purpose programming
languages (e.g., Python, JavaScript)

CAx: computer aided x; CAD: computer aided design; CAE: computer aided engi-
neering; CAM: computer aided manufacturing; CAPP: computer aided process
planning; STEP-NC: standard for the exchange of product data for numerical control.
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machines [40]. For auto-generated ‘‘know-how” solutions (e.g.,
self-configuration plans, self-adjusting behaviors, and self-opti-
mizing suggestions), if sufficient and convincing ‘‘know-why”
explanations are absent, the cognitive smartness expressed by
Self-X cognitive manufacturing will never be truly understood
and accepted by the humans-in-the-loop [41]. To this end, IKG
and GE techniques can be leveraged to generate reliable and per-
suasive explanations for the deployed machine learning models,
thereby promoting human–machine trust from the machine side.
Inspired by Molnar [42], two generic ways of enhancing the expla-
nations given by machines are promising, namely ‘‘post-hoc expla-
nations and intrinsic explanations.”

A post-hoc explanation is generated through IKG and GE tech-
niques after the usual machine learning process, and aims to iden-
tify the most robust combination of classifiers that derives the
same prediction results as a well-trained AI model. These classi-
fiers are formed according to the rules and factors stored in IKGs,
and are thus able to offer an approximate but knowledge-based
explanation. Although the logical inferences and decision models
behind post hoc explanations are somewhat empirical, they are
easy for human experts to understand and validate [43]. Hence,
this approach is quite suitable for some cognitive manufacturing
scenarios in which ① prior knowledge and historical cases are
fairly abundant; ② an end-to-end learning model is available to
be leveraged; and ③ reasonably high accuracy and stability in pre-
diction can be achieved, such as real-time assessment and rapid
self-adjustment in processing quality control.

An intrinsic explanation also relies on the GE-based representa-
tion of the nodes of concepts and edges of relations stored in IKGs;
however, it uses these techniques during the machine learning
process. More specifically, an IKG-enabled reinforcement learning
(RL) method is plausible [44]. For a novel manufacturing task, prior
rules stored in an IKG can be queried and retrieved with a GE simi-
larity-based computation. These rules explicitly define the initial
configuration for constructing the RL model, which includes states
(i.e., the decomposition of manufacturing tasks), actions (i.e., avail-
able manufacturing features and processes), and rewards (i.e., the
priority for satisfying goals). As autonomous agents in RL gradually
learn the policies of maximizing rewards, the semantics and logics
(i.e., optimal strategies under manufacturing scenarios) behind the
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machines’ pursuit of the best manufacturing solution can be pro-
vided in a more human-understandable way. Therefore, for some
cognitive manufacturing scenarios that usually require a break-
through to the pre-set in the manufacturing network, such as pro-
duction replanning and logistics rescheduling, adopting an
intrinsic explanation is recommended.
3.3. A semantic-based ecosystem underlying human–machine
symbiosis

Human–machine symbiosis, which allows humans and machi-
nes to form intelligent teams to collectively sense, reason, and
act in order to respond to incoming manufacturing tasks and con-
tingencies, is an ideal formation for future smart manufacturing.
However, due to a lack of underlying information ecosystems that
openly and seamlessly integrate with all sorts of workflows in the
manufacturing process, the information silo that widely exists
among current management information systems (e.g., computer
aided x (CAx), manufacturing execution system (MES), enterprise
resource planning (ERP), product lifecycle management (PLM),
supply chain management (SCM), and customer relationship man-
agement (CRM)) [45] will reoccur in the Self-X cognitive manufac-
turing scenario. This issue will critically disturb the timely, free,
and fully connected communication and cooperation among stake-
holders, smart machines, tools, and other digitalized manufactur-
ing resources in the manufacturing network [10].

To lay a solid foundation for this future-proofing concept, an
ecosystem facilitated by IKG and GE techniques is emphasized in
order to provide a semantic-based organization and a translatable
linkage among all the manufacturing ‘‘things.” In line with the
well-accepted edge-cloud architecture and its orchestration in
the collaborative industrial environment [46], semantic meanings
within human-generated requirements and machine-perceived
contexts are extracted and encoded with specifically fine-tuned
embedding models deployed in the edge layer, while a comprehen-
sive process of disambiguation, synthesis, and reasoning is per-
formed in the cloud layer, based on the multi-hop semantic
relations stored in the IKG. The semantic-rich solutions are then
separately dispatched and synchronized to all the elements
involved in the manufacturing network, via translatable protocols
enabled by GE-based similarity computing. In this way, a seman-
tic-based ecosystem can be established, with the information silo
largely eliminated and without the generation of high data redun-
dancy or the consumption of massive computing resources. Closer
human-to-machine and machine-to-machine collaborations will
thus be ensured for the pursuit of human–machine symbiosis.
4. Opportunities and challenges

Enabled by IKG and GE techniques, multiple opportunities for
the envisioned Self-X cognitive manufacturing network lie ahead,
including:

(1) Ubiquitous semantic connections. With an IKG-based
organization and GE-based management of massive heterogeneous
entities, all manufacturing ‘‘things” can be interlinked and interop-
erated in the manufacturing network, with semantic-rich relation-
ships between them;

(2) Human-comparable industrial autonomy. Devices, equip-
ment, businesses, and production systems can operate themselves
as well as—or even better than—the gold standard set by a human
expert’s decisions by relying on GE-aided multi-hop querying and
in-depth reasoning, based on abundant knowledge resources;

(3) Human–machine co-evolvement. As the semantic gap is
bridged by IKGs and GE, human stakeholders will be able to break
through their original thought patterns with subversive insights
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identified by cognitive machines. At the same time, machines will
comprehend humans’ evolving requirements to proactively
improve their performance in the manufacturing process.

Nevertheless, complexity and uncertainty will remain as the
main challenges for the IKG- and GE-enabled cognitive mass per-
sonalization manufacturing paradigm. Particular challenges
include:

(1) Common sense beyond manufacturing scenarios. Human
definitions and understanding of natural things and fundamental
rules are insufficient yet difficult to formulate, which may cause
the highly sophisticated manufacturing system to unexpectedly
fail under certain naive problems;

(2) In-depth motivation for human factors. Although neuro-
science has revealed some initial cognitive mechanisms through
investigations of brain activities, we still lack a complete under-
standing of deeply tacit types of human knowledge (e.g., inspira-
tion, intentions, and emotional feelings), which used in required
to construct IKGs and train GE models; this lack will impact the
self-directed scheduling, decision-making, evaluation, and opti-
mization of human-involved processes.

To this end, we call for more interdisciplinary research (e.g.,
information theory, mechatronics, psychology, neuroscience,
mathematics, and statistics) to further refine and innovate the
exploitation of IKG and GE techniques for a future of ever-smarter
manufacturing.
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