
Engineering 22 (2023) 60–70
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Intelligent Manufacturing—Article
Flexible Resource Scheduling for Software-Defined Cloud
Manufacturing with Edge Computing
https://doi.org/10.1016/j.eng.2021.08.022
2095-8099/� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: lanshulin@ucas.ac.cn (S. Lan).
Chen Yang a, Fangyin Liao b,c, Shulin Lan d,⇑, Lihui Wang e, Weiming Shen f, George Q. Huang g

a School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China
b School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
c School of Mathematics and Computer Science, Yan’an University, Yan’an 716000, China
d School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
eDepartment of Production Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden
f State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
gDepartment of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong 999077, China

a r t i c l e i n f o
Article history:
Received 17 December 2020
Revised 12 August 2021
Accepted 12 August 2021
Available online 25 November 2021

Keywords:
Cloud manufacturing
Edge computing
Software-defined networks
Industrial Internet of Things
Industry 4.0
a b s t r a c t

This research focuses on the realization of rapid reconfiguration in a cloud manufacturing environment to
enable flexible resource scheduling, fulfill the resource potential and respond to various changes.
Therefore, this paper first proposes a new cloud and software-defined networking (SDN)-based manufac-
turing model named software-defined cloud manufacturing (SDCM), which transfers the control logic
from automation hard resources to the software. This shift is of significance because the software can
function as the ‘‘brain” of the manufacturing system and can be easily changed or updated to support fast
system reconfiguration, operation, and evolution. Subsequently, edge computing is introduced to com-
plement the cloud with computation and storage capabilities near the end things. Another key issue is
to manage the critical network congestion caused by the transmission of a large amount of Internet of
Things (IoT) data with different quality of service (QoS) values such as latency. Based on the virtualization
and flexible networking ability of the SDCM, we formalize the time-sensitive data traffic control problem
of a set of complex manufacturing tasks, considering subtask allocation and data routing path selection.
To solve this optimization problem, an approach integrating the genetic algorithm (GA), Dijkstra’s short-
est path algorithm, and a queuing algorithm is proposed. Results of experiments show that the proposed
method can efficiently prevent network congestion and reduce the total communication latency in the
SDCM.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cloud manufacturing (CMfg) [1] virtualizes manufacturing
resources and capabilities and builds an ultralarge shared pool of
virtual resources that are delivered as services to consumers. This
framework leverages new generation information and communi-
cation technologies (ICTs) and modern manufacturing technologies
to develop the manufacturing industry. A cloud center usually has
powerful storage, and networking and computing resources; how-
ever, the centralized processing or resource management in the
cloud may lead to bottlenecks and large delays [2].
Edge/fog computing, a distributed computing paradigm that
places computation and storage resources closer to the end things,
can strengthen and complement CMfg to provide low latency, loca-
tion awareness, mobility support, and real-time analytics [3–5]. As
shop-floor production jobs are usually time-sensitive and involve
proprietary information, real-time data regarding shop-floor tasks
and objects can be processed at the edge nodes instead of being
sent to the remote cloud. This framework can not only avoid net-
work congestion but also facilitate real-time response and data
protection. Thus, the utilization of edge/fog computing in CMfg
should be explored.

Furthermore, resource scheduling plays a key role in CMfg by
utilizing the resources integrated and pooled in the cloud to fulfill
customer demands. Appropriate resource scheduling can increase
the efficiency, reduce the resource consumption, and empower

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2021.08.022&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2021.08.022
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lanshulin@ucas.ac.cn
https://doi.org/10.1016/j.eng.2021.08.022
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng

C. Yang, F. Liao, S. Lan et al. Engineering 22 (2023) 60–70
CMfg to deliver services with a high quality of service (QoS). In
cloud computing, resource scheduling refers to the efficient assign-
ment of computing, and network and storage resources, although
resource scheduling in the manufacturing domain is primarily
focused on allocating tasks to production machines to perform dif-
ferent types of production tasks. Many factors are driving the deep
integration and exploration of research in the two communities
[3]. Currently, two main limitations must be overcome to achieve
high manufacturing efficiency and flexibility in the era of the
Internet of Everything [6] and personalized products [7]:

(1) In manufacturing processes, machine tools, conveyors, and
industrial robots are statically preconfigured and integrated in pro-
duction lines [6], while the control software is closely integrated
with the robot hardware that executes the movement. Conse-
quently, it is time-consuming and costly to reconfigure, deploy,
optimize, and scale factory automation to perform large-variety
and small-volume manufacturing [8] and manage the various dis-
turbances [9]. These drawbacks may also impede the implementa-
tion of more effective scheduling due to the static structure and
configuration. However, structural changes (system reconfigura-
tion) can be introduced to optimize the resource efficiency. In this
context, separating the control software and executive hardware in
the manufacturing system can enable fast system reconfiguration
and reorganization for optimal scheduling.

(2) The widespread deployment of sensors and pervasive net-
working of manufacturing things enable the generation, collection,
and transmission of manufacturing big data in the manufacturing
system network. The existing research has focused on connecting
things and makes decisions based on real-time data of the things
[5]. However, with the increasing number of sensors and net-
worked things, the large amount of heterogeneous raw data (zetta-
bytes in the future) generated from various sources (e.g., numerous
production machines) may lead to critical network congestion and
hamper the overall quality of network services. Edge computing
must be introduced to suitably clean and combine data at different
levels to reduce the data traffic in the network. Moreover, the pat-
tern of data traffic is not stable because manufacturing tasks are
allocated to different production machines and generate different
data traffic on the network; therefore, efficient collaborative pro-
duction requires flexible control of data streams among machines
in networks [10]. Thus, software-defined networking (SDN) featur-
ing flexible networking should be explored in network traffic con-
trol, considering time-sensitive data transmission, to reduce the
communication delay and increase the collaboration efficiency
[11]. In addition, task allocation and flexible data flow control must
be considered in scheduling.

The contributions of this work can be summarized as follows.
To address the abovementioned issues, a new SDN-based model
of CMfg [12], including the definition, architecture, and principle,
is proposed. This model can help eliminate the tight vertical and
horizontal coupling of manufacturing resources and realize flexible
resource scheduling in the CMfg environment. From the network
perspective, the traditional CMfg model can no longer meet the
data communication requirements associated with pervasive sens-
ing, data interaction, and large-scale collaboration of manufactur-
ing things. In this paper, a new model is introduced to solve the
network traffic control problem in a manufacturing system for
complex manufacturing tasks. Based on the abstraction and
virtualization functions of the software-defined cloud manufactur-
ing (SDCM), we formalize the time-sensitive data traffic control
problem considering subtask allocation and data routing path
selection. To solve this optimization problem, the genetic algo-
rithm (GA), Dijkstra’s path algorithm, and a queuing algorithm
are integrated and used. The experimental results demonstrate
the effectiveness of the integrated approach in satisfying the time
constraints and reducing the total communication latency.
61
The remaining paper is organized as follows. Section 2 reviews
the relevant literature; Section 3 describes the concept and refer-
ence architecture of the new model; Sections 4 and 5 formalize
the traffic control problem and introduce the problem-solving
approach; Sections 6 and 7 describe the experiments and present
the concluding remarks.
2. Related work

2.1. Cloud-based manufacturing

The potential of cloud computing in manufacturing was first
explored under the CMfg terminology [12]. Ren et al. [13] pre-
sented key characteristics of CMfg frameworks and proposed a
four-process multiagent collaborative model that first clarified
the complex operational mechanisms of CMfg cyber–physical sys-
tems. Simeone et al. [14] developed an intelligent decision support
tool based on a manufacturing service recommendation system to
recommend tailored manufacturing solutions to customers
through a CMfg system. Mourtzis et al. [15] proposed a cloud-
based knowledge-enriched framework that consisted of a monitor-
ing system, a knowledge-reuse mechanism, and an optimization
system to increase the machining efficiency. Liu et al. [16] pro-
posed a framework based on deep reinforcement learning for
scheduling in CMfg and demonstrated its effectiveness for online
single-task scheduling. However, cloud-centric manufacturing
architectures cannot support real-time responses from the cloud
for shop-floor applications at the network edge because of the
large distance between the cloud and shop-floor things and the
unpredictable network performance [3]. Queiroz et al. [17] used
a multiagent systems approach, rather than centralized cloud-
based artificial intelligence (AI) approaches, to design cyber–
physical agents that could embed different data analysis capabili-
ties and support the decentralization of intelligence. In this way,
fog/edge computing [18] can strengthen cloud-based manufactur-
ing with fast edge processing capabilities [4,5]. He et al. [19] pro-
posed an evolution-oriented microservice programming
framework in cloud–edge environments to enable self-adaptation
and the optimized evolution of the service system. Other collabo-
rative cloud–edge processing approaches for shop-floor data using
AI algorithms were proposed for data-driven smart diagnosis ser-
vices [20,21]. Novel industrial AI models such as semi-supervised
parallel deep factorization machine (SS-PdeepFM) model [20] and
the wide–deep-sequence model [22] were proposed to establish
deep neural networks for heterogeneous industrial data with low
quality and considerable noise. For example, the wide–deep-
sequence model [22] first realized the cross-domain integrated
learning of multidimensional heterogeneous industrial data with
hidden coupling relationships in the Industrial Internet of Things
(IoT). Ren et al. [23] proposed a novel cloud–edge lightweight neu-
ral network model to enhance the algorithm time efficiency with
no loss in the prediction accuracy. Ren et al. [24] proposed a
generative-coding group evolution (GCGE) algorithm with collabo-
rative cloud–edge intelligence to enhance the efficiency and stabil-
ity in the large-scale task assignment associated with the Industrial
IoT. However, the scheduling of network resources, which is vital
for seamless human–machine and machine–machine collabora-
tion, has not yet been extensively examined in the context of
cloud-based manufacturing. For complex manufacturing tasks,
subtask allocation can affect data traffic patterns among network
links and should be properly managed to facilitate efficient collab-
orative manufacturing. Against this backdrop, edge computing that
can provide rapid responses to manufacturing things in the work-
shop with computing, data caching, and data forwarding capabili-
ties should be explored in flexible resource scheduling.

Fig. 1. Disrupting the vertical integration of software and hardware.

C. Yang, F. Liao, S. Lan et al. Engineering 22 (2023) 60–70
2.2. Software-defined network

The pervasive connection, high data throughput, and volatile
traffic patterns among manufacturing things necessitate fine-
grained network resource management, and SDNs represent a
promising solution as they can separate the control plane and data
plane in the network and logically centralize the control through a
remote SDN controller [25]. The primary goal of SDNs is to increase
the flexibility of networking [25]. Hu [26] proposed a system archi-
tecture for software-defined Industrial IoT to ensure the software
definability of key architectural elements. Salahuddin et al. [27]
proposed a roadside unit cloud as a vehicular cloud for the compu-
tational and communication infrastructure. The deep programma-
bility of SDN was leveraged to dynamically reconfigure the services
and the corresponding data forwarding information to efficiently
serve the underlying demand from the vehicle grid. Naeem et al.
[28] proposed a novel model-free SDN-based adaptive deep rein-
forcement learning framework based on a fuzzy normalized neural
network to address the issue of congestion control in IoT networks.
These studies provided a valuable basis for research on smart, effi-
cient, responsive, and robust CMfg frameworks. However, from the
overall standpoint, the existing methods pertaining to CMfg cannot
support fine-grained network resource scheduling (for efficient
collaborative manufacturing) or function programmability, which
are critical for system agility and fast responses [3]. Thus, a new
trend is to combine the advantages of SDN, edge computing, and
cloud computing to realize more effective network control and
management [2].
3. Software-defined cloud manufacturing

3.1. Definition

Manufacturing, which was constrained by hardware and logis-
tics in the past, is presently being reshaped into an activity defined
mainly by software [29]. With the introduction of IoT and cyber–
physical systems, physical things are being networked and trans-
formed into cyber-entities, indicating a shift to the digital world.
Software, rather than hardware, has become the dominant part
of many systems [5,11]. Against this background, SDCM is pro-
posed, which can serve as a new foundation for the future manu-
facturing sector.

SDCM is a new model of CMfg that integrates SDN and other
newly emerging ICTs. The model can be leveraged through the
software-defined (programming) way, to describe, simulate, inte-
grate, configure, empower, manage, execute, accelerate, and inno-
vate manufacturing processes and other related elements in
manufacturing activities.

As shown in Fig. 1, the SDCM can act as a new model that can
use virtualization technologies to disrupt the tight vertical integra-
tion of hardware and software, separate the control logic of manu-
facturing resources from the underlying hardware resources, and
facilitate the logical centralization of hardware control. Through
these features, the model can realize software based programming
of the manufacturing resources or systems. The SDCM has several
advantages as follows.

First, the SDCM can flexibly combine and separate physical
manufacturing resources into independent end-to-end logical
slices through its core enabling technology (resource virtualization
and function programmability). Subsequently, the model creates
an open programming environment for engineers. Through the
functional programmability, different levels of software develop-
ment kits (SDKs) can be provided and utilized to operate the
resources at different hierarchical system levels [1]. This setting
can increase the agility required to accelerate the upgrade and
62
operations of the manufacturing system and facilitate resource
sharing and utilization.

Second, in the SDCM framework, the integrated manufacturing
resources can be networked and organized in a user-centric, fast,
flexible, and collaborative way by programming the control and
management logic in software controllers. The controllers can
respond in time to both external and internal disturbances and
manage manufacturing processes in an efficient and effective
way. Furthermore, consumers can write codes that can automati-
cally access, configure, orchestrate, and manage virtual manufac-
turing resources to realize the desired functions and capabilities.

Third, the SDCM system is smarter because the intelligence
(control logic) that oversees automation hardware is transferred
from hardware to software, and software can progressively learn
to become smarter through information regarding the manufactur-
ing system and environment. Therefore, smart manufacturing
becomes a continuous process that can be autonomously updated,
enhanced, and improved through data and intelligence.

3.2. Reference architecture

A reference architecture for SDCM is proposed through the
incorporation of SDN [11] to make the cyber–physical manufactur-
ing system programmable and controllable via software (Fig. 2).

The first layer is the abstraction layer of physical things. Manu-
facturing machines/resources function as cyber–physical interfaces
can be programmed in the cyberspace to provide various function-
alities in the physical world. These basic objects, such as robots and
sensors, on the network edge are named atomic hardware. The IoT
and smart SDCM can promote the digitalization of such atomic
hardware, and software can be used to enhance the implementa-
tion of smart decisions and realize customized and personalized
production.

The second layer is the smart gateway (GW) layer. GWs may be
either embedded computers that can oversee and control atomic
hardware or edge computing nodes that can place computation
and data storage facilities closer to the location in which they are
needed to reduce the response time and bandwidth for nearby data
sources or shop-floor things [35]. To promote unified resource
management, virtualization technology, and service-oriented
architecture can convert heterogeneous atomic hardware through
abstraction and GW layers into software-defined virtual entities
(SDVEs) in the cyber world.

The third layer is the SDVE layer. This layer consists of SDVEs
with application programming interfaces, programming models,
libraries, and development tools. Each SDVE usually has limited
hardware resources and should thus be able to manage its task list
in a well-organized manner. As such SDVEs can be flexibly defined,
programmed, and organized, complicated control logic for various
goals can be realized. For example, by building a layer of robot
operating systems (OS) on the production robot, on which

Fig. 2. Reference SDCM architecture. SDVEs: software-defined virtual entities; GWs: smart gateways; OS: operating system.

C. Yang, F. Liao, S. Lan et al. Engineering 22 (2023) 60–70
personalized modules supporting customized production can be
deployed, the openness and evolvability of the robot can be
improved.

The fourth layer is the SDN layer. SDN makes networks more
programmable and flexible by separating the control plane from
the data plane. On this layer, the SDN controller supervises the vir-
tual network and dynamically adjusts the resource allocation to
meet the diverse QoS requirements of manufacturing applications.
The network of manufacturing things (i.e. SDVEs) can be flexibly
configured to facilitate efficient interactions and collaborations
according to application requirements, such as to configure suit-
able paths among parts (of the end product) and industrial robots.

The fifth layer is the ultraflexible manufacturing service layer.
To organize the SDVEs and form an efficient collaborative network
for complicated assignments, the SDN management renders the
network configuration more efficient and enhances the network
performance among virtual resources. This framework can satisfy
the industrial communication needs for different QoS values and
promote efficient collaborations among the SDVEs. Moreover, the
network of SDVEs can be monitored and flexibly programmed to
meet the application requirements. In addition, this layer provides
SDKs to develop platforms or applications.

The sixth layer is the manufacturing application layer. On this
layer, the application software can be programmed based on plat-
form SDKs or ultraflexible manufacturing services by stakeholders
such as engineers and end users to jointly fulfill manufacturing
tasks.

These six horizontal layers involve three significant aspects. The
first aspect pertains to the industrial big data collected from work-
shops, factories, supply chains, and logistics systems by IoT devices
or from the internet. Using AI technologies, big data is utilized to
obtain knowledge or information to ensure that smart decisions
can be made for different levels of applications. Real-time data pro-
cessing is implemented in embedded computing units of manufac-
turing machines or edge computing nodes to achieve faster
responses, whereas offline big data analytics is conducted in the
cloud to acquire global and comprehensive views and insights.
The second aspect, pertaining to security and privacy, is crucial
in the highly connected and open world because ubiquitous sens-
63
ing, connection, and control may lead to critical issues regarding
reliability, security, and privacy. Hackers may exploit bugs to per-
form widespread cyber-attacks [30]. As industrial big data are col-
lected and stored in the cyber world, these aspects may lead to
privacy and data security problems. Thus, industrial systems and
data should be protected with measures considering the balance
between efficiency and privacy. Finally, device–edge–cloud collab-
orative processing is essential in the SDCM, not only because out-
standing cloud storage and computing abilities are needed to
analyze big data and support optimal decision-making in the
manufacturing processes, but also because fog/edge computing
nodes (GWs) [4] near the end things can help strengthen, extend,
and complement the SDCM with low latency, location awareness,
mobility support, and real-time analytics [31]. Therefore, edge–
cloud collaborative processing approaches are necessary to deliver
diverse services for end things or user tasks.
3.3. Flexible resource scheduling for the SDCM

Supported by the architecture, the manufacturing, computing,
and network resources can be virtualized and dynamically config-
ured to be end-to-end logic units, according to the industrial
requirements. This framework lays a foundation for disrupting
the close coupling and collaboration between resources to ensure
that the SDVEs and virtual networks can be flexibly organized, con-
figured, and combined to form an efficient manufacturing system.
This setting helps release the resources from the statically precon-
figured manufacturing system and exploit the potential of
resources with a larger scheduling space. For resource scheduling
optimization, the real-time status of manufacturing devices and
things is monitored and recorded as industrial big data, which
are processed and analyzed through device–edge–cloud comput-
ing. The results can be used to make smart decisions regarding
the dynamic configuration of collaborative logic units. For cus-
tomized and personalized production orders, the SDVEs can be
rapidly programmed and repurposed for special functions. The vir-
tual networks enabled by the SDN can also be programmed and
configured according to the communication requirements of the

Fig. 3. Topology of a manufacturing system.

C. Yang, F. Liao, S. Lan et al. Engineering 22 (2023) 60–70
collaborative SDVEs. Thus, highly flexible resource scheduling can
be realized.

Overall, the SDCM can satisfy the demands of the future manu-
facturing industry for speed, scale, flexibility, and openness.
We apply the SDCM to solve the traffic congestion problem in a
manufacturing system.

4. Problem formulation

4.1. Problem description

As more manufacturing things and machines become connected
to form a collaborative network, the data interaction between any
two objects necessitates flexible and fine-grained network
resource scheduling to achieve a high collaboration efficiency
and low communication latency. Therefore, the SDCM is adopted
to separate the data plane and control plane in the manufacturing
system network. For such flexible networking environments, it is
beneficial to develop a more effective network resource allocation
method on the control plane to ensure low-latency data transmis-
sion from a global perspective.

4.2. Problem formulation

A complex manufacturing task can be referred to as a CMT. A
CMT includes multiple manufacturing processes, each of which
can be completed on a certain type of manufacturing machine.
Each atomic manufacturing machine can be abstracted, virtualized
(according to its operation logic and function), and networked to
be an SDVE (i.e., a manufacturing unit (MU)). To ensure efficient
collaboration in performing tasks, data and information must be
transmitted through the SDN among manufacturing resources
(e.g., MUs and edge computing nodes/GWs).

4.2.1. MUs for different types of tasks
In an SDCM system, different MUs can sequentially or simulta-

neously perform different types of manufacturing processes.
Therefore, for a complex task consisting of multiple processes
denoted by CMT ¼ a0; a1; :::; amf g (where m is the number of pro-
cesses), any process denoted by ai i ¼ 1; 2; :::; mð Þ corresponds to a
specific category pi 2 P ¼ type1; type2; :::; typeLf g (where L is the
number of process types), and the manufacturing process of each
category can be accomplished by one or more MUs that can per-
form this type of process.

The set of actuators (manufacturing machine) can be denoted as
SDVESet = {c1, c2, . . ., cL}, and each element of the set denoted by cj

(j = 1, 2, . . ., L) corresponds to the set of MUs cj ¼ hj
1; h

j
2; :::; h

j
Nj

n o
(where Nj is the number of such units), which can implement a
process of the typej category.

Therefore, when selecting the execution unit for each process ai
(i = 1, 2, . . .,m) in the manufacturing task, the search should be con-
ducted in the corresponding set of MUs cj* according to pi (assum-
ing pi = typej*).

4.2.2. Network communication model
For a complex manufacturing task CMT = {a0, a1, . . ., am} and

execution unit for each process (with the MU assigned for ai
defined as hi), the procedure to fulfill a CMT can be represented
as a pair of dual numbers: {(h0 h1), (h1 h2), . . ., (hm-1 hm)}, including
(m + 1) processes. These processes are completed on (m + 1) MUs. A
total of m information transmissions occur during the whole pro-
cess since the necessary data and information must be transmitted
between two adjacent processes.

In an SDCM system, the communication network connects the
MUs and GWs, and the corresponding topological graph can be
64
denoted as GRAPH � (V, E), in which V is the set of network nodes
(including MUs and GWs), and E is the set of connections (edge)
among network nodes. As shown in Fig. 3, A, B, C, D, I, and J are
MUs, while E, F, G, and H are GWs. Assuming the presence of a
wireless connection or wired cable for data transmission between
two interconnected nodes, the resulting wireless, wired or hybrid
network can be virtualized (as SDN) to provide network slices to
manage the diverse sets of requirements for networking. In other
words, the network resource is time slotted as network slices to
be utilized for fine-grained network resource scheduling, an idea
similar to ‘‘time division multiplexing.” Moreover, the data routing
path can be selected and controlled by the SDCM network to
reduce communication latency.

Before being transmitted in a channel, the data are broken
down into similar structures known as packets. The packet trans-
mission time in communication channel k (edge k in graph GRAPH)
is denoted as sk. A wider channel bandwidth corresponds to a
higher rate of data transmission and smaller sk. Therefore, the total
transmission time of data dt(l) with l data packets in the channel is
Dt ¼ l � sk.

For a manufacturing task set CMTSet = {CMT1, CMT2, . . ., CMTn},
the start time of the jth process of the ith CMT is tsi;j (that is, the
instant at which the MU assigned to perform the jth process
receives the required data), the MU that executes the jth process
is hi,j and the end time at which the process is completed is tei;j.
The generated useful data when the jth process is completed must
be transmitted to the MU hi,j+1 for the next ((j + 1)th) process.

If the selected routing path of data dt(li,j) (including li,j data
packets) transmitted from the MU hi,j to hi,j+1 is

v
�
0 hi;j
� �! v

�
1 ! :::! v

�
r�1 ! v

�
r hi;jþ1
� �

, the data pass r � 1ð Þ r � 1ð Þ
intermediate nodes. The arrival and departure times of

the data in every node in the selected path are t
�in
p and t

�out
p (p = 0,

1, 2, . . ., r), respectively. Therefore,

tei;j ¼ tsi;j þ DTi;j ð1Þ

t
�in
0 ¼ tei;j ð2Þ

tsi;jþ1 ¼ t
�in
r ð3Þ

t
�out
p ¼ t

�in
p þ Dt

�del
p ð4Þ

t
�in
pþ1 ¼ t

�out
p þ Dt

�pro
p ¼ t

�out
p þ li;jDskp p ¼ 0; 1; . . . ; r � 1ð Þ ð5Þ

where DTi;j is the execution time of the jth process of the ith CMT;

Dt
�del
p is the waiting time when the data dt(li,j) (to be transmitted)

C. Yang, F. Liao, S. Lan et al. Engineering 22 (2023) 60–70
queues up in node v
�
p; specifically, when the data dt(li,j) arrive at

node v
�
p, they must wait in the queue of data to be transmitted

and can only be transmitted after the data in front have been trans-

ferred in this channel; Dt
�pro
p is the total transmission time of the

data dt(li,j); skp represents the transmission time when a single data

packet is transmitted from node v
�
p to node v

�
pþ1. Therefore,

Dt
�del
p ¼

Xnseqp
q¼1

l
�res
q skp þ D

�
p ð6Þ

where nseqp represents the number of data packets queuing in node

v
�
p ahead of data dt(li,j); l

�res
q represents the number of remnant data

packets of the qth data queuing up; and D
�
p represents the rest time

for the data packet transmission to be completed when data dt(li,j)

arrive at node v
�
p, 0 � D

�
p < skp .

The value of tsi;jþ1 can be calculated using Eqs. (1)–(6), tsi;j, and
transmission path of data dt(li,j):

tei;j ¼ tsi;j þ DTi;j

tsi;jþ1 ¼ tei;j þ
Pr�1
p¼0

li;j � skp þ
Pnseqp

q¼1
l
�res
q skp þ D

�
p

 !8><
>: ð7Þ

Furthermore, assuming tsi;0 ¼ 0 (i ¼ 1;2; :::;n), we can calculate
the execution time tsi;j and tei;j (i ¼ 1;2; :::;n; j ¼ 1;2; :::;mi) of every
process in every CMT.

4.2.3. Constraints of time and capacity
(1) Time constraints for the data transmission. For the jth

process of the ith CMT, the data traffic (number of packets of data)
li;j and upper time limit si;j of the time-sensitive data transmission
can be determined. Therefore, the selected data transmission path
must satisfy the demands of the time constraints of data
transmission:

tsi;j � tei;j�1 ¼
Xr�1
p¼0

li;j�1 � skp þ
Xnseqp
q¼1

l
�res
q skp þ D

�
p

 !
i;j�1
� si;j

i ¼ 1; 2; :::; n; j ¼ 1; 2; :::; mið Þ ð8Þ
where �ð Þi;j�1 in Eq. (8) represents the process of data transmission

from MU hi
j�1 to hi

j in the ith CMT.
(2) Upper limit of tasks performed simultaneously by an MU.

There exists an upper limit on the number of tasks an MU can
simultaneously perform. The set of MU in the whole SDCM system

is denoted as H ¼ h1
; h2

; :::; hN
n o

, and N is the number of MUs.

The upper limit of tasks that any MU i can simultaneously perform

is denoted as Ci i ¼ 1; 2; :::; Nð Þ.
In addition, wi;j indicates the workload of the jth process of the

ith CMT, and bk
i;j represents whether the jth process of the ith CMT

occupies the kth MU. Note that bk
i;j is a 0–1 integer variable.

bk
i;j ¼

1 jth process of ith CMT occupies the kth unitð Þ
0 jth process of ith CMT does not occupy the kth unitð Þ

�
ð9Þ

Therefore, for each process of every given task, it is necessary to
identify the processes that require the same MU and overlapping
execution time. The set of these processes is denoted as
Neighbori;j i ¼ 1; 2; :::; n; j ¼ 1; 2; :::; mið Þ. The approach to deter-
mine Neighbori;j is as follows.

First, select the j*th process of the i*th CMT, the time interval of

which can be determined as tsi� ;j� ; t
e
i� ;j�

h i
according to the abovemen-
65
tioned approach. Second, traverse all the processes in all manufac-
turing tasks in CMTSet. If a process (the jth process of the ith CMT)
satisfies the demand of the relationship, as shown in Eq. (10), it can
be added to Neighbori� ;j� (the j*th process of the i*th CMT itself is
also included in the set Neighbori� ;j� , in accordance with the current
rules).

bk
i;j ¼ bk

i� ;j� ¼ 1
tsi� ;j� � tsi;j < tei� ;j� or tsi� ;j� < tei;j � tei� ;j�

(
ð10Þ

The selected MU should comply with the upper limit of simul-
taneously executable tasks:

X
ai;j2Neighbori� ;j�

wi;j �
XN
k¼1

bk
i� ;j� � Ck i� ¼ 1; 2; :::; n; j� ¼ 1; 2; :::; mið Þ

ð11Þ
4.2.4. Optimization model
The ultimate goal of this model is to properly select the MU for

every process of a given manufacturing task and data transmission
path between the MU for two adjacent processes in the same
manufacturing task to ensure that all the given tasks can be
finished in the least time. The time constraints are associated
with the data transmission and upper limit of simultaneously
executable tasks of each MU. Therefore, the optimization model
can be built as Eq. (12).

min max
i¼1;2;���;n

tei;mi

n o� �

Subject to

tsi;j � tei;j�1 ¼
Pr�1

p¼0 li;j�1 � skp þ
Pnseqp

q¼1 l
�res
q skp þ D

�
p

� �
i;j�1
� sij;

i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; mið ÞP
ai;j2Neighbori� ;j�wi;j �

PN
k¼1b

k
i� ;j� � Ck;

i� ¼ 1; 2; . . . ;n; j� ¼ 1; 2; . . . ; mið Þ

8>>>>>><
>>>>>>:

ð12Þ
5. Problem solving algorithms

As a stochastic search algorithm, GA has two notable advan-
tages: the ability to address complex problems and parallelism
[32]. To solve the considered optimization model, a GA is used to
optimize the selection of MUs in different processes of each
manufacturing task. Subsequently, Dijkstra’s shortest path algo-
rithm is used to find the shortest path of data transmission
between two adjacent processes (MUs) in a manufacturing task.
If other manufacturing tasks need to use a channel currently being
occupied by a task, an improved queuing algorithm considering the
rest time limit of data transmission can be used to transmit data in
sequence. Here, channel occupation refers to the state in which the
channel (network) between the source and destination nodes is
currently being used for data transmission for a manufacturing
task. If other tasks need to transmit data in this channel, the data
packets to be sent are required to queue up in the source node.
Two or more tasks can share the same channel, and each task uses
the channel exclusively in different time slots. Algorithms 1 and 2
show the structure of the GA and the algorithm framework to cal-
culate the completion time Te of a manufacturing task with a given
genotype (MUs for all processes of all manufacturing tasks),
respectively. Since this model mostly focuses on data transmission,
the maximum working capacity of MUs is neglected, and only the

C. Yang, F. Liao, S. Lan et al. Engineering 22 (2023) 60–70
transmission time constraint is considered to determine whether
the constraint conditions are satisfied in Algorithm 1.
Algorithm 1. GA for minimizing Te.
1:
 generate and
initialize Gr
// Gr means population and Ne contains
elements denoted by Ele
2:
 k 0
 // Gr_max is the maximum number of
genetic iterations
3:
 while k < Gr_max do

4:
 operate cross algorithm on Ele, and obtain new element

Elenew

5:
 operate variation algorithm on Elenew, and obtain the

variant Elenew

6:
 calculate Te of variant Elenew

7:
 calculate the fitness of Ele and variant Elenew

8:
 choose the top Ne elements in terms of fitness as next

generation among Ele and variant Elenew

9:
 k k + 1

10:
 output the final Gr
(1) GA. For each process of each CMT in the task set, after select-
ing the MU, the data transmission path and sequence of data in the
queue can be determined according to the following approach.
Moreover, the adherence to the constraints can be evaluated, and
the completion time at which all tasks are finished can be
determined.

In this research, a GA is used to obtain the optimal plan of
MU allocation. Every manufacturing process of all CMTs is set as
a locus, and the total number of loci isP

CMTi2CMTSet sum of CMTi
0s subtasks. According to every process

type, the corresponding locus can choose its value as the sequence
number of the MU in the MU set (MUs having the same type as the
process are numbered in a specified order in the set).

To obtain the optimal values in the optimization problem, the
algorithm adjusts the fitness of the individual according to the
genotype differences between the individual and other individuals
in the population. Eq. (13) is used to calculate the individual fit-
ness, where d represents the average difference in the genotypes
for an individual and others in the population, and D represents
the corresponding difference among all individuals in the popula-
tion. d and D are calculated using Eqs. (14) and (15), respectively.
Te is the performance trait of an individual genotype (namely,
the task execution time, given the selection plan of MUs; if the plan
selected cannot meet the constraints, the execution time equals
the sum of the original execution time and a large value M).
Te min is the corresponding execution time of the optimal individ-
ual (solution) in the population.

fitness ¼ 1þ log10 d=Dð Þ½ 	=max D; Te � Te minf g ð13Þ

di� ¼ 1
Ne

XNe

i¼1

Xgenetic sum

j¼1 f gi
j � gi�

j

� �

f xð Þ ¼ 0 x ¼ 0ð Þ
1 otherwiseð Þ

�
8>><
>>: ð14Þ

D ¼ 1
Ne

XNe

i¼1
di ð15Þ

In Eqs. (13)–(15), D is a non-zero small positive number, Ne is
the population size (total number of individuals in the population),
genetic sum is the number of individual loci, and gi

j is the value of
the jth locus of the ith individual in the population.

(2) Path algorithm. Dijkstra’s path algorithm can be applied to
find the shortest path between two given nodes (MUs) when
66
Algorithm 2 selects the data transmission path for each process
of all CMTs.

The distance between the edges of two directly connected
nodes (kth edge in the network topological graph GRAPH) is the
time sk required for the transmission of a single packet, while
the distance between two nodes that are not directly connected

is set to a large value LD LD
max
k

skf g
� �

.

Algorithm 2. Calculate Te for given element.
1:
 obtain actuators for all CMTs’ subtasks by elements’
genes
2:
 solve path planning problem by Dijkstra’s algorithm

3:
 calculate time schedule for all CMTs’ subtasks and

obtain original Te

4:
 for all CMTs’ transmission process do

5:
 if transmission time > constraint time

6:
 Te Te + M // M is a huge number that is much

bigger than original Te

7:
 return Te
(3) Queuing algorithm. After the transmission of the current
data in a channel, the sequence of other data to be transmitted is
arranged according to the time Tres

i;j to the deadline. The data with

the smallest Tres
i;j are transmitted first. Tres

i;j is calculated as

Tres
i;j ¼ si;j � TP

i;j �
X
Post

Tdel
i;j ð16Þ

where TP
i;j is the propagation time of the jth data transfer of the ith

CMT, and
P

PostT
del
i;j is the time required for the previous transmis-

sion process of these data.

6. Experiments and analysis

The numerical experiments are performed using the model and
algorithms in two kinds of network systems: ① a classic and sim-
ple network (ten nodes, with six execution unit nodes and four
intermediate nodes) shown in Fig. 3 and ② a randomly generated
network system, denoted as Sys(num, prob), where num repre-
sents the number of nodes in the network topology, and prob is
the connection probability between two nodes. The simulation
experiment is conducted using Visual Studio 2019 C++, with
num = 20 (12 execution unit nodes are randomly selected from
20 nodes) and prob = 0.25.

The given manufacturing task set CMTSet in the simple network
system is different from that in the complex network system. In
the simple and complex networks, the CMTSet contains five CMTs
and ten CMTs, respectively. In each CMTSet, the execution time of
different processes is set as zero (representing values much less
than the data transmission time), value approximately equal to
the data transmission time, and value exceeding the data transmis-
sion time (three times higher than the data transmission time).

The transmission time of a single data packet in the network
channel is set as 0.1 ls, and that of the data (composed of several
data packets) is set as approximately 0.1–1.0 ms. Therefore, the
time limit of data transmission between two MUs is set as 1 ms.

The relevant parameters and their settings are listed in Appen-
dix A Tables S1–S6.

6.1. Result analysis of a simple network

For the simple network, three groups of experiments are con-
ducted according to the different execution times of the process:

C. Yang, F. Liao, S. Lan et al. Engineering 22 (2023) 60–70
no execution time (NET)—the process execution time is zero; short
execution time (SET)—the process execution time and data trans-
mission time are of the same magnitude; and long execution time
(LET)—the process execution time is three times larger than the
data transmission time.

Fig. 4 shows whether the MU selection plan randomly gener-
ated in the three groups of experiments satisfies the time con-
straint. When the process execution time is much less than or
approximately equal to the data transmission time, the average
probability of the plan meeting the time constraint is extremely
low, only approximately 1%, mainly due to the tight time con-
straints. However, if the process execution time considerably
exceeds the data transmission time, since the data transmission
is more scattered in the time dimension, the channel occupation
rate is lower. In other words, the waiting time in queues for data
transmission is lesser, and the average probability (approximately
14%) of meeting the time constraint in the random experiments is
significantly higher.

Fig. 5 shows the comparison between the randomly generated
‘‘optimal” plan and solution obtained using the proposed algo-
rithms in the three groups of experiments. The ordinate is the total
communication time (difference in the maximum value of the task
Fig. 4. Constraint satisfaction rate of ra

Fig. 5. Minimum total communication time of optimal solutions in th

67
completion time and total execution time of all the processes in a
CMT, including the data transmission time and queuing time). The
experiments show that the minimum communication duration in
the converged solution obtained by the GA is considerably smaller
than that in the randomly generated plan regardless of the execu-
tion time. In the simple network, the algorithm solution always
converges to a superior or the optimal solution.

6.2. Result analysis of a complex network

Compared with the number of tasks in the simple network, the
number of tasks in CMTSet is higher in the complex network (the
number of nodes in the complex network is two times as many
as that of the simple network, and thus, the number of CMTs in
the complex network is doubled). Moreover, the time constraints
are appropriately relaxed, and three sets of numerical experiments
are conducted according to the different execution times of the
manufacturing processes.

Fig. 6 shows whether the random plan satisfies the time con-
straint, and Fig. 7 shows the comparison between the ‘‘optimal”
solutions obtained using the random method and the algorithm
solution.
ndom plans in the simple network.

e random solution and algorithm solution in the simple network.

Fig. 6. Constraint satisfaction rate of random plans in the complex network.

Fig. 7. Minimum total communication time pertaining to the random solution and algorithm solution in the complex network.

C. Yang, F. Liao, S. Lan et al. Engineering 22 (2023) 60–70
Fig. 6 indicates that when the time constraint is appropriately
relaxed, the probability of the random plan meeting the time con-
straint significantly increases, and as the process execution time
increases, the average probability of the random plan meeting
the time constraint gradually increases. When the process
execution time is considerably higher than the data transmission
time in the network, the constraint satisfaction rate is close to
100%.

According to Fig. 7, although the satisfaction rate of the ran-
dom plan meeting the time constraint is high, the total commu-
nication time of the solution obtained using the algorithm is
much less than that of the ‘‘optimal” plan obtained using the ran-
dom method. However, compared with the case of the simple
network, the proposed algorithms in the complex network cannot
easily converge to the theoretically optimal solution. As the pro-
cess execution time increases, the communication time of the
convergence solution tends to gradually stabilize at the minimum
value.
68
6.3. Algorithm convergence rate analysis

The convergence rate of the algorithm for data networks with
different levels of complexities and different process execution
times is evaluated.

In the GA, the convergence rate for each generation update is

vkþ1 ¼ �log10
Te minkþ1
Te mink

ð17Þ

where Te mink represents the minimum task completion time
according to individuals (i.e., the manufacturing task allocation
plans) in the kth generation. According to Eq. (17), two sets of
experimental data for the convergence rate are randomly selected
from the six groups of experimental data, and the convergence rate
curve is shown in Fig. 8.

Fig. 8 shows that as the process execution time increases,
the number of effective generations (the convergence rate of

Fig. 8. Convergence rate curves under different process execution times. (a) NET scenario; (b) SET scenario; (c) LET scenario.

C. Yang, F. Liao, S. Lan et al. Engineering 22 (2023) 60–70
generations after this range is zero) gradually decreases. In the
NET, SET, and LET scenarios, the number of effective generations
is 100, 70, and 20, respectively. Therefore, as the process execution
time increases, the number of population generations required by
the algorithm to converge and amount of required calculation
gradually decrease.
69
7. Conclusions

A new SDN-based CMfg model named SDCM is proposed. The
SDCM adopts and extends CMfg with SDN and edge computing
to make resources programmable. Moreover, the framework
ensures fast reconfiguration, operation, and evolution of the

C. Yang, F. Liao, S. Lan et al. Engineering 22 (2023) 60–70
manufacturing system to ensure that the system can promptly
respond to external and internal changes. To reduce the network
congestion and data transmission latency introduced by the large
amount of data generated in SDCM, this paper builds a time-
sensitive data traffic scheduling model considering subtask alloca-
tion and data transmission path selection. Subsequently, the GA,
Dijkstra’s algorithm, and a queuing algorithm are applied to solve
the optimization problem to assign process execution units for
the manufacturing tasks and meet the time constraint for the tasks.
Experimental results show that both the model and algorithms can
satisfactorily meet the constraint conditions and reduce the total
communication time.

Future work can be focused on two aspects. First, we aim to
improve the proposed path-planning algorithm for the optimiza-
tion problem, perform additional comparisons with other algo-
rithms, and conduct experiments under real industrial settings.
Second, the security, data privacy, business priorities, and profit
distribution, among other factors, must be considered to ensure
that enterprises or owners are willing to provide the control logic
of manufacturing resources. For enterprises or owners in a con-
glomerate, technologies or approaches to integrate and operate
manufacturing resources safely or reasonably in a unified way
may be established if the management is unopposed. Cases involv-
ing multiple stakeholders are considerably more complex. There-
fore, we will continue to explore the issues associated with
security, privacy, and business aspects.

Acknowledgments

The research is supported by the National Key Research and
Development Program of China (2021YFB1715700), the National
Natural Science Foundation of China (62103046), the Beijing Insti-
tute of Technology Research Fund Program for Young Scholars, the
Chinese Academy of Sciences and University of Chinese Academy
of Sciences for funding the research (Y92902MED2, E1E90808,
and E0E90804), and the Fundamental Research Funds for the Cen-
tral Universities (E1E40805).

Compliance with ethics guidelines

Chen Yang, Fangyin Liao, Shulin Lan, Lihui Wang, Weiming
Shen, and George Q. Huang declare that they have no conflicts of
interest or financial conflicts to disclose.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.eng.2021.08.022.

References

[1] Yang C, Shen W, Wang X. The Internet of Things in manufacturing: key issues
and potential applications. IEEE Syst Man Cybern Mag 2018;4(1):6–15.

[2] Hao Y, Jiang Y, Chen T, Cao D, Chen M. iTaskOffloading: intelligent task
offloading for a cloud–edge collaborative system. IEEE Netw 2019;33(5):82–8.

[3] Yang C, Lan S, Shen W, Wang L, Huang GQ. Software-defined cloud
manufacturing with edge computing for Industry 4.0. Proceedings of 16th
International Wireless Communications and Mobile Computing; 2020 Jun 15–
19; Limassol, Cyprus. New York City: IEEE; 2020.

[4] Bonomi F, Milito R, Zhu J, Addepalli S. Fog computing and its role in the
Internet of Things. In: Proceedings of The First Edition of the MCC Workshop
on Mobile Cloud Computing; 2012 Aug 17; Helsinki, Finland. New York
City: ACM; 2012. p. 13–6.

[5] Yang C, Lan S, Wang L, Shen W, Huang GQ. Big data driven edge–cloud
collaboration architecture for cloud manufacturing: a software defined
perspective. IEEE Access 2020;8:45938–50.
70
[6] Kagermann H, Wahlster W, Helbig J. Recommendations for implementing the
strategic initiative Industrie 4.0—final report of the Industrie 4.0 working
group. Report. Berlin: Forschungsunion; 2013 Apr.

[7] Yang C, Lan S, Shen W, Huang GQ, Wang X, Lin T. Towards product
customization and personalization in IoT-enabled cloud manufacturing.
Cluster Comput 2017;20(2):1717–30.

[8] Saxena LK, Jain PK. An integrated model of dynamic cellular manufacturing
and supply chain system design. Int J Adv Manuf Technol 2012;62:385–404.

[9] Yang C, Shen W, Lin T, Wang X. IoT-enabled dynamic service selection across
multiple manufacturing clouds. Manuf Lett 2016;7:22–5.

[10] Meng Z, Wu Z, Gray J. Architecting ubiquitous communication and
collaborative-automation-based machine network systems for flexible
manufacturing. IEEE Syst J 2020;14(1):113–23.

[11] McKeown N. Software-defined networking. Infocom Keynote Talk 2009;17
(2):30–2.

[12] Li B, Zhang L, Wang S, Tao F, Cao J, Jiang X, et al. Cloud manufacturing: a new
service-oriented networked manufacturing model. Comput Integr Manuf Syst
2010;16(1):1–7. Chinese.

[13] Ren L, Zhang L, Wang L, Tao F, Chai X. Cloud manufacturing: key characteristics
and applications. Int J Comput Integ M 2017;30(6):501–15.

[14] Simeone A, Zeng Y, Caggiano A. Intelligent decision-making support system for
manufacturing solution recommendation in a cloud framework. Int J Adv
Manuf Technol 2021;112:1035–50.

[15] Mourtzis D, Vlachou E, Milas N, Tapoglou N, Mehnen J. A cloud-based,
knowledge-enriched framework for increasing machining efficiency based on
machine tool monitoring. Proc IMechePart Eng BJ Eng Manuf 2019;233
(1):278–92.

[16] Liu Y, Zhang L, Wang L, Xiao Y, Xu X, Wang MA, et al. A framework for
scheduling in cloud manufacturing with deep reinforcement learning.
Proceedings of 2019 IEEE 17th International Conference on
Industrial Informatics; 2019 Jul 22–25; Helsinki, Finland. New York
City: IEEE; 2019.

[17] Queiroz J, Leitão P, Barbosa J, Oliveira E, Garcia G. An agent-based industrial
cyber–physical system deployed in an automobile multi-stage production
system. In: Borangiu T, Trentesaux D, Leitão P, Giret BA, editors. Service
oriented, holonic and multi-agent manufacturing systems for industry of the
future. Switzerland: Springer Cham; 2019. p. 379–91.

[18] Liao H, Zhou Z, Zhao X, Zhang L, Mumtaz S, Jolfaei A, et al. Learning-based
context-aware resource allocation for edge-computing-empowered Industrial
IoT. IEEE Internet Things J 2020;7(5):4260–77.

[19] He X, Tu Z, Xu X, Wang Z. Programming framework and infrastructure
for self-adaptation and optimized evolution method for microservice
systems in cloud-edge environments. Future Gener Comp Syst
2021;118:263–81.

[20] Ren L, Meng Z, Wang X, Zhang L, Yang LT. A data-driven approach of product
quality prediction for complex production systems. IEEE Trans Ind Inform
2021;17(9):6457–65.

[21] Caggiano A. Cloud–based manufacturing process monitoring for smart
diagnosis services. Int J Comput Integ Manuf 2018;31(7):612–23.

[22] Ren L, Meng Z, Wang X, Lu R, Yang LT. A wide–deep-sequence model based
quality prediction method in industrial process analysis. IEEE Trans Neur Net
Lear 2020;31(9):3721–31.

[23] Ren L, Liu Y, Wang X, Lu J, Deen MJ. Cloud–edge based lightweight temporal
convolutional networks for remaining useful life prediction in IIoT. IEEE
Internet Things J 2021;8(16):12578–87.

[24] Ren L, Laili Y, Li X, Wang X. Coding-based large-scale task assignment for
industrial edge intelligence. IEEE Trans Netw Sci Eng 2020;7(4):2286–97.

[25] Kreutz D, Ramos FMV, Esteves Verissimo P, Esteve Rothenberg C, Azodolmolky
S, Uhlig S. Software-defined networking: a comprehensive survey. Proc IEEE
2015;103(1):14–76.

[26] Hu PA. A system architecture for software-defined industrial Internet of
Things. Proceedings of 2015 IEEE International Conference on Ubiquitous
Wireless Broadband; 2015 Oct 4–7; Montreal, QC, Canada. New York
City: IEEE; 2015.

[27] Salahuddin MA, Al-Fuqaha A, Guizani M. Software-defined networking for RSU
clouds in support of the Internet of Vehicles. IEEE Internet Things 2015;2
(2):133–44.

[28] Naeem F, Srivastava G, Tariq M. A software defined network based fuzzy
normalized neural adaptive multipath congestion control for Internet of
Things. IEEE Trans Netw Sci Eng 2020;7(4):2155–64.

[29] Brody P, Pureswaran V. The new software-defined supply chain: preparing for
the disruptive transformation of electronics design and manufacturing.
Report. IBM Institute Business Value; 2013. Chinese.

[30] Islam K, Shen W, Wang X. Wireless sensor network reliability and security in
factory automation: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev
2012;42(6):1243–56.

[31] Gu B, Zhou Z, Mumtaz S, Frascolla V, Bashir AK. Context-aware task offloading
for multi-access edge computing: matching with externalities. Proceedings of
2018 IEEE Global Communications Conference; 2018 Dec 9–13; Abu Dhabi,
United Arab Emirates. New York City: IEEE; 2018.

[32] Yang XS. Nature-inspired optimization algorithms. Elsevier; 2014.

https://doi.org/10.1016/j.eng.2021.08.022
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0005
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0005
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0010
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0010
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0015
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0015
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0015
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0015
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0020
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0020
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0020
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0020
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0025
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0025
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0025
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0030
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0030
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0030
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0035
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0035
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0035
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0040
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0040
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0045
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0045
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0050
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0050
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0050
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0055
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0055
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0060
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0060
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0060
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0065
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0065
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0070
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0070
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0070
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0075
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0075
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0075
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0075
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0080
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0080
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0080
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0080
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0080
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0085
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0085
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0085
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0085
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0085
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0090
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0090
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0090
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0095
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0095
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0095
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0095
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0100
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0100
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0100
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0105
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0105
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0110
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0110
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0110
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0115
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0115
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0115
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0120
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0120
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0125
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0125
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0125
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0130
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0130
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0130
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0130
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0135
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0135
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0135
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0140
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0140
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0140
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0145
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0145
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0145
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0150
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0150
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0150
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0155
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0155
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0155
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0155
http://refhub.elsevier.com/S2095-8099(21)00453-7/h0160

	Flexible Resource Scheduling for Software-Defined Cloud�Manufacturing with Edge Computing
	1 Introduction
	2 Related work
	2.1 Cloud-based manufacturing
	2.2 Software-defined network

	3 Software-defined cloud manufacturing
	3.1 Definition
	3.2 Reference architecture
	3.3 Flexible resource scheduling for the SDCM

	4 Problem formulation
	4.1 Problem description
	4.2 Problem formulation
	4.2.1 MUs for different types of tasks
	4.2.2 Network communication model
	4.2.3 Constraints of time and capacity
	4.2.4 Optimization model

	5 Problem solving algorithms
	6 Experiments and analysis
	6.1 Result analysis of a simple network
	6.2 Result analysis of a complex network
	6.3 Algorithm convergence rate analysis

	7 Conclusions
	ack23
	Acknowledgments
	Compliance with ethics guidelines
	Appendix A Supplementary data
	References

