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In recent years, there has been a dramatic rise in interest in retrosynthesis prediction with artificial intel-
ligence (AI) techniques. Unlike conventional retrosynthesis prediction performed by chemists and by
rule-based expert systems, AI-driven retrosynthesis prediction automatically learns chemistry knowl-
edge from off-the-shelf experimental datasets to predict reactions and retrosynthesis routes. This pro-
vides an opportunity to address many conventional challenges, including heavy reliance on extensive
expertise, the sub-optimality of routes, and prohibitive computational cost. This review describes the cur-
rent landscape of AI-driven retrosynthesis prediction. We first discuss formal definitions of the retrosyn-
thesis problem and review the outstanding research challenges therein. We then review the related AI
techniques and recent progress that enable retrosynthesis prediction. Moreover, we propose a novel
landscape that provides a comprehensive categorization of different retrosynthesis prediction compo-
nents and survey how AI reshapes each component. We conclude by discussing promising areas for
future research.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since Friedrich Wöhler’s pioneering synthesis of urea in 1828,
increasingly sophisticated techniques for total synthesis of organic
compounds [1] have been developed and advanced to meet the
challenges posed by ever more diverse and complex molecular tar-
gets. Total synthesis has made substantial contributions to the
replication, confirmation, disproving, and revision of natural prod-
ucts and to the design and synthesis of drugs [2], benefiting not
only the science community but also society. For example, the dis-
covery of novel lead compounds is central to the process of drug
design. Ligand-based and structure-based virtual screening tech-
niques are the most common procedures used to identify the lead
compounds that are most likely to bind to a protein target, via a
rapid in silico evaluation of compounds in existing libraries. How-
ever, virtual screening techniques suffer from two drawbacks. First,
the compounds identified already exist, leaving little room for new
patents. Second, it is increasingly challenging to retrieve a new
compound from existing libraries, considering that the chemical
structural space explored in existing libraries is very limited in
comparison with the theoretical space of all possible compounds.
These limitations have led to a proliferation of studies in de novo
drug design, which directly generates novel molecular structures
to match desired pharmacological properties. While de novo design
brings the benefits of easily patenting generated compounds and
exploring the whole chemical space, which comprises on the order
of 1060–10100 compounds [3], synthesizing de novo designed mole-
cules, which are usually non-existing, is the main obstacle. In fact,
synthetic accessibility (i.e., the ease of synthesis of compounds)
can be a critical issue for the compounds identified by virtual
screening; that is, an identified compound that is not found in
off-the-shelf catalogs and not purchasable requires synthesis.

Retrosynthesis prediction, which was first formalized by Corey
and Wipke [4] in 1969, set in motion a revolution of total synthesis
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Fig. 2. Illustration of a chemical reaction and its retrosynthesis template. The
highlighted parts represent the reaction centers of the chemical reaction; molecular
subgraph patterns of the reaction centers are used to compose the corresponding
template. The atoms marked with stars are attached atoms outside the template in
molecules.
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with increased rationality and systematicness. It designs a
sequence of reactions to recursively decompose a target compound
into simpler building blocks until commercially available starting
molecules are reached. The retrosynthesis prediction framework
consists of two basic tasks: single-step retrosynthesis prediction
and multi-step retrosynthesis prediction. The primary goal in
single-step retrosynthesis prediction is to predict possible reac-
tants given a target molecule, as shown in Fig. 1. By means of dis-
connection, which breaks the bonds between the atoms of the
target molecule, one or more synthons are obtained. It should be
noted that a synthon (e.g., the electrophilic ‘‘PhC=O+” group in
Fig. 1) as a fragment is an ion or radical and usually does not exist
as a stable species, whereas the reactant (e.g., benzoyl bromide)
corresponding to the synthon is an actual chemical used in practice
for synthesis. Once accurate and recursive single-step retrosynthe-
sis prediction is complete, multi-step retrosynthesis prediction
focuses on planning the optimal reaction sequence that minimizes
the number of synthesis steps, the cost of the starting molecules,
the waste produced, and so forth.

The retrosynthesis prediction problem is particularly challeng-
ing. First, the number of possible chemical transformations is huge,
resulting in a vast search space. Consequently, extensive creativity
and expertise from experienced chemists are required. Second,
even for human experts, current understanding of reaction mecha-
nisms remains incomplete, and it is non-trivial to select the glob-
ally optimal route among numerous possible retrosynthesis
routes. Since the 1960s, a great deal of focus and expectation have
been placed on computer algorithms to assist experienced che-
mists in retrosynthesis designs. Rule-based expert systems [5,6]
have been the most widely investigated approach for many years.
The core of rule-based expert systems lies in the use of retrosyn-
thesis templates. Each template, as shown in Fig. 2, is represented
by molecular subgraph patterns that encode changes in the con-
nectivity of atoms during a chemical reaction. Starting from a tar-
get molecule, a template is selected following predefined rules and
is applied to the target molecule to determine the reactants.

Unfortunately, rule-based expert systems suffer from several
drawbacks. The major criticism of such systems is their incapabil-
ity to provide accurate predictions for novel target molecules or
reaction types out of their knowledge base [7,8]. Another limita-
tion is their limited scalability: Applying hundreds of thousands
of templates, which can be seen as repeatedly solving the subgraph
isomorphism problem [9], is computationally expensive, as has
been pointed out in many works [10,11]. Moreover, manually
encoding the rules is laborious [6,12], although these programs
can identify complex routes if given sufficient time investment
[13].
Fig. 1. An example illustration of a single-step retrosynthesis reaction. By breaking
one bond in the given product, two synthons come into being, where the left one
carries a positive charge and the right one carries a negative charge. After
rearrangement toward real substances, the two reactants are obtained.
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Recently, the wide success of artificial intelligence (AI) has trig-
gered a surge of interest in using machine learning techniques to
overcome the limitations of rule-based expert systems. Here, the
key principle is to have machines learn chemistry from large
experimental datasets in order to predict reactions and perform
retrosynthesis. To date, an extensive series of studies have demon-
strated that AI-assisted models [13–15] can achieve competitive
and even superior retrosynthesis planning performances in com-
parison with rule-based systems [5,6]. In the remaining part of this
review, we discuss the existing AI algorithms for single-step and
multi-step retrosynthesis prediction, respectively.
2. The retrosynthesis problem

2.1. Rigorous formulation of the problem

Before describing the literature, we first introduce the formal
definitions and notations involved in the problem of retrosynthesis
prediction:

(1) Molecule. A molecule with n atoms is characterized as a
graph G ¼ A; Xð Þ, where X 2 Rn�m denotes the node features

encoding the node type (e.g., H atom and A 2 0;1f gn�n�l is the adja-
cency matrix. m and l represent the number of node features and
bond types, respectively. Aa;b;c ¼ 1 indicates that the ath node
and the bth node have a bond of type c). It should be noted that
the representation of a molecule can also be a simplified molecular
input line entry system (SMILES) string [16] transformed from the
graph.

(2) Chemical reaction. A chemical reaction in this context is a
transformation from a set of molecules to another set, that is,
Rif gnri¼1 ! Pj

� �np
j¼1, where Ri denotes the ith reactant molecule and

Pj denotes the jth product molecule; nr and np are the numbers
of reactants and products, respectively.

(3) Single-step retrosynthesis prediction. The single-step ret-
rosynthesis prediction problem is the reverse of a chemical reac-
tion, as it predicts a set of reactants R ¼ fRignri¼1 that could
produce a desired product P; that is, P ! Rif gnri¼1. It should be noted
that only single-outcome reactions with a single product P are con-
sidered here, as multi-outcome reactions can be decomposed into
multiple single-outcome ones [10,17].

(4) Reaction center. The reaction center includes the atoms and
bonds that are directly involved in the bond and electron rear-
rangement of a reaction [18]. A reaction center is of the utmost
importance to a chemical reaction, as given a specific reaction cen-
ter, reactant prediction is much easier.
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(5) Synthon. Disconnecting the bonds in the reaction center of
the product P leads to a set of subgraphs Sif gnri¼1 as synthons. A syn-
thon Si is a subgraph of a reactant Ri and is not necessarily a valid
molecule.

(6) Template. A retrosynthesis template T is denoted as the fol-
lowing rule [10]:

T :¼ pT ! rTi
� �nr

i¼1 ð1Þ

where pT is a subgraph of the product P and can be regarded as the
reaction center, while rTi is the subgraph of the ith reactant.

(7) Multi-step retrosynthesis planning. Provided with a target
molecule P, multi-step retrosynthesis planning aims to predict a

sequence of reactions rdf gdmax
d¼1 , where dmax is the length of the ret-

rosynthesis pathway and rd is a single-step reaction, until all reac-
tants required for P belong to a set of commercially available
reactants L. If a sequence reaches the maximum number of ret-
rosynthesis steps dmax but there remains an unsolved reactant that
does not belong to the set L, the planning is a failure.

2.2. Research challenges

Fig. 3 demonstrates three exemplar retrosynthesis routes, the
first two of which are successful, while the last one is a failure.
To guarantee the accuracy and quality of retrosynthesis routes,
Fig. 3. Demonstration of two successful routes and one failed route using retrosynthesis
with the target molecule. Chemists evaluate a route as successful if every reaction involv
because the reaction in the red rectangle is impossible. A, B, and C refer to the molecule
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we highlight the key research challenges in retrosynthesis plan-
ning below.

2.2.1. Single-step retrosynthesis prediction
Although only one-step reactions are generated in single-step

retrosynthesis prediction, several challenges still exist. According
to the definition of single-step retrosynthesis prediction provided
in Section 2.1, machines encounter two main issues: ① how to
determine the reaction center of the product P; and ② how to gene-
rate the reactants and reagents fRignri¼1 after determining the reac-
tion center. The issue of ‘‘how to determine the reaction center”
involves determining what principle can be used to mimic a
chemist’s brain when determining the disconnections for a target
molecule. Determining the disconnections is challenging even for
experienced chemists, as there are usually multiple ways to
decompose a molecule, and the globally optimal synthetic route
depends on global structures of the route [19]. Experts follow some
basic rules [20] to intuitively determine the priority of chemical
bond breaking. Unfortunately, these rules are particularly tedious,
poorly generalized to various products, and even ill-defined due to
the limit of existing chemistry knowledge. For machines, the one-
to-many relationship in the identification of the reaction center
(i.e., a target molecule P can have multiple reaction centers and
be synthesized with many potential reactions) poses significant
model-fitting and evaluation challenges.
planning. It should be noted that all routes start from the starting materials and end
ed is chemically correct; otherwise, the route is a failure. In this case, the route fails
s synthetised in routes.
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Similarly, the other issue of ‘‘how to generate the reactants and
reagents” involves determining which reactants and reagents are
necessary for the reaction. Once the reaction center has been speci-
fied, a target molecule P can be broken into synthons Sif gnri¼1; how-
ever, the synthons are not necessarily valid. Directly generating or
converting these synthons into valid reactants and reagents fRignri¼1

is a formidable task that must meet three levels of validity. Firstly,
the generated reactants must follow correct chemical grammar—
that is, they must be ‘‘valid” molecules. Fig. 4(a) shows an ‘‘invalid”
molecule. Secondly, the reaction from the reactants to the product
must be chemically feasible; that is, the selectivity of the reaction
center must be in accordance with reagents, reaction condition,
electronic effects, steric hindrance, molecular orbital theory, and
so forth. In Fig. 4(b), we show an infeasible reaction whose reaction
center has low reactivity due to the electronic effects. Lastly, all
atoms in the target product must be mapped to those in the reac-
tants—that is, the reaction must follow the law of conservation of
atoms. The reaction shown in Fig. 4(c) is a counterexample in
which the law of conservation of atoms is not satisfied. More
importantly, the method used for reactant generation varies by
the representations of a molecule; graph-based methods are a
top priority for graph representations, while sequence-based
methods are a perfect match for SMILES representations.
2.2.2. Multi-step retrosynthesis prediction
As the length of a retrosynthesis pathway can be as long as 60 or

more steps [21], the ultimate goal for retrosynthesis planning is to
generate a multi-step retrosynthesis route, which can be achieved
by using the aforementioned one-step retrosynthesis prediction
algorithms as a foundation. While one-step retrosynthesis predic-
tions that reflect reaction feasibility have been widely investigated
and continuously improved, fewer novel algorithmic attempts
have been made to address the extremely challenging multi-step
retrosynthesis prediction problem of navigating toward commer-
cially available building-block materials, L. Several challenges
must be addressed when designing and evaluating a satisfactory
retrosynthesis planning model. First, the search space for possible
retrosynthesis plans over all possible synthesis routes is often
exponentially large, considering that there are multiple synthesis

steps rdf gdmax
d¼1 toward a target molecule P, and the molecule in each

step, rd, can be synthesized from hundreds of different reactants.
Second, the criteria for a good synthetic route are vague, since dif-
ferent chemists tend to have distinct retrosynthesis approaches
toward a target molecule, which largely depend on their personal
experience and understanding of retrosynthesis. Moreover, the cri-
teria for a good retrosynthesis route can differ with respect to the
chemical scenario. For example, a good retrosynthesis route in
industrial manufacturing focuses on stability and cost manage-
ment, whereas a good route in academia is a new retrosynthesis
approach that suffices to tackle a molecule with a complex struc-
Fig. 4. Three types of error in a single-step retrosynthesis prediction. (a) An
incorrect molecule in which a fluorine atom has three bonds; (b) an incorrect
reaction center in which a bromine atom is incorrectly attached to the ortho
position of the ester group; (c) a reaction that does not follow the conservation of
atoms, as an additional carbon atom is added to the product but is not present in
the reactant.
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ture. Furthermore, few reliable retrosynthesis route datasets are
open to the public, and researchers tend to use hand-crafted routes
to evaluate a retrosynthesis planning algorithm [21] or to compare
the generated route with a route reported by chemists via double-
blind A/B tests [22], which is laborious and subjective. Therefore,
AI-driven retrosynthesis planning is necessary in order for che-
mists to accelerate the path-finding process in different scenarios
and automate the route evaluation procedure.
3. A review of related AI techniques

3.1. Sequence-to-sequence (Seq2Seq) models

As molecules can be intuitively represented as a sequence,
Seq2Seq learning serves as an effective tool for retrosynthesis pre-
diction, such as generating a sequence of reactants from a product.
Seq2Seq learning is a type of machine learning approach that has
been widely applied to natural language processing (NLP)-related
challenges, such as language translation, image caption, and text
summarization. It was first proposed in Refs. [23,24] with the
encoder–decoder architecture for themachine translation problem:
The encoder encodes the whole source sentence into a fixed-length
vector, and the decoder generates the target words sequentially.
Sutskever et al. [23] and Cho et al. [24] use recurrent neural net-
works (RNNs) for encoding and decoding, respectively. Considering
that RNN-based models cannot capture long-distance dependen-
cies, Bahdanau et al. [25] introduced the attention mechanism
[26] to the bidirectional long short-term memory (biLSTM)-based
framework, which allows the hidden state to consider the global
contextual information. Gehring et al. [27] proposed the convolu-
tional sequence to sequence (ConvS2S) model, which uses multi-
layer convolution neural networks for encoding and decoding and
applies the multi-step attention mechanism to model the global
attention for every decoder layer. Vaswani et al. [28] proposed the
transformermodel, which relies onmulti-head attention for encod-
ing and decoding, allowing the model to establish dependencies on
arbitrarily distant words in input sentences in a constant number of
operations. Thanks to the transformer model’s superior perfor-
mance, transformer-based methods have become the mainstream,
and many extensions have since been proposed [29,30].
3.2. Graph neural networks

In addition to encoding molecules as SMILES strings, it is possi-
ble to naturally represent molecules as graphs. The proliferation of
graph neural network (GNN) [31] research provides various solu-
tions for learning representations of graph-structured information
such as molecules, upon which molecular transformations within a
reaction can be predicted. Sperduti and Starita [32] were the first
to apply neural networks to directed acyclic graphs.

Researchers have also proposed recurrent graph neural net-
works (RecGNNs), in which the neighbour information iteratively
propagates to update the representation of the target node
[33,34]. Encouraged by the tremendous success of convolutional
neural networks (CNNs) in the computer vision field, Henaff et al.
[35] proposed the convolutional graph neural network (ConvGNN).
Previous ConvGNNs are with two major categories: spectral-based
and spatial-based approaches. Previous ConvGNNs are with two
major categories according to different manners of defining graph
convolutions: spectral-based approaches follow graph signal pro-
cessing to adopt filters [36,37], and spatial-based approaches rely
on information propagation [38,39]. Later, the graph convolutional
network (GCN) [40] was developed to bridge the gap between
these approaches. Recently, GCNs have continued to rapidly
develop due to their efficiency, flexibility, and generality. With
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the widespread application of attention mechanisms, some meth-
ods adopt an attention mechanism as a node aggregation mecha-
nism, such as graph attention networks (GATs) [41] and gated
attention networks (GAANs) [42]. On the basis of these works,
many alternative GNN approaches have been developed, including
graph auto-encoders (GAEs) [43], graph generative networks
(GGNs) [44], and spatial–temporal graph convolutional networks
(STGCNs) [45].
3.3. Search algorithms

Search algorithms retrieve the information stored in a data
structure or calculated in a search space, upon which multi-step
retrosynthesis prediction relies to plan a synthesis route. In gene-
ral, search algorithms can be categorized into uninformed searches
and informed searches. A uninformed search does not exploit any
information about the cost of state transitions; typical examples
include depth-first searches and breadth-first searches. In contrast,
an informed search contains the heuristic function to evaluate the
distance between the current state and the goal state in order to
guide the search progress. This guarantees a good solution with a
reasonable search time, although the solution is not necessarily
optimal. Best-first searches are typical heuristic searches with
the concept of a priority queue [46]. The OPEN list stores the cur-
rently traversable nodes, and the CLOSED list stores the traversed
nodes. Beam search improves the best–first search by expanding
the most promising nodes in a limited set [47]. A* search combines
the highlights of uniform cost search and best–first search, ensur-
ing the optimal solution [48]. The cost of each state, in this case, is
the combination of the actual cost from the starting state to the
current state and the heuristic cost from the current state to the
goal state. Monte Carlo Tree Search (MCTS) [49] improves the value
estimates from the current state to the goal state with a Monte
Carlo simulation and consists of four steps: selection, expansion,
Fig. 5. Overview of the retrosynthesis prediction landscape covering the two key compo
and multi-step retrosynthesis prediction are shown on the right, together with the two
reaction representation and candidate reaction evaluation, which are shown on the left
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simulation, and backpropagation. AlphaGo [50] is one of the most
famous use cases of MCTS, in which an MCTS searches for possible
moves and tracks the results in a search tree of Go.

3.4. Deep reinforcement learning

Reinforcement learning (RL) [51] is a machine learning para-
digm, in which the agent interacts with the environment and
maximizes the notion of cumulative reward with trial and error.
RL does not require large-scale annotated datasets and is qualified
for sequential decision-making problems with good continuity and
innovation. Recently, RL has advanced along with the rapid
development of deep learning in learning representations. Deep
Q-networks (DQNs) [52], in which convolutional neural networks
are used to estimate the Q-value, are a pioneering work in the field
of deep RL. Since their development, researchers have proposed
several extensions of value-based methods [53]; moreover,
model-based [54] and policy gradient methods [55,56] have been
proposed instead, in order to predict the after-taking-action state
with a predictive model and to directly optimize the policy net-
work. Deep RL also works on more complex decision-making prob-
lems, such as those with goal conditions [57], hierarchical task
decomposition [58], and multiple agents [59]. Deep RL has
achieved wide success in applications such as games [60], robotics
[61], autonomous driving [62], and molecule generation [63]. It is
believed to be a significant step toward general AI [64].
4. How AI reshapes retrosynthesis

Unprecedented development in AI over the past decade has led
to a proliferation of recent studies that resort to AI techniques to
address the challenges discussed in Section 2.2 and improve the
performance of retrosynthesis prediction. In Fig. 5, we provide a
breakdown of the current landscape of AI-driven retrosynthesis
nents of a retrosynthesis planning algorithm. Single-step retrosynthesis prediction
indispensable design elements that prepare for these two components: molecular/
.
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prediction, covering the two major components of single-step ret-
rosynthesis prediction and multi-step retrosynthesis prediction, as
well as the two algorithmic design elements of molecular repre-
sentation and candidate reaction evaluation, which provide the
groundwork for single-step and multi-step retrosynthesis predic-
tion, respectively. Together, these four elements establish a design
space for AI-driven retrosynthesis prediction methods that orients
the development of new algorithms and customization for specific
applications. In this section, we break down the existing literature
according to the proposed landscape.

4.1. Molecular/reaction representation

4.1.1. Molecular representation
The mainstream molecular representation methods applied in

the retrosynthesis problem include SMILES strings, fingerprints,
and graphs, as summarized in Fig. 6. SMILES is the most widely
adopted chemical notation system for molecular structure repre-
sentation [16]. It is easily accessible to chemists, yet interactive
enough to allow computers to generate unique line notations.
Similar to natural language, the SMILES system combines charac-
ters and grammatical rules to specify rigorous structures based
on chemical principles [65]. Once a SMILES representation has
been created, therefore, researchers can intuitively predict single-
step precursors for retrosynthesis by means of Seq2Seq machine
translation models.

The molecular fingerprint is another useful cheminformatics
tool to represent molecules [66]. Its core idea is to map a molecule
into a bit string or a numeric array of length l, where each bit
encodes whether or not the molecule contains a unique substruc-
tural feature. Consequently, several types of molecular fingerprints
exist according to the nature of substructural features, ranging
from substructure key-based [67] and path-based [67] features to
two-dimensional (2D) circular [68] and three-dimensional (3D)
circular [69] features. Cereto-Massagué et al. [67] and Zagidullin
et al. [70] present a comparison of the effectiveness of not only
these molecular fingerprints but also recently developed
learning-based fingerprints. Despite the availability of cheminfor-
matics tools that generate strings or vectors, researchers have pro-
posed representing molecules geometrically. Due to the better
preservation of molecular structure characteristics by graph repre-
sentations [71] and recent development in the field of GNNs, graph
molecular representation has been attracting a considerable
amount of interest for molecule generation and retrosynthesis
prediction.

4.1.2. Reaction representation
Chemists define a chemical reaction as a transformation from

reactants to products under the condition of reagents. Conse-
quently, a straightforward method of representing reactions is to
join strings of reactants, reagents, and products. A reaction SMILES
string consists of SMILE strings of reactants, reagents, and
products, as well as a ‘‘>” symbol that connects them to
signify the reaction direction [16,65]; for example,
‘‘reactants > reagents > products.” Similarly, molecular fingerprints
can be concatenated together as a reaction representation. In addi-
Fig. 6. Summary of three mainstream molecular representation methods used for
learning: a SMILES string, a Morgan fingerprint vector, and a graph.
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tion to representing a reaction with molecular representations in a
compositional fashion, extracting reaction embeddings from pre-
trained models is another promising way [72]. Another alternative
is to put a chemical reaction into a single condensed graph of reac-
tion (CGR), which is a superposition of the reactant and product
graphs [73]. In a CGR, the changes in properties of atoms and bonds
within a reaction are highlighted. It is notable that the CGR repre-
sentation of a reaction relies on atom-to-atom mappings between
the reactants and products, and CGRTools [74] is an excellent tool
for CGR representation.

4.2. Single-step retrosynthesis prediction

4.2.1. Template selection
A template, as defined in Fig. 2, encodes the changes in connec-

tivity between the products and reactants, while a template set
contains a group of templates for different chemical rules. Given
a template and a matched product, it is easy to obtain all the reac-
tants in the reaction. Thus, template-based methods [10,11,75,76]
have been prescribed for single-step retrosynthesis prediction.

4.2.1.1. Template extraction. The earliest chemical reaction rules
were codified by chemists. Experts formulated which reactions
were allowed [77]. Since then, hand-crafted rules for generic trans-
formations have been used in retrosynthesis prediction and have
achieved great success for several complex products [6,78,79].
With the explosive growth of reactions, there is an urgent need
for automatic template extraction, so heuristic algorithms were
proposed to build generalized rules from known reaction examples
[80–83]. The key idea is to extract the reaction center and include
varying numbers of neighboring atoms. The number of neighboring
atoms is determined by either a fixed distance to the reaction cen-
ter or a heuristic of which atoms are relevant. Different numbers
dictate various generalization levels of templates. In order to han-
dle stereochemical templates, Coley et al. [84] proposed RDChiral,
an RDKit [85] wrapper, for retrosynthesis template extraction.

Rules defined by experts are precise, but there are too few to
cover a sufficient fraction of reaction types. Although it is highly
efficient to create templates via automatic template extraction,
such templates suffer a tradeoff between generalization and cor-
rectness. Moreover, the number of templates is huge [84] and con-
tinues to increase [86], as novel reactions are discovered
continuously.

4.2.1.2. Template retrieval. After extracting templates, another
research question remains: how to retrieve a template from the
template library, given a target product. The approach of RetroSim
[11] mimics a possible decision-making process of a chemist dur-
ing retrosynthesis prediction; that is, it imitates how similar mole-
cules have been synthesized. Templates that encode the synthetic
routes of molecules whose structural motifs are similar to the tar-
get molecule are prioritized, and only 100 templates whose prod-
ucts have the greatest similarity to the target molecule s pT ; P

� �
are retrieved. In regard to the similarity measure s �; �ð Þ between
molecules, RetroSim considers the 2D structure similarity, which
is implemented through two steps. First, a molecule is represented
as a vector using Morgan circular fingerprints [69], in which the
hyperparameter of the radius refers to the largest size of neighbor-
hood to be considered. The features of each atom [87] are also
included. Second, several similarity metrics, including Dice [88],
Tanimoto [89], and Tversky [90] similarity, are investigated. It
should be noted that the representations and similarity metrics
are all implemented in the RDKit software package [85].

Instead of hinging on explicit molecule similarities, NeuralSym
[76,91] casts the problem of template retrieval as a multi-class



Y. Jiang, Y. Yu, M. Kong et al. Engineering 25 (2023) 32–50
classification problem in order to automatically learn the patterns
of a target molecule, which dictate which template to use. A fully
connected neural network is used to performmulti-class classifica-
tion, as shown in Fig. 7. The input to the neural network is a target
molecule represented using Morgan fingerprints [69], and the out-
put nodes correspond to all templates. When provided with a novel
target molecule, the well-trained neural network retrieves the top-
k templates whose softmax probabilities are the k highest.

Although NeuralSym is trained to learn a single template given
a molecule in benchmark datasets, many potentially useful trans-
formations outside the benchmark are excluded [75]. To address
this issue, Fortunato et al. [75] proposed augmenting the bench-
mark with more synthetic data on template applicability and pre-
training a template-relevance network that learns all templates
that potentially lead to the reactants. The pretrained template-
relevance network, which was later fine-tuned on real reactions,
achieves higher recall in template applicability and more diversity
in generated reactants than the previous methods like NeuralSym.
Another alternative named MHNreact [92] tackles this issue by
encoding both templates and products as input, in contrast to pre-
vious approaches, which predict a fixed set of templates when
given the target molecule as input. MHNreact then resorts to mod-
ern Hopfield networks (MHNs) to learn the association between
templates and products.

One obvious limitation of NeuralSym is that the model size
grows with the number of templates. To overcome this limitation,
Dai et al. [10] proposed the conditional graph logic network (GLN).
The GLN directly models and maximizes the conditional joint prob-
ability of both templates and reactants using their learned embed-
dings, which is defined as p T;RjPð Þ ¼ pðRjT; PÞpðTjPÞ where p �j�ð Þ
here represents the conditional probability. As for template retrie-
val by the probability pðTjPÞ, the GLN first screens out all templates
matching the target product by evaluating whether the subgraph
pattern of a template’s product pT matches a subgraph of the pro-
duct P. Among these templates, the GLN proceeds to score poten-
tial reaction centers within the target project and evaluate the
affinity between reactant subgraphs in a template rTi

� �nr
i¼1 and

those in the target product P. The matching scores are calculated
via the inner product between molecule embeddings, where each
molecule G is embedded as gðGÞ by the GNN algorithm struc-
ture2vec [93]. Finally, the GLN selects the top-k templates with
the highest matching scores. The GLN retrieves templates by the
similarity computed with GNN embeddings, so that its model size
is fixed based on whatever the number of templates is. Neverthe-
less, the performance of a GLN is still limited by the quality and
quantity of templates.

4.2.2. Reaction center prediction
4.2.2.1. Template-based algorithms. Template-based algorithms
simply apply the retrieved templates and generate reactants.
Retrieved templates provide several candidate reaction centers.
RetroSim [11] and NeuralSym [76] pinpoint the reaction center
based on the rank of templates, while GLNs [10] predict the reac-
tion center based on the rank of reactants, as defined above.

4.2.2.2. Template-free algorithms. Despite their interpretability and
substantial progress, template-based algorithms requiring
Fig. 7. Illustration of the neural-symbolic (NeuralSym) model.
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subgraph isomorphism still suffer from poor scalability and poor
generalization to novel reactions. Recently, a considerable litera-
ture has grown up around the theme of bypassing templates.
Template-free algorithms use machine learning models to straight-
forwardly predict the reaction centers.

The problem of reaction center identification comes down to
link prediction—that is, to predicting whether each edge of a mole-

cule graph A 2 0;1f gn�n�l should be disconnected. Following the
state-of-the-art practice of link prediction, in which GNNs are used
to learn effective representations of each link, Shi et al. [17]
adopted the relational GCN (R-GCN) [94] and Yan et al. [8] pro-
posed the edge-enhanced graph attention network (EGAT). A bin-
ary classifier is trained to predict whether a bond should be
disconnected based on the graphical representation of the bond.
It is worth noting that Yan et al. [8] introduced an auxiliary
task—that is, predicting the total number of disconnection edges
for a target molecule to further improve reaction center identifica-
tion. In contrast, GraphRetro [95] predicts the potential bond and
atom edits simultaneously via a message passing network (MPN)
[96]. Atom edits characterize how the number of hydrogens
attached to the atom changes from the products to the reactants,
which has been not considered by previous approaches [8,17].
Breaking a target molecule at the predicted disconnection bonds
leads to a set of intermediate synthons fRignri¼1, which lay a solid
foundation for the generation of valid reactants.
4.2.3. Reactant generation
4.2.3.1. Template-based generation. Reactants are derived by sub-
graph matching, given a target product and a template [84]. Retro-
Sim [11] and NeuralSym [76] sort the templates by their scores and
generate the top-k reactants following the same order of top-k
templates. GLNs [10] rank all reactants after the selected template
is applied to the target molecule. The ranking score of the reactants
p RjT; Pð Þ is calculated by the inner product between the embed-
ding of the target molecule P and the mean embedding of all reac-
tants R, given that ① pT is a subgraph of P, ② the size of the
reactant set R is equal to that of reactant subgraphs rTi

� �nr
i¼1 of

the template T , and ③ each reactant subgraph of T is a subgraph
of at least one reactant in R under a permutation pð�Þ. Given a
novel target molecule, the predicted reactants are sampled from
the joint probability of the matched templates and generated reac-
tants using a beam search of size k.
4.2.3.2. Synthon-based generation. In G2Gs [17] and RetroExpert [8],
a set of intermediate synthons Sif gnri¼1 must be transformed into
chemically valid reactants fRignri¼1. A transformer [28] is adopted
in Ref. [8] to translate synthons into reactants. To ensure that the
translation model is invariant of the order of synthons, Yan et al.
[8] proposed augmenting the training pairs by shuffling the order
of synthons and reactants. In Ref. [17], however, the researchers
formulated the translation problem as a variational graph transla-
tion. Conditioned on the synthons, the generation of the reactant
graph consists of multiple steps of graph transformation actions.
More specifically, G2Gs considers four consecutive actions at each
step:① predicting the termination of graph translation,② predict-
ing the type of the added atom, ③ predicting the other atom to
connect with, and ④ predicting the type of bond between the
two atoms. GraphRetro [95] directly learns an MPN [96] to select
the leaving groups that should be attached to synthons in order
to generate complete reactants. It should be noted that the leaving
groups come from a preprocessed discrete vocabulary. The selected
leaving groups are later attached to synthons by adding a bond
between them, in accordance with the valency constraint.
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4.2.3.3. Direct generation. Molecule edit graph attention network
(MEGAN) [97] generates reactants R directly from graph represen-
tations of the target molecule P. MEGAN first embeds the target
product with GNNs, and then modifies the target product gradually
by means of a transformer-based [28] decoder. Analogous to G2Gs
[17], MEGAN chooses one action at each step, generating interme-
diate substrates or an end substrate. Candidate actions are defined
as follows:① editing atom properties, including changing chirality,
aromaticity, and so forth; ② editing the bond between two atoms,
which involves adding, deleting, or editing the bond; ③ adding a
new atom to the graph, where both the atom and its connection
with one of the existing atoms are added;④ adding a new benzene
ring to the graph, where a complete benzene ring is appended to a
selected carbon atom; and⑤ stopping generation, which is the end
of the generation process. As the reaction center is unclear, the
model is trained by maximizing the log-likelihood objective with
a fixed ordering of actions [98]. Table 1 [97] lists the action prior-
ities defined in MEGAN. Without dissociating the reaction center
prediction from the reactant prediction, MEGAN enjoys the advan-
tage of end-to-end training.

Aside from GNNs, other researchers have formulated single-
step retrosynthesis prediction as an Seq2Seq machine translation
problem, where the input is the SMILES string [16] of a target
molecule and the output is a sequence of SMILES for all reactants.
As shown in Fig. 8, Liu et al. [7] adopted biLSTM [99] as the neural
Seq2Seq model. To leverage more recent advances in neural
machine translation and improve the retrosynthesis prediction
accuracy, Karpov et al. [100] replaced biLSTM with the transformer
model [28].

The main weakness of Seq2Seq translation algorithms is their
unsatisfactory performance, which is due to three reasons: First,
the representation of molecules as strings ignores the rich chemi-
cal structures and interplay between atoms. Second, the chemical
validity of generated SMILES strings is not guaranteed. Third, the
end-to-end training strategy fails to include any chemistry knowl-
edge within abundant reactions. In addition to their poor perfor-
mance, Seq2Seq models lack interpretability regarding their
predictions. On the other hand, direct generation enjoys the fol-
lowing exclusive benefits: ① Although it is challenging for
Table 1
Action prioritization used for training MEGAN [97].

Action type Priority

Edit bond (delete) 1
Edit bond (add) 2
Edit bond (other) 3
Edit new atom 4
Add new benzene ring 5
Add new atom 6

Fig. 8. Illustration of the biLSTM mod
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template-based algorithms to generate reagents, including sol-
vents, catalysts, and other substances, to lead to a reaction, it is
possible for direct generation; and ② direct generation tends to
produce more diverse reactions, which is crucial for multi-step ret-
rosynthesis, in comparison with synthon-based generation. In
future, there is hope that the performance of Seq2Seq methods
can be improved via data augmentation and enrichment. Recently,
dual template-based proposing (DualTB) [101] has made progress
in providing a unified view of both template-free methods and
template-based methods by formulating a novel energy-based
framework. DualTB easily accommodates the two types of methods
by defining different energy functions; during the inference phase,
reactant candidates obtained by template matching or generated
by the model are ranked according to the predicted energy score.

4.3. Candidate reaction evaluation

4.3.1. Feasibility
4.3.1.1. Retrosynthesis scoring. The retrosynthesis model itself is
capable of ranking the predicted reactions with different scores.
For example, RetroSim [11] uses molecular similarity to rank can-
didate chemical reactions; the overall similarityscores) are the pro-
duct of the product similarity (sprod) and the reactant similarity
(sreac), that is, s ¼ sprod � sreac. A GLN [10] decomposes the scoring
of candidate reactions into two parts: the template score function
(x1) and the reactant score function (x2). The template score func-
tion is further decomposed into two parts: the product score (v1)
and the reactant score (v2). Together, these scores dictate the rank-
ing of a predicted reaction. For synthon-based and direct genera-
tion methods [8,100], the score amounts to the log probability of
the whole SMILES string, which is the sum of the log probabilities
for all predicted tokens. This ranking of candidate reactions is the
same as that is performed by a beam search.

4.3.1.2. Round-trip prediction. A rigorous evaluation of the feasibil-
ity of a predicted retrosynthesis would be to investigate whether
the resulting precursors (i.e., reactants) can generate the product
as expected, which would require a forward chemical reaction pre-
diction model. Schwaller et al. [15] coined the term ‘‘round-trip
evaluation” to describe such an evaluation and introduced two
round-trip evaluation metrics: round-trip accuracy and coverage.
Round-trip accuracy refers to the ratio of valid reactants to all reac-
tants predicted by the backward chemical reaction prediction
model, where ‘‘valid” means that the reactants can produce the tar-
get product, as predicted by the forward chemical reaction predic-
tion model. Coverage evaluates the number of target products for
which the retrosynthetic model produces at least one valid set of
reactants. The coverage evaluation metric encourages a retrosyn-
thesis model to produce valid reactants for a wide variety of target
molecules and thereby makes up for the shortcoming of round-trip
el for retrosynthesis prediction.
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accuracy, which may over-reward models that produce many valid
precursors for only a few reactions.

4.3.2. Diversity
In the chemical reaction space, there are many ways of generat-

ing a molecule, and different ways may correspond to different
reaction types. Here, it should be noted that organic reactions with
the same reaction mechanism belong in the same category. A good
retrosynthesis model is expected to produce as diverse synthetic
routes as possible for the target molecule, where the diversity
can be evaluated by the Jensen–Shannon divergence (JSD) [15]
between the likelihood distributions of a reaction belonging to N
reaction types. The JSD is computed as follows:

JSD PD0;PD1; . . . ;PDNð Þ ¼ H
XN
i¼0

1
N
PDi

 !
� 1
N

XN
i¼0

H PDið Þ ð2Þ

where PDi denotes the ith probability distribution and HðPDiÞ
denotes the Shannon entropy for the distribution PDi.

4.3.2.1. Rule-based classification. Reactions have conventionally
been classified manually, based on the class of the product, the
functional group, the reagent used, or even the inventor of the
reaction. However, the coverage of reactions using such classifica-
tion methods is far from enough. Model-based methods were later
proposed, which rely on predefined definitions of the reaction cen-
ter and consider the bonds that change during the reaction [102].
As a means of overcoming the limitation of model-based methods
that overlook the functionality and subclasses beyond the reaction
center, the data-driven approach [103] identifies multiple levels of
description of the reaction center by extending the reaction center
to include the neighboring bonds. The hash code—also known as
the reaction type—is automatically calculated for each level of
description of the reaction center, taking into account the atom
type, valence state, total number of bonded hydrogen atoms, num-
ber of p-electrons, aromaticity, formal charges, and reaction center
information. Another data-driven method [104] groups reactions
that share the reaction classification (RC) number into one cate-
gory, where the RC number characterizes the conversion patterns
of the types of atom in the reaction center. The condensed reaction
graph (CRG) approach [73] directly merges all of the reactants and
products of a reaction into an imaginary transition state or pseudo-
molecule, so that the descriptors of pseudo-molecules can be used
to evaluate the similarity between reactions. Data-driven
approaches, however, are likely to fail to detect reactions that have
a similar underlying mechanism but different topology of the
extended reaction center.

Using a large rule base of known reaction mechanisms or trans-
formations, NameRXN [105] is capable of categorizing roughly
1000 name reactions. Although it is detailed and accurate,
NameRXN can usually identify the reaction classes of only about
50% of reactions. As a result, it is necessary to use learning-based
classification algorithms to generalize to the remaining unclassi-
fied reactions.

4.3.2.2. Learning-based classification. The increasing availability of
large reaction datasets has promoted the development of machine
learning algorithms to classify chemical reactions, where a classi-
fier is directly trained with a set of classified reactions by
NameRXN. Schneider et al. [106] investigated a range of reaction-
difference fingerprints as features and five machine learning mod-
els, including random forest, naïve Bayes, k-means, logistic regres-
sion, and k-nearest neighbors, for classifying 50 reaction types in
the name reaction ontology (RXNO) [103]. A hierarchical classifica-
tion model was later proposed in Ref. [107], in which the confor-
mal prediction (CP) framework is used to predict 336 reaction
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types in a hierarchy with confidence measures. Recently, Schwaller
et al. [72] used a transformer-based model named RXNFP to
achieve a state-of-the-art classification accuracy of 98.2%, using
only the SMILES representations of chemical reactions as input
and removing the need for the automated annotation of reaction
centers.

4.3.3. Efficiency
Another desirable quality for evaluating whether a reaction

should be prioritized is efficiency, which is measured using the
synthetic complexity score of the reaction’s reactants and the yield
of the target products. Reactions with reactants that are easier to
synthesize and a higher yield of the target product are preferred.

4.3.3.1. SCScore. Coley et al. [108] proposed a method to calculate
the synthetic complexity of a reactant. The key ideas behind the
SCScore are twofold: First, if a molecule appears to require many
reaction steps to be synthesized by traditional methods, it is con-
sidered to be difficult to make and is assigned a higher SCScore;
second, the more frequently a molecule appears as a reactant,
the lower its synthesis complexity tends to be. It should be noted
that the SCScore of a reactant is always less than or equal to that
of the product.

4.3.3.2. Yield. In a chemical reaction, it is possible that some of the
reactants will not react to give a product. The yield of a chemical
reaction describes the percentage of the reactants that are success-
fully converted into the product, relative to the theoretical
maximum:

y ¼ Va

V t
� 100% ð3Þ

where y denotes the yield of a chemical reaction, Va is the actual
production quantity of the target product, and V t is the theoretical
production quantity.

Recently, there has been increasing interest in predicting the
yield using machine learning methods. Based on a reaction repre-
sentation by means of molecular fingerprints and chemical-
linguistic descriptors (CLDs) [109], Skoraczyński et al. [110] com-
pared a variety of machine learning methods (e.g., decision tree
and random forest) for predicting the reaction yield. Inspired by
the recent success of the transformer-based model in the classifica-
tion of reaction types [72], Schwaller et al. [111] fine-tuned the
RXNFP model [72] to predict the yield. Unfortunately, the perfor-
mance was not very satisfactory, as the yield prediction problem
presents the challenge of ill-defined and noisy annotations.

4.4. Multi-step retrosynthesis prediction

When working toward multi-step retrosynthesis planning, the
agent needs to choose a reaction from the legal candidate set, given
a target molecule at each step, observe the feedback, and then
make the next selection move on a new target molecule. This pro-
cess bears a striking similarity to the sequential decision-making in
a general strategic decision-making game; in other words, the
problem of multi-step retrosynthesis planning can be framed as a
one-player game [112]. Therefore, two central research issues that
must be addressed in multi-step retrosynthesis planning are the
same as those in solving a game—namely, how to efficiently search
for a successful route and how to estimate the value of each route.
Moreover, unlike games such as chess, where the winning state is
binary, retrosynthesis planning requires the winning state to be
differentiated according to the cost of synthesis. The third daunting
research challenge that remains is to evaluate the synthetic cost,
which involves multiple quantities such as the number of synthesis
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steps, the yield, and the total cost of the commercially available
reactants.

In the next section, we review the recent methods summarized
in Table 2 [15,21,22,112–115] and take a closer look at how they
learn a prior value estimation neural network in an offline manner
(offline learning), how they perform an online search in which the
estimated value can be optionally refined (online search), and how
they evaluate a retrosynthesis route (evaluation).

4.4.1. Offline learning
Due to the difficulty in heuristically and accurately determining

the retrosynthesis value (i.e., cost) of a molecule, researchers are
motivated to learn the value from historically simulated retrosyn-
thesis planning experiences. A learned policy that is parametrized
with a neural network in such an offline manner serves as a reli-
able prior probability for a search algorithm. The crux, of course,
is to construct a training dataset of retrosynthesis planning routes,
where each molecule is annotated with the defined cost of its syn-
thetic route. Existing works rely on routes either designed by che-
mists or hand-crafted with a single-step reaction dataset; as a
result, established retrosynthesis route datasets suffer from limited
size, noise, and imbalance due to being based on only successful
routes. Notably, Segler at al. [22] used reactions from the literature
as the ground-truth to pretrain a neural network that determines
the rank of reaction templates for generating a retrosynthesis reac-
tion when given a specific molecule. A policy network was later
incorporated into the upper confidence bound (UCB) formula in
order to balance the exploration and exploitation in an MCTS.

In contrast, instead of directly using reactions from the litera-
ture, Chen et al. [21] hand-crafted a dataset of retrosynthesis
routes for pretraining the policy network. They analyzed each
molecule that appeared inside a single-step reaction dataset by
checking whether the molecule could be synthesized by existing
reactions within the dataset and connecting the shortest route to
synthesize the molecule. All the routes were collected in order to
pretrain the policy network estimating the value of synthesizing
a molecule, which was used as the heuristic in an A* search.
Schwaller et al. [15] use pretrained reaction complexity metrics,
such as SCScore [108], as heuristics to form the Bayesian-like prob-
ability as the exploration prior knowledge.

4.4.2. Online searching
The online search is the most important component of retrosyn-

thesis planning. There are many search algorithms in AI, ranging
from uninformed algorithms such as greedy depth-first search to
informed algorithms such as proof-number search (PNS) and A*.
Table 2
Summary of existing methods for multi-step retrosynthesis planning algorithms with
regard to the two central research issues.

Method Search Value estimation Reference

PNS Depth-first proof-
number search

None [112]

3N-MCTS MCTS Offline training + online
rollout

[22]

Simulated
experience

Best–first search Offline training + online
policy iteration

[113]

DFPN-E Depth-first proof-
number search

Heuristic [114]

HyperGraph Beam search Heuristic [15]
Retro* A* search Offline training [21]
ASICS A* search Offline training +

heuristic
[115]

PNS: proof-number search; 3N-MCTS: MCTS with three neural networks; DFPN-E:
depth-first proof-number search with heuristic edge initialization; ASICS: advanced
system for intelligence chemical synthesis.
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Existing studies on multi-step retrosynthesis prediction favor
informed algorithms that are more efficient and accurate, as the
use of a heuristic function can potentially result in good solutions.
The definition of a heuristic function, however, is non-trivial, as the
value of each reaction is uncertain until the whole synthetic route
is finished, and the definition of a good synthetic route is vague and
subjective. For example, MCTS with three neural networks (3N-
MCTS) [22] uses the traditional UCB formula as the heuristic in
order to attain a balance between exploration and exploitation.
In addition to a pretrained policy network, which dictates the
exploitation only, 3N-MCTS incorporates the estimated value
through its fast rollout policy network to refine the heuristic func-
tion in UCB. Fig. 9 demonstrates the four phases of retrosynthesis
planning by means of 3N-MCTS, and Fig. 10 provides an exemplar
of a returned search tree. HyperGraph search [15] combines the
reaction confidence score with the same single-step retrosynthesis
model used in 3N-MCTS and SCScore to form a Bayesian-like
probability as the heuristic for a beam search. As an alternative,
PNS [116] is an effective search algorithm for solving games, and
especially for solving difficult endgame positions. By modeling ret-
rosynthesis planning as a two-player game, Heifets and Jurisica
[112] directly applied a depth-first proof-number search (DFPN)
to multi-step retrosynthesis prediction, based on an AND–OR tree.
Kishimoto et al. [114] modified the heuristic to avoid heuristic
degeneration in a lopsided search space. Chen et al. [21] combined
PNS and an A* heuristic search for retrosynthesis planning, where a
pretrained policy network is used to obtain a prior estimate of the
retrosynthesis cost of each unsolved molecule. Similarly, Jeong
et al. [115] performed a hybrid A*-like search on both a predefined
reaction knowledge graph and machine learning-based reaction
predictions, where the heuristic was designed to include the
molecular similarity, synthetic accessibility score, and likelihood
score.
4.4.3. Evaluation
The evaluation of a retrosynthesis planning model can often be

done in different, multidimensional ways. Here, we divide the
evaluation of a search algorithm into two main metrics: efficiency
and quality. In terms of efficiency, Chen et al. [21] used the number
of calls of single-step retrosynthesis models as a surrogate for the
time required to synthesize. Two commonly adopted methods
have been used as a metric of quality: ① evaluating the success
rate of an arbitrary set of molecules that finally finish a retrosyn-
thesis pathway (i.e., that arrive at the starting materials) within a
fixed number of single-step inference calls; and ② evaluating the
cost and length of a route. One approach for evaluating the cost
involves calculating the total sum of the negative log-likelihood
(NLL) of all single-step reactions along the route. (The length of a
route simply amounts to the total number of reactions in a given
route.) A hypergraph search [15] introduces chemoselectivity into
the route evaluation. Unfortunately, there is no existing automatic
tool to quantify the chemoselectivity accuracy of a reaction.
5. Review of current progress

5.1. Single-step retrosynthesis prediction

5.1.1. Datasets
Derived from US Patent and Trademark Office (USPTO)-granted

patents [117], USPTO-50 K [118] and USPTO-full [119] are two
widely adopted benchmark datasets for single-step retrosynthesis
prediction. USPTO contains 50 K reactions covering ten reaction
types, and USPTO-full consists of 950 K purified reactions from
USPTO 1976–2016 without being restricted to specific reaction



Fig. 9. Illustration of four phases in an MCTS for retrosynthesis planning.
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Fig. 10. An exemplar retrosynthesis search tree. The search tree starts from the target molecule; each node in the tree is either discarded or picked up for expansion; a leaf
node ends when it has no child node to expand or arrives at the starting materials.
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types. As suggested in Refs. [7,8], both USPTO-50 K and USPTO-full
have random training/validation/test splits of 8:1:1.
5.1.2. Architectural and training details
Table 3 [7,8,10,17,76,95,97,100,101] lists the specific architec-

ture and training efficiency for each singe-step retrosynthesis pre-
diction algorithm. The first three template-based methods
construct template-retrieval networks, and the next batch of meth-
ods (Seq2Seq, transformer, and MEGAN) build a sequence or graph
translation model. The last three algorithms are semi-template-
based, as they first build a reaction center prediction network for
predicting reaction centers, and then construct a reactant genera-
tion network for transforming synthons into reactants.
5.1.3. Evaluation metrics
The top-k exact match accuracy is a common evaluation metric

used to evaluate whether the ground-truth reactants fall into the
list of top-k predicted reactants. The accuracy is computed by
matching the canonical SMILES strings of the predicted reactants
with the ground-truth, typically using the RDKit [85] package for
canonicalization. It is notable that RDKit is a widely popular
open-source cheminformatics toolkit.
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Table 4 [7,8,10,11,17,76,95,97,100,101] summarizes the results
of template-based and template-free algorithms on USPTO-50 K,
where semi-template-based methods refer to two-stage
template-free algorithms that first predict the reaction center
and then generate reactants. We list the major conclusions as fol-
lows: First, the rule-based algorithm, such as ExpertSys, performs
poorly. Second, template-based methods, all of which use the same
set of templates following Ref. [10], are quite competitive, outper-
forming the Seq2Seq template-free approaches. Third, upon reac-
tion center identification, the two-stage template-free algorithms
tend to be the best performing among template-free algorithms,
especially for the top-1 prediction. Finally, the GLN, which maxi-
mizes the joint probability of the templates and reactants, is
favored for top-5/10/20/50 predictions, if the templates are auto-
matically extracted without much effort. Given that a target mole-
cule in practice is wildly different from those in templates, the
semi-template-based methods with both superior generalization
ability and competitive predictive capability are preferred. In
Table 5 [10,11,76,97], we demonstrate the scalability of four
selected algorithms on the USPTO-full dataset. It can be observed
that the GLN and DualTB outperform both the similarity-based
template-retrieval method RetroSim and the classification-based
template-retrieval method NeuralSym.



Table 3
Summary of the architectural and training details in existing single-step retrosynthesis prediction algorithms.

Method Template-retrieval network Template-free network Reaction center prediction
network

Reactant generation
network

Efficiency Reference

NeuralSym A fully connected layer:
① 512 hidden units;
② ELU non-linearity;
③ a dropout ratio of 0.2

Not applicable Not applicable Not applicable Training takes 6 h
with a NVIDIA
Tesla K80 GPU

[76]

GLN A GNN: ① three hidden
layers; ② 256 embedding
sizes; ③ average pooling;
④ ReLU non-linearity

Not applicable Not applicable Not applicable Training for up to
150 K updates
and a batch size
of 64 takes 12 h
with a GTX
1080Ti GPU

[10]

DualTB A transformer with an
encoder and a decoder, each
of which has: ① four self-
attention layers with eight
heads; ② a feedforward
layer with a size of 2048;
③ a 256 model size and
word-embedding sizes

Not applicable Not applicable Not applicable Training takes
48 h for 500 K
steps with a
NVIDIA Tesla
V100

[101]

Seq2Seq Not applicable A biLSTM encoder: ① two
layers; ② 512 embedding
sizes; ③ a dropout ratio of
0.2
A bidirectional decoder:
① four layers; ② 512
embedding sizes; ③ a
dropout ratio of 0.2; ④ a
maximum decoding length
of 1400

Not applicable Not applicable The model is
trained until the
evaluation log
perplexity starts
to increase

[7]

Transformer Not applicable A transformer with an
encoder and a decoder,
each of which has:
① three self-attention
layers with eight heads;
② 64 embedding sizes

Not applicable Not applicable The model was
trained with
1000 epochs

[100]

MEGAN Not applicable An encoder/decoder as
variants of a graph
convolution network:
① three/two layers with
eight heads; ② 128
attention embedding sizes;
③ a feedforward layer with
a size of 1024

Not applicable Not applicable Training takes
approximately
16 h with a
NVIDIA Tesla K80
GPU

[97]

G2Gs Not applicable Not applicable A R-GCN network: ① six
layers; ② 256 embedding
sizes

A R-GCN network: ① six
layers; ② 256 embedding
sizes; ③ five MLP layers
with 256 dimensions

The model was
trained for 100
epochs with a
single GTX
1080Ti GPU

[17]

RetroXpert Not applicable Not applicable An EGAT network: ① six
layers; ② 128 embedding
sizes; ③ four heads;
④ average pooling

A transformer with an
encoder and a decoder
each of which has: ① four
layers; ② 256 embedding
sizes; ③ eight heads. The
training dataset for this
transformer is augmented
with incorrectly predicted
synthons by the EGAT

Training of the
EGAT and the
transformer
models takes
about 30 h with
two GTX 1080 Ti
GPUs

[8]

GraphRetro Not applicable Not applicable An MPN with 256
embedding sizes and an
MLP with 512 hidden
units; the model has
1.03 M/1.06 M parameters
in the reaction class
known/unknown setting

A classifier of leaving
groups which is a two/one-
layer MLP with hidden
dimensions of [300, 150]/
300, containing a total of
0.84 M/0.81 M parameters
in the reaction class
known/unknown setting

Training of the
MPN and the
classifier takes
23–24 and 12–
13 h, respectively,
with a NVIDIA
1080Ti GPU

[95]

ReLU: rectified linear unit; ELU: exponential linear unit; GPU: graphics processing unit; MLP: multilayer perceptron.
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Table 4
Comparison of existing algorithms for single-step retrosynthesis prediction on USPTO-50 K.

Algorithm Accuracy (%)

Reaction type known a prior Reaction type unknown

Top-
1

Top-
3

Top-
5

Top-
10

Top-
20

Top-
50

Top-
1

Top-
3

Top-
5

Top-
10

Top-
20

Top-
50

Template-based methods ExpertSys (baseline in Ref.
[7])

35.4 52.3 59.1 65.1 68.6 69.5 — — — — — —

RetroSim [11] 52.9 73.8 81.2 88.1 91.8 92.9 37.3 54.7 63.3 74.1 82.0 85.3
NeuralSym [76] 55.3 76.0 81.4 85.1 86.5 86.9 44.4 65.3 72.4 78.9 82.2 83.1
GLN [10] 64.2 79.1 85.2 90.0 92.3 93.2 52.5 69.0 75.6 83.7 89.0 92.4
DualTB [101] 67.7 84.8 88.9 92.0 — — 55.2 74.6 80.5 86.9 — —

Template-free methods Seq2Seq [7] 37.4 52.4 57.0 61.7 65.9 70.7 — — — — — —
Transformer [100] 42.7 63.9 69.8 — — — 37.9 57.3 62.7 — — —
MEGAN [97] 60.7 82.0 87.5 91.6 93.9 95.3 48.1 70.7 78.4 86.1 90.3 93.2

Semi-template-based
methods

G2Gs [17] 61.0 81.3 86.0 88.7 — — 48.9 67.6 72.5 75.5 — —
RetroXpert [8] 62.1 75.8 78.5 80.9 82.8 83.5 50.4 61.1 62.3 63.4 63.9 64.0
GraphRetro [95] 63.9 81.5 85.2 90.0 — — 53.7 68.3 72.2 75.5 — —

Table 5
Comparison of selected algorithms on USPTO-full.

Algorithm Accuracy (%)

Top-1 Top-10

RetroSim [11] 32.8 56.1
NeuralSym [76] 35.8 60.8
GLN [10] 39.3 63.7
MEGAN [97] 33.6 63.9
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5.2. Multi-step retrosynthesis prediction

Evaluating the quality of a retrosynthesis planning route is par-
ticularly challenging, as discussed in Section 4.4. First, the evalua-
tion metric is vague: The reasons why chemists consider a
synthetic route to be good could range from a short pathway or
cheap starting materials to easily satisfied reaction conditions,
among other options. Second, there is no large-scale benchmark
dataset consisting of good synthetic routes that can be used to
quantitatively compare the performance of different multi-step
retrosynthesis prediction algorithms. Below are some datasets
and evaluation metrics as compromise.
5.2.1. Datasets
5.2.1.1. A small-scale benchmark with expert annotation. Due to the
difficulty of collecting the synthetic routes that have been demon-
strated to be effective in published papers, Heifets and Jurisica
[112] constructed a small benchmark including 20 synthesis
problems that appeared in the exams of the chemistry course at
Massachusetts Institute of Technology. The answers were provided
by the instructors. The main disadvantage of this benchmark is its
extremely small size.
5.2.1.2. A large-scale benchmark with automatic annotation. Chen
et al. [21] constructed a large-scale benchmark dataset of retrosyn-
thesis routes based on the USPTO dataset [117] made up of one-
step reactions. A synthetic route for a molecule is automatically
constructed by iteratively applying a one-step reaction in USPTO;
if multiple routes are found, the shortest one is selected. There
are a total of 299 202 training routes, 65 274 validation routes,
and 189 test routes. This dataset, however, is disadvantaged by
the limited chemical reactions covered by the USPTO and the
evaluation of route quality by length.
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5.2.1.3. Large-scale benchmarks without annotation. In Refs.
[22,114], the authors directly selected 497 diverse molecules first
reported in or after 2015 as known starting molecules and 897 tar-
get molecules that are not in the set of starting molecules,
respectively.

5.2.2. Evaluation metrics
5.2.2.1. Double-blind AB test by chemists. For a target molecule
whose synthetic route as specified by experts is provided, chemists
are invited to directly evaluate the goodness of a route predicted
by an algorithm via the double-blind AB test [22]. They are
required to choose one of the two routes based on personal refer-
ence and synthetic feasibility.

5.2.2.2. Effectiveness metrics. Different retrosynthesis planning
algorithms are compared with each other and with the routes
developed by manual or automatic annotation, if any. The effec-
tiveness metrics in the literature include the percentage or number
of molecules being solved, the length of a route, and the total cost
summarizing the NLL of all reactions along the route. Typically, ret-
rosynthesis planning algorithms take the confidence score for each
reaction predicted by a single-step retrosynthesis model as the log-
likelihood. On the other hand, Mo et al. [120] introduced an inno-
vative data-driven approach for route evaluation, which proposes a
dynamic tree-structured long short-termmemory (LSTM) model to
encode pathways with various structures into an embedding rep-
resentation. The embedding consists of the pathway-level informa-
tion, which is ready for use in both strategic route evaluation and
route similarity checking.

5.2.2.3. Efficiency metrics. Aside from the effectiveness, the effi-
ciency of a search algorithm is of major concern. Existing works
evaluate the time cost of solving a molecule and the number of
nodes expanded.

We have presented the performance comparison of selected
algorithms as published elsewhere, although there is no consistent
and comprehensive performance comparison of all of the multi-
step retrosynthesis prediction algorithms that we have introduced.
Closer inspection of Table 6 [114] and Table 7 [21]) shows that the
search algorithms based on the AND–OR tree, including Retro* and
the PNS variant depth-first proof-number search with heuristic
edge initialization (DFPN-E), consistently outperform MCTS in
terms of the route length and the search runtime. Despite the out-
standing performance of Retro* in Table 7 [21], we encourage more



Table 6
Performance comparison on 897 target molecules without annotation [114].

Algorithm Number of molecules solved Average length Longest length Time Number of nodes expanded

DFPN 691 3.59 8 46 542 460 738
DFPN-E 842 5.72 19 5 654 68 719
MCTS 852 5.58 21 18 552 184 347

Table 7
Performance comparison on 189 test molecules with automatic annotation [21].

Algorithm Percentage of molecules solved Shorter routes Better routes Time

DFPN-E 55.26% 59 25 279.67
MCTS 33.58% 14 41 370.51
Retro* 86.84% 50 112 156.58
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comparison on other datasets. The training routes used to train the
value estimation neural network of Retro* and the test routes are
constructed from the same dataset. It is not surprising, in this case,
that Retro* outperforms its competitors. We also recommend more
empirical studies of the policy iteration algorithm [113], which
improves the value estimation in comparison with Retro*. More
advanced attempts could involve taking the best part of both algo-
rithms—that is, estimating the value based on Ref. [113] and
searching with A* following Ref. [21].

5.3. Full-fledged retrosynthesis planning frameworks

Since 1959, when Corey and Wipke [4] introduced the first soft-
ware, computer-aided retrosynthesis has been a very active and
burgeoning area of research. The pioneers LHASA [121,122] and
SECS [123] constantly inspire the development of retrosynthesis.
Unfortunately, these two packages and their rule-based follow-
ups [6] suffer from two significant challenges:① Hand-coded rules
are of limited size and diversity, as expanding the rule set is very
laborious; and ② there is a lack of holistic metrics to rank or score
Table 8
Summary of recent full-fledged retrosynthesis planning frameworks.

Frameworks Single-step
retrosynthesis
prediction

Multi-step
retrosynthesis
prediction

Accessibility User interface

AizynthFinder Template-
based

MCTS Free Jupyter noteb
compound is
SMILES
Python interf

ASKCOS Template-
based

MCTS Free Service deplo
website, whe
is input via d
SMILES

Synthia
(Chematica)

Template-
based by rules

Beam-like
search

Commercial GUI with a co
input via dra

RoboRXN Molecular
Transformer,
which is
template-free

Beam search Free Cloud service
the website, w
compound is
drawing or SM

SciFinder Template-
based

MCTS Commercial GUI with a co
input via dra

Spaya AI Not available MCTS Commercial Service deplo
website, whe
is input via S
Python API en
of thousands
via a comman

GUI: graph user interface; CAS: Chemical Abstracts Service; API: application programmi
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pathways. This has motivated the need for automatically generated
reaction rules, with the framework of ARChem Route Designer [83]
as a representative. Still, ARChem fails to take stereochemistry and
regiochemistry into consideration.

Recently, the tremendous opportunities offered by deep learn-
ing and AI techniques have cultivated several excellent and popu-
lar full-fledged retrosynthesis planning frameworks, as
summarized in Table 8 [13–15,124–126]. Synthia [13,124], which
was previously known as Chematica, resorts to the chemical scor-
ing function and the reaction scoring function to determine which
hand-coded rule (among 100 000 hand-coded rules provided by
experienced chemists) to apply and which pathway to select. It
should be noted that these two functions can be edited by users.
Synthia explores the synthetic space by performing a multiple
beam-like search. In Ref. [13], Synthia is demonstrated to be cap-
able of proposing experimentally successful pathways for multiple
drug-like molecules. Although hand-coded rules or templates are
used in Synthia, it is worth noting that the template applicability
is further fine-tuned to evaluate site- or regioselectivity by a
machine learning model (i.e., a classifier).
Highlight References

ook where a
input via

ace

Open-source and well-documented in the
literature

[125]

yed on the
re a compound
rawings or

Interactive path planning
Reaction data from Reaxys

[14]

mpound is
wing

100 000 expert-coded rules
Each hand-coded rule identifies reaction
conditions and potential functional group
conflicts

[13,124]

deployed on
here a

input via
ILES

Trained on a set of 2.5 million chemical reactions
Available on the cloud

[15,126]

mpound is
wing

Integration of the rich CAS portfolio of reactions —

yed on the
re a compound
MILES
abling input
of molecules
d line

Spaya RScore distinguishes between complex
molecules that are still easy to make and
molecules containing irrelevant motifs (i.e.,
obviously not synthesizable)

—

ng interface.
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Instead of being commercially available, ASKCOS [14] is open-
source and more AI-driven compared to previous frameworks.
ASKCOS automatically extracts 163 273 templates from the Reaxys
database and trains a feedforward neural network to predict which
of the templates to apply for a target molecule. For multi-step ret-
rosynthesis planning, ASKCOS adopts a root-parallelized MCTS. To
guarantee the plausibility and quality of the returned pathways,
ASKCOS removes low-quality ones with the in-scope filter pro-
posed in Ref. [22] and pathways that cannot generate the target
product by means of a forward prediction model. The proposed
synthesis pathways of 15 medicinal molecules have been finished
via a completely automatic robotic system, with easily accessible
reagents and reactants.

Another open-source software, AiZynthFinder [125], is similar
to ASKCOS on the algorithmic side, but aims to provide a flexible
open-source benchmark that supports continuous development
on it. RoboRXN [15,126] is pushing ahead with single-step ret-
rosynthesis prediction from template-based methods to the com-
pletely template-free Molecular Transformer. More impressively,
RoboRXN first introduced four new metrics, including coverage,
class diversity, round-trip accuracy, and the JSD, to thoroughly
assess the Molecular Transformer; a hypergraph of potential reac-
tants is constructed with the help of these metrics, and a beam
search is performed on the hypergraph to conclude a pathway.
Researchers from International Business Machines Corporation
have demonstrated that RoboRXN can synthesize
3-bromobenzylamine in as little as 1 h, following its own planned
pathway. Other frameworks, such as SciFindern and Spaya AI, are
commercial and partly undisclosed.

The accessibility of these full-fledged frameworks is largely dic-
tated by the availability of the reaction database or hand-coded
reaction rules (templates) and the availability of starting material
databases (e.g., eMolecules). The commercial frameworks rely on
commercial databases, while open-source ones resort to publicly
available databases. Table 8 shows that the interfaces requiring
the minimum expertise, such as inputting SMILES and drawing a
molecule, are quite user-friendly in order to facilitate the adoption
of these retrosynthesis frameworks by chemists. We would expect
the current state-of-the-art single-step retrosynthesis prediction
algorithms (e.g., DualTB [101]) and state-of-the-art multi-step
planning methods (e.g., Retro* [21]) to replace their counterparts
in these existing frameworks, especially in the open-source ASK-
COS and AiZynthFinder, so that the planned pathways achieve
more exciting breakthroughs in either academia or commercial
usage.
6. Conclusion and outlook

The past three years have seen the rapid development of
machine-aided retrosynthesis planning. The pure data-oriented
AI approach [22] has made significant advances in both effective-
ness and efficiency, outperforming conventional machines based
on extracted rules and hand-designed heuristics. The continuously
evolving hybrid expert-AI system called Synthia [13,124] comple-
ments data-oriented approaches in planning the syntheses of com-
plex targets. The open-source framework ASKCOS [14] even pushes
ahead with robotic execution of the planned chemical synthesis
routes, further saving the time and effort of expert chemists. This
work is intended to provide a comprehensive review of existing
retrosynthesis approaches in the algorithm design space, so as to
① inform computer scientists and computational chemists of the
explored and remaining research problems in the retrosynthesis
of medicinal chemistry targets, ② encourage the integrations or
development of state-of-the-art machine learning methods into
full-fledged frameworks that provide chemist-friendly interfaces
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and are still the top choice of chemists, and ③ inspire more
research to improve any research aspect in the whole design space,
such as reaction representation or reaction center prediction. There
is still a long way to go before machines are widely accepted as
helpful assistants for chemists. We recommend several possible
future research directions.

6.1. Out-of-distribution generalization and detection

The distribution gap between the reaction datasets that are
used to train either single-step or multi-step retrosynthesis predic-
tion models and the testing molecules has a non-negligible impact
on the retrosynthesis planning performance. As thoroughly inves-
tigated in Ref. [127], a smaller overlap between the training reac-
tion dataset and new molecules (reactions)—such as the
AstraZeneca virtual libraries that contain general medicinal chemis-
try targets, as reported in Ref. [127]—will lead to a decreased gene-
ralization capacity of AI-driven approaches. Generalizing the
template-based methods and AI-driven methods to solve general
medicinal chemistry targets out of the distribution of existing reac-
tion datasets and even to process chemistry targets would cause
such approaches to be at high risk. Since the goal of retrosynthesis
is to synthesize novel molecules, future work on retrosynthesis
prediction should stress the establishment of models that are cap-
able of generalizing even to out-of-distribution molecules and
reactions with both ① competitive predictive accuracy and
② uncertainty calibration. Such a guarantee in predictive uncer-
tainty would allow appropriate intervention by expert chemists
when an out-of-distribution molecule or reaction is known to have
a high level of uncertainty. Modular models with compositionality
could be a qualified candidate for generalizing to out-of-
distribution samples.

6.2. Route evaluation

With the development of computer-aided synthesis planning
(CASP), automatic route evaluation becomes urgent when evaluat-
ing the performance of different CASP programs. In addition to con-
sidering the quality of each single-step reaction inside a route, the
overall quality of a route dictated by a retrosynthesis strategy is
essential. For example, a convergent synthesis is a priority for a ret-
rosynthesis strategy, since it reduces the maximum length of the
retrosynthesis pathway and improves the overall yield rate; pro-
tection and de-protection reaction types appearing together inside
a single retrosynthesis route contribute to avoiding non-selective
reactions. Although designing different heuristics in the existing
literature can guide the CASP program to follow a certain strategic
type of retrosynthesis planning, it also weakens the potential of
CASP in finding an overall ‘‘smarter” path. Future work could apply
the data-driven approach, while also providing a holistic route
evaluation with a better encoding of pathway-level information.

6.3. Knowledge graphs and reasoning

Knowledge graphs are semantic and structured representations
of human knowledge, which greatly facilitate many information-
processing and natural language-understanding problems
[128,129]. Analogously, in the field of retrosynthesis, constructing
a knowledge graph of molecules and the relationships connecting
the molecules would effectively complement the existing unstruc-
tured and neural retrosynthesis algorithms. First, the retrosyn-
thetic route of the target molecule could be regularized by the
synthesis route of the most similar molecule queried in the knowl-
edge graph. Second, it is much more efficient to incorporate a new
reaction or novel synthetic route annotated by chemists into an
online knowledge graph than to take it as a training example for
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updating a neural retrosynthesis algorithm. To achieve this goal,
we argue the critical importance of ① defining categories of mole-
cules by the type of reaction that synthesizes the molecules;
② building on such categories to formulate various categories of
relationships between molecules, such as ‘‘Category.Share,”
‘‘ReactantOf,” and ‘‘ReagentOf;” and ③ learning the contextual
representation of molecules by simultaneously considering the
individuality and connection of other molecules to reduce the
noise and ambiguity. Jeong et al. [115] has already made a reason-
able attempt toward the first research challenge above by explor-
ing the use of a knowledge graph to regularize predicted
reactions. The remaining challenges—that is, how to continually
update the knowledge graph and learn contextual representations
of molecules for facilitating retrosynthesis prediction and plan-
ning—are open to be explored next.
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