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Pre-trained language models have achieved striking success in natural language processing (NLP), leading
to a paradigm shift from supervised learning to pre-training followed by fine-tuning. The NLP community
has witnessed a surge of research interest in improving pre-trained models. This article presents a com-
prehensive review of representative work and recent progress in the NLP field and introduces the taxon-
omy of pre-trained models. We first give a brief introduction of pre-trained models, followed by
characteristic methods and frameworks. We then introduce and analyze the impact and challenges of
pre-trained models and their downstream applications. Finally, we briefly conclude and address future
research directions in this field.
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1. A brief history of pre-trained models

The concept of pre-training is related to transfer learning [1].
The idea of transfer learning is to reuse the knowledge learned
from one or more tasks and apply it to new tasks. Traditional trans-
fer learning employs annotated data for supervised training, which
has been the common practice for at least a decade. Within deep
learning, pre-training with self-supervised learning on massive
unannotated data has become the dominant transfer learning
approach. The difference is that pre-training methods use unanno-
tated data for self-supervised training and can be applied to vari-
ous downstream tasks via fine-tuning or few-shot learning.

In natural language processing (NLP), model pre-training is
based on the task of language modeling. The goal of language mod-
eling is to predict the next token, given a history of unannotated
texts [2–4]. The first milestone of neural language modeling
appears in Ref. [5], which models n-gram probabilities through dis-
tributed representations of words and feed-forward neural net-
works. Since then, deep learning methods have begun to
dominate the training paradigm of language modeling. In early
methods for neural language modeling, recurrent neural networks
(RNNs) were widely used [6,7]. Among the RNN family, long short-
term memory (LSTM) [8] stands out due to its advantage of being
less prone to the gradient vanishing problem via its well-designed
gating mechanism. With the emergence of the model known as
transformer [9], considerable efforts have been devoted to building
stronger and more efficient language models based on the trans-
former architecture [10–14]. In neural language modeling, dis-
tributed word representations named ‘‘word embeddings” that
are learned with models such as Word2Vec [15] and GloVe [16]
have become common initializations for the word vectors of deep
learning models, significantly improving the performance of down-
stream tasks such as named-entity recognition [16], part-of-speech
tagging [17], and question answering [18].

Although methods that leverage static word embeddings for
warm startup can improve the performance of downstream NLP
tasks, they lack the ability to represent different meanings of
words in context. To solve this problem, context–aware language
models were proposed to incorporate the complete context infor-
mation into the training procedure. Dai and Le [19] introduced
context–aware language modeling, which uses unannotated data
to improve sequence learning with recurrent networks. This
achieves significant performance improvement in sentiment anal-
ysis, text classification, and object classification tasks. In 2017, con-
textualized word vectors were proposed, which are derived from
an encoder that is pre-trained on machine translation and then
transferred to a variety of downstream NLP tasks [20]. However,
these studies use a small amount of data for pre-training and do
not achieve consistent performance improvement across all NLP
tasks. Nonetheless, these pioneering studies greatly motivated
follow-up pre-training methods for context modeling.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2022.04.024&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2022.04.024
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wanghaifeng@baidu.com
https://doi.org/10.1016/j.eng.2022.04.024
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng


H. Wang, J. Li, H. Wu et al. Engineering 25 (2023) 51–65
In another pioneering study on pre-trained models (PTMs),
embeddings from language models were proposed to leverage
bidirectional LSTMs in order to learn contextual word representa-
tions, and the pre-trained contextual embeddings were then
applied to downstream tasks [21]. This method demonstrated
great improvements in a broad range of NLP tasks, including ques-
tion answering, textual entailment, sentiment analysis, semantic
role labeling, coreference resolution, and named-entity extraction.

Since then, numerous PTMs within the ‘‘pre-training then fine-
tuning” paradigm have started to emerge. Generative pre-training
(GPT) [22] was the first model to use unidirectional transformers
as the backbone for the GPT of language models, thereby illustrat-
ing the dramatic potential of pre-training methods for diverse
downstream tasks. Following GPT [23], the first model to leverage
bidirectional transformers was called Bidirectional Encoder Repre-
sentations from Transformers (BERT); this model learns bidirec-
tional contexts by means of conditioning on both the left and the
right contexts in deep stacked layers. BERT introduced a denoising
autoencoding pre-training task, termed masked language model-
ing (MLM), to recover the corrupted tokens of input sentences
according to their contexts, in what was akin to a cloze task. This
approach greatly boosted the performance gain of downstream
natural language understanding (NLU) tasks. In this type of pre-
training, which is also known as self-supervised learning, the
pre-training labels are derived from unannotated data. By resorting
to web-scale unannotated data from the Internet, PTMs can auto-
matically learn syntactic and semantic representations.

The great success of PTMs has attracted a wide range of interest
in scaling them up and exploring the boundaries of pre-training
techniques; examples include decoding-enhanced BERT with dis-
entangled attention (DeBERTa) [24], text-to-text transfer trans-
formers (T5) [25], GPT-3 [26], large-scale generative Chinese pre-
trained language model (CPM) [27], PanGu-a [28], and ERNIE 3.0
Titan [29]. Large-scale PTMs, such as GPT-3, have now demon-
strated the powerful capabilities of zero-shot and few-shot learn-
ing. With dozens of examples, GPT-3 achieved a performance
similar to that of BERT, being fine-tuned with tens of thousands
of pieces of data on SuperGLUE [30]. GPT-3 can also generate
high-quality creative texts so that even humans cannot determine
whether or not the texts are written by a human. The success of
GPT-3 makes it possible to use this model for general-purpose text
generation, which was considered to be impossible in the past
decades.

Another line of pre-training methods has attempted to incor-
porate knowledge in order to enhance the representation capabil-
ity of PTM [31]. Some studies employ linguistic knowledge to
design entity-related tasks with weak supervision. For example,
they corrupt entity spans in texts and use knowledge-masking
strategies such as entity-level or phrase-level masking [31] and
entity replacement prediction [32] to better learn lexical, syntac-
tic, and semantic information from texts. Another direction of
research integrates structured knowledge together with plain
texts into pre-training, such as knowledge-enabled BERT (K-
BERT) [33], contextualized language and knowledge embedding
(CoLAKE) [34], enhanced language representation with informa-
tive entities (ERNIE-THU) [35], knowledge-enhanced BERT
(KnowBERT) [36], SenseBERT [37], knowledge embedding and
pre-trained language representation (KEPLER) [38], and ERNIE
3.0 [39]. ERNIE 3.0, which powers PTMs with knowledge, has
achieved new state-of-the-art (SOTA) performances across 54
Chinese NLP benchmarks, as well as some English benchmarks,
including SuperGLUE [30]. Moreover, K-Adapter [40] uses multi-
ple adapters for different tasks independently in order to better
fuse various knowledge sources and mitigate catastrophic forget-
ting. Knowledge-based incorporation has dramatically improved
knowledge sharing between unstructured text and structured
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knowledge, greatly promoting the capacity of knowledge memo-
rization and reasoning in PTMs [39].

However, the aforementioned models only focus on rich-
resource languages, such as English and Chinese, and thus may
overlook numerous low-resource languages. Recent work on mul-
tilingual models is aiming to transfer knowledge from rich-
resource languages to low-resource languages by modeling the
semantic representation of disparate languages in a unified vector
space. Inspirited by BERT, multilingual BERT (mBERT) was devel-
oped and released; this model is trained via multilingual masked
language modeling (MMLM) on multilingual corpora [41]. From
an intuitive perspective, the use of parallel corpora is conducive
to learning cross-lingual representations in different languages.
Therefore, cross-lingual language model (XLM) [42] leverages
bilingual sentence pairs to perform translation language modeling
(TLM), which encourages models to align the representations of
two languages together. Researchers have also released more mul-
tilingual language models, such as XLM-RoBERTa (XLM-R) [43],
InfoXLM [44], and ERNIE-M [45], by improving MMLM or TLM.
These studies have demonstrated that pre-trained multilingual
language models can significantly improve performance of multi-
lingual NLP tasks or low-resource language tasks.

Given the success of PTMs in NLP, these models have quickly
been extended to other fields such as computer vision [46–48]
and speech processing [49]. Although self-supervised pre-training
has been the most successful transfer learning method in NLP,
the PTMs used for computer vision tasks are diversified. The dom-
inant method in computer vision tasks is still supervised learning.
Sun et al. [48] show that representation learning holds promise for
advancing model performance based on large-scale (noisy) anno-
tated datasets, such as ImageNet [50] or JTF300M [48]. These
methods learn visual representations and significantly improve
the performance of various downstream vision tasks [48]. Self-
supervised pre-training have also been explored in computer
vision [51–56]. Doersch et al. [53] propose various prediction tasks
as propse tasks to learn visual representations. Dosovitskiy et al.
[57] explore the masked patch prediction task using transformer
architecture for images and demonstrates that pre-trained trans-
formers achieve excellent results compared with convolutional
neural networks (CNNs).

Recently, contrastive learning has been successfully utilized for
visual self-supervised pre-training. Contrastive predictive coding
[58] has achieved strong results in various scenarios, including
speech, image, and text. These methods [58–60] attempt to maxi-
mize the similarity of two augmentations of an image and mini-
mize the similarity of different images with contrastive loss.
More recently, pre-training methods have been advanced by utiliz-
ing language supervision for visual representation learning [61],
achieving a strong performance in image classification tasks and
other vision tasks.

Pre-training methods have also been applied to multimodal
applications, in which texts are combined with other modalities,
such as images [62–65], videos [66,67], and speech [68], enabling
a broad application scope of PTMs. Such methods [63] significantly
improve the performance of various multimodal tasks by jointly
learning task-agnostic representations of images and texts. Based
on the transformer architecture, PTMs build cross-modal semantic
alignments from large-scale image-text pairs. For image genera-
tion, DALL-E [69] and CLIP-guided generation [61] leverage multi-
modal language and vision input to render compelling visual
scenes. Although the most commonly used pre-training tasks for
multimodal context are MLM and masked region prediction, Yu
et al. [70] propose knowledge-enhanced scene graph prediction
to capture the alignments of more detailed semantics. Gan et al.
[71] incorporate adversarial training into pre-training and achieves
higher performance. Cho et al. [72] formulate multimodal
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pre-training as a unified language modeling task based on multi-
modal context. This demonstrates that PTMs are playing a critical
role in the artificial intelligence (AI) community and will poten-
tially promote the unification of the pre-training framework across
research fields such as speech, computer vision, and NLP.

There are some existing reviews on PTMs. Some focus on partic-
ular types and applications of PTMs, such as transformer-based
pre-trained language models [73], BERT-based training techniques
[74], prompted-based learning [75], data augmentation [76], text
generation [77], and conversational agent design [78]. Another line
provides a panoramic perspective of the whole progress of PTMs.
For example, Ramponi and Plank [79] provide an overview from
early traditional non-neural methods to PTMs in NLP. Qiu et al.
[80] systematically categorize existing PTMs from four different
perspectives and outlines some potential directions of PTMs for
future research. Bommasani et al. [81] propose the concept of
foundation models to unify PTMs in different subfields such as
NLP, computer vision, and speech, and analyzes their opportunities
and challenges in various AI domains. Han et al. [82] take a deep
look into the history of PTMs to reveal the crucial position of PTMs
in the AI development spectrum. In our review, we mainly focus on
the PTMs in NLP: We first provide a detailed analysis of different
PTMs and trends in PTMs at scale, discussing their impact on the
field of NLP and the main challenges of PTMs; we then focus on
our observations of and practices in the industrial applications of
PTMs.

In this paper, we will first summarize the methods and taxon-
omy of pre-trained languagemodels in Section 2, followed by a dis-
cussion of the impact and challenges of pre-trained language
models in Section 3. Next, we will introduce the industrial applica-
tions of pre-training techniques in Section 4. Finally, we will con-
clude and address potential future work in this area.
2. Methods of PTMs

2.1. Different frameworks and extensions of PTMs

When working with PTMs, it is essential to design efficient
training methods that can fully use unannotated data and assist
downstream fine-tuning. In this section, we briefly introduce some
widely used pre-training frameworks to date. Fig. 1 summarizes
the existing prevalent pre-training frameworks, which can be clas-
sified into three categories: transformer decoders only; trans-
Fig. 1. An illustration of the existing prevalent pre-training frameworks, where x is the or
the set of masked tokens in x. S denotes the start token embedding of a sequence. p1, p
conditional probability. i and j indicate the start and the end indices of input tokens of
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former encoders only; and transformer decoder–encoders. A brief
description of each category is given below, and more detail is pro-
vided in the subsections that follow.

� Transformer decoders only frameworks use a unidirectional
(left-to-right) transformer decoder as the pre-training back-
bone and predict tokens in a unidirectional autoregressive
fashion. Here, ‘‘auto-regression” refers to predicting the cur-
rent token based on historical tokens—that is, the partial
sequence on the left of the current token. More specifically,
given the text sequence x ¼ x1; x2; x3; . . . ; xTð Þ (where x is
the original sentence, xt (t = 1, 2, . . ., T) is the tth token, and
T is the sequence length), an autoregressive model factorizes
the likelihood of the input text sequence as
p xð Þ ¼ QT

t¼1p xtð jx<tÞ , where p is the likelihood of the input
text sequence.

� Transformer encoder only frameworks leverage a bidirec-
tional transformer encoder and aim to recover corrupted
tokens, given the input sentences with randomly masked
tokens.

� Transformer encoder–decoder frameworks aim at pre-
training a sequence-to-sequence (seq2seq) generation model
by masking tokens on the source side and recovering them on
the target side. These frameworks consist of two classes:
① seq2seq encoder–decoders, which consist of a bidirec-
tional transformer encoder and a unidirectional decoder with
separate parameters; and ② unified encoder–decoders, in
which a bidirectional transformer encoder and a left-to-
right decoder are simultaneously pre-trained with shared
model parameters.

2.1.1. Transformer decoders only
The objective for language modeling is to predict the next token

auto-regressively, given its history. The nature of auto-regression
entails the future invisibility of input tokens at each position; that
is, each token can only attend to the preceding words. GPT [22] was
the first model to use the transformer decoder architecture as its
backbone. Given a sequence of words as context, GPT computes
the probability distribution of the next word with the masked
multi-head self-attention of the transformer. In the fine-tuning
phase, the pre-trained parameters are set as the initialization of
the model for downstream tasks. GPT is pre-trained on the
BooksCorpus dataset, which is nearly the same size as the 1B Word
Benchmark. It has hundreds of millions of parameters and
improves SOTA results on nine out of 12 NLP datasets, showing
iginal sentence, xt (t = 1, 2, . . ., T) is the tth token, T is the sequence length, andM(x) is
2, p3, and p4 denote the position embeddings of the first to fourth tokens. P is the
the encoder, respectively.
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the potential of large-scale PTMs. GPT-2 [83] follows the unidirec-
tional framework with a transformer decoder that was trained
with a larger corpus, namely, WebText, and 1.5 billion model
parameters. GPT-2 achieves SOTA results on seven out of eight
tested language modeling datasets in a zero-shot setting. GPT-3
[26] further increases the parameters of the transformer to 175 bil-
lion and introduces in-context learning. Both GPT-2 and GPT-3 can
be applied to downstream tasks without fine-tuning. They achieve
a strong performance by scaling up the model size and dataset size.

Unidirectional language modeling lacks attention on its full
contexts on both sides, which may degrade its performance on
downstream tasks. To tackle this problem, Yang et al. [84] propose
the use of permuted language modeling (PLM), which performs
autoregressive modeling on permuting input tokens. For example,
a permutation of the sentence ‘‘I love the movie” can be ‘‘I the
movie love.” Once the permutation is chosen, the last few tokens
of the permuted sentence are the target to predict. In the above
example, the token ‘‘love” is the target, depending on the visible
context ‘‘I the movie.” An advantage of PLM is that it can fully
leverage the contextual information for different masked tokens,
thus building dependent context relationships with both preceding
and successive words. To enable PLM, Yang et al. [84] propose a
novel two-stream self-attention mechanism, with one query
stream to compute the query vectors and another content stream
to compute the key/context vectors. The two-stream self-
attention approach evades the leakage of visible context to the
masked positions.

2.1.2. Transformer encoders only
Pre-trained transformer encoders, such as BERT [23], have

become the standard in NLP systems. BERT uses an MLM frame-
work with a transformer as the backbone. In the pre-training stage,
BERT randomly replaces tokens with a special token [MASK] and
tries to recover corrupted words based on their contextual repre-
sentations. It also adopts an objective of next-sentence prediction
(NSP) to capture the discourse relations between two sentences,
which is helpful for sentence-level tasks, such as question answer-
ing. Devlin et al. [23] refer to this procedure as a cloze task, accord-
ing to Ref. [85]. BERT was pre-trained on a combination of the
BooksCorpus (800 M words) and English Wikipedia (2500 M
words), and achieved great improvements on 17 NLP tasks, attain-
ing a level even better than a human performance on some of the
downstream tasks. However, BERT’s shortcomings are also obvi-
ous: Because the [MASK] token does not appear in real data during
fine-tuning, it creates a mismatch between pre-training and fine-
tuning. To amend this discrepancy, BERT uses a novel method to
mask tokens: Among the 15% of the random positions that would
have to be masked, only 80% are replaced by the [MASK] token,
while 10% are kept as the original tokens, and 10% are replaced
by random tokens in the training process. This masking strategy
causes the model to take more steps to converge, since only 15%
of the tokens in the training batch are predicted. Another problem
with BERT is that it predicts tokens independently without consid-
ering other masked tokens. The model proposed in Ref. [86], a uni-
fied encoder–decoder model, tends to solve this problem by
blanking out text spans of input sentences and predicting the
masked span auto-regressively, which mitigates the independent
assumption of masked tokens within the same span in the pre-
training of masked language models.

Following the success of BERT, an enormous amount of research
effort has gone into MLM. SpanBERT [87] is designed to predict
spans of text. It chooses to mask random contiguous spans instead
of random tokens, and a span boundary prediction objective is
introduced to force the model to predict masked spans according
to the structural information of the span boundaries. It also
achieves better performance by replacing the NSP objective in
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BERT with single-sequence training. SpanBERT outperforms BERT
on span-related tasks such as question answering and coreference
resolution. Like SpanBERT, which uses lexical analysis and chunk-
ing tools to locate the span boundary, enhanced representation
through knowledge integration (ERNIE) [31] uses a Chinese tok-
enizer to obtain phrase information and then replaces the random
token masking in BERT with the entity or phrase masking. ERNIE
also utilizes a named-entity recognition toolkit to identify the
entity boundary and randomly masks tokens at the entity level,
thus enabling the integration of external knowledge into model
pre-training.

2.1.3. Transformer encoder–decoders
Transformer encoder–decoder architecture is dedicated to nat-

ural language generation (NLG) tasks. Unlike NLU, which focuses
on comprehending texts, NLG aims to generate a coherent, mean-
ingful, and human-like natural language expression according to
specific inputs. For example, the goal of machine translation is to
generate a sentence in the target language with the same meaning
as the given source language input; for text summarization, the
goal is to generate a short version of the input document that cap-
tures the core meanings and opinions. The critical point is to model
two sequences simultaneously—one for the input and the other for
the output.

Song et al. [88] proposes Masked Sequence-to-Sequence Learn-
ing (MASS) for language generation, in order to pre-train a seq2seq
model. The basic idea of MASS is to take a sentence with a masked
fragment (i.e., several consecutive tokens) as input and predict the
masked fragment conditioned on the encoder representations. In
this way, MASS successfully transforms the transformer encoder
framework into an autoregressive framework by masking on the
source side and predicting on the target side. MASS uses monolin-
gual data from the News Crawl Datasets of Workshop on Machine
Translation (WMT) to pre-train the model, and shows substantial
improvement on machine translation quality in comparison with
models directly trained on annotated data.

Pre-training on both a transformer encoder and a transformer
decoder results in a unified model that can simultaneously deal
with both language understanding and language generation. One
member of this class is the standard transformer encoder–decoder
model that does not share unified encoder and decoder compo-
nents. Bidirectional and Auto-Regressive Transformers (BART)
[89] proposes a similar objective as MASS, but differs in that MASS
masks a consecutive series of tokens—that is, n-grams of the
input—while BART corrupts text with an arbitrary noising func-
tion—that is, masking/deleting/replacing/exchanging random
tokens in different positions. BART can be viewed as a combination
of the above two architectures: The random masking strategy on
the source side enables the model to deal with NLU tasks, and
the overall seq2seq pre-training framework enables the model to
be generalized to NLG tasks. Pre-trained on 160 GB data of news,
books, stories, and web text, BART achieves comparable results to
RoBERTa [90] and new SOTA results on dialogue and abstractive
text summarization. Another member of this category unifies the
encoder and decoder as identical transformer blocks. Dong et al.
[91] and Bao et al. [92] also propose a unified language model
pre-training framework for NLU and generation. These studies par-
tition the self-attention matrix into three components: the bidirec-
tional component, the unidirectional component, and the seq2seq
component, which respectively stand for unidirectional, bidirec-
tional, and seq2seq language models. Their experiments show per-
formance gains over using a single pre-training objective. Du et al.
[86] propose a variant of the model reported in Ref. [91], putting
the masked tokens on the right of the unmasked tokens and con-
ducting autoregressive blank filling. Xiao et al. [93] mask multiple
segments at different granularities to encourage the decoder to
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rely more on the encoder representations, thus enhancing the cor-
relation between the encoder and the decoder. Zhang et al. [94]
adopt a different approach: First, a sentence is removed according
to the pre-defined importance criteria from an input document,
and then the removed sentence is generated based on the remain-
ing context sentences. This strategy performs auto-regression at
the sentence level and prompts whole-document understanding
and summary-like generation. Experiments on 12 downstream
summarization tasks demonstrate SOTA results, showing the effec-
tiveness of the gap-sentence pre-training method.

2.2. Scaling up PTMs

Recent advances in NLP have demonstrated a promising trend
toward scaling up PTMs with billions of parameters. OpenAI
researchers trained a model called GPT-3, which has 175 billion
parameters [26]. GPT-3 achieves strong performance on many
NLP datasets, including question answering, machine translation,
and three-digit arithmetic. GPT-3 demonstrates that scaling up
language models significantly improves task-agnostic and few-
shot performances, sometimes even achieving better results than
prior SOTA fine-tuning approaches [26]. Although large PTMs are
a promising direction, training large-scale PTMs is a challenging
task, which requires massive training data and graphics processing
unit (GPU) resources. Thus, efficient model training algorithms
play a crucial role in scaling up PTMs. The following section intro-
duces the prevalent large-scale PTMs as well as the training meth-
ods used to achieve them.

2.2.1. PTMs at scale
Table 1 [24–28,39,95–102] summarizes the mainstream large-

scale PTMs. The size of PTMs has become increasingly larger in
recent years, ranging from 2.6 billion to even 175 billion parame-
ters. Large-scale pre-trained language models embrace a potpourri
Table 1
Summary of large-scale pre-trained language models.

Model Number of
parameters

Model
architecture

Knowledge
learning

Language Pre-

DeBERTa1.5B 1.5 billion Encoder only — English Eng
T5 11 billion Encoder–

decoder
(seq2seq)

— English C4 (

GPT-3 175 billion Decoder only — English Clea
Web

CPM 2.6 billion Decoder only — Chinese Chin
PanGu-a 200 billion Decoder only — Chinese Chin

(1.1
ERNIE 3.0 10 billion Encoder–

decoder
(unified)

p
Chinese,
English

Chin
Eng

Turing-NLG 17 billion Decoder only — English Eng
HyperCLOVA 204 billion Decoder only — Korean Kore
CPM-2 11 billion Encoder–

decoder
(seq2seq)

— Chinese,
English

WuD
(2.3
300

CPM-2-MoE 198 billion Encoder–
decoder
(seq2seq)

— Chinese,
English

WuD
(2.3
300

Switch
transformers

1751 billion Encoder–
decoder
(seq2seq)

— English C4
(750

Yuan 1.0 245 billion Encoder–
decoder
(unified)

— Chinese Chin
(5 T

GLaM 1.2 trillion Encoder only — English Eng

Gopher 280 billion Decoder only — English Eng

ZeRO: zero redundancy optimizer; MoE: mixture-to-expert.
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of training recipes including exponentially increased trainable
parameters, pre-training architectures, knowledge enhancement,
language-specific corpora, and different pre-trained tasks to
support the billion-level training of PTMs. Although training
methods differ among these models, all the PTMs use transformers
[9] as the standard backbone due to the latter’s efficient parallel
computing performance. Since training large-scale models requires
massive unsupervised data, research on scaling up PTMs focuses on
high-resource languages such as English and Chinese.

According to the different designs used in pre-training architec-
tures, large-scale PTMs can be generally classified into three
classes (as in Section 2.1): encoder only, decoder only, and
encoder–decoder. The majority of large PTMs leverage the decoder
only or the encoder–decoder architecture, whereas only a few large
models adopt an encoder-only design. This is because encoder-
only models cannot perform well on generation tasks, such as text
summarization and dialogue generation, while decoder-only mod-
els that are designed for language generation can shed light on not
only NLG but also language understanding tasks via prevalent
prompting techniques such as GPT-3 [26].

� Encoder-only models at scale employ a bidirectional trans-
former encoder to learn contextual representations; they
demonstrate impressive performance onNLU tasks. For exam-
ple, DeBERTa1.5B [24], which consists of 48 transformer layers
with 1.5 billion parameters, applied a disentangled attention
mechanismandenhanced themaskdecoder to surpass human
performance on the SuperGLUE [30] benchmark. Since a bidi-
rectional nature makes the model unable to be directly used
in NLG tasks, DeBERTa trained another version of a unified
encoder–decoder to adapt to NLG tasks.

� Decoder-only models use transformer decoders by applying
autoregressive masks to prevent the current token from
attending to future tokens. Examples include GPT-3 [26],
CPM [27], and PanGu-a [28]. This line of PTMs aims at
training data Training strategy Training
platform

Reference

lish data (78 GB) — PyTorch [24]
750 GB) Model/data

parallelism
TensorFlow [25]

ned CommonCrawl,
Text

Model parallelism — [26]

ese corpus (100 GB) — PyTorch [27]
ese data
TB, 250 billion tokens)

MindSpore auto-
parallel

MindSpore [28]

ese data (4 TB),
lish data

Model/pipeline/
tensor parallelism

PaddlePaddle [39]

lish data DeepSpeed/ZeRO — [95]
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generating human-like texts. Turing-NLG [95] is a 17-billion-
parameter language model that has achieved strong perfor-
mance in language model benchmarks. GPT-3, with 175 bil-
lion parameters, can strikingly write samples that deceive
human readers, demonstrating that large-scale language
models can dramatically advance few-shot learning scenarios
with in-context learning. In addition to English large-scale
monolingual PTMs, there are also models for other languages
such as Chinese and Korean. CPM [27] (2.6 billion parame-
ters) and PanGu-a [28] (200 billion parameters) are two
Chinese variants of GPT-3, while HyperCLOVA [96] is a 204-
billion-parameter Korean variant.

� Encoder–decoder models can be further categorized into two
classes: ① conventional seq2seq encoder–decoders and ②
unified encoder–decoders. Conventional seq2seq encoder–
decoders adopt the classic transformer encoder–decoder
architecture for pre-training. Recent work includes the T5
[25], the multilingual T5 (mT5) [97], and the large-scale
cost-effective pre-trained language model (CPM-2) [98]. T5
[25], which has up to 11 billion parameters, unifies the NLP
tasks in one framework by casting the language understand-
ing and generation tasks in a text-to-text manner. As the
multilingual variant of T5, mT5 [97], which has up to 13 bil-
lion parameters, has extended the monolingual data to 101
human languages and outperformed the previous SOTA
results on a variety of multilingual benchmarks. CPM-2
[98], with 11 billion parameters, is a bilingual model trained
on Chinese and English, whose mixture-of-expert (MoE) ver-
sion, denoted as CPM-2-MoE, has 198 billion parameters.
This model has demonstrated excellent general language
intelligence via fine-tuning and prompting. Another kind of
encoder–decoder model is the unified encoder–decoder
framework, in which the encoder–decoder architecture
shares the same module and applies different mask strategies
for MLM and autoregressive language modeling. ERNIE 3.0
[39] jointly learns language understanding and generation
by designing two separate heads for understanding and gen-
eration, which share a task-agnostic representation. As the
third-generation PTMs (with ten billion parameters) in the
ERNIE series, ERNIE 3.0 combines the merits of both autore-
gressive causal language models and autoencoding models
to train large-scale knowledge-enhanced PTMs. It has out-
ranked the SOTA performance on a variety of NLP bench-
marks, including SuperGLUE [30]. These methods have
demonstrated superior performance because they all tend
to unify multiple NLP tasks in one model and use different
kinds of corpora or knowledge to enhance the performance.

Most of the above-mentioned large-scale models are trained on
plain texts without integrating knowledge. Therefore, some
researchers have attempted to incorporate knowledge such as lin-
guistic knowledge and world knowledge into PTMs. ERNIE 3.0 pre-
trained transformers on massive unstructured texts and knowl-
edge graphs to learn lexical, syntactic, and semantic information.
It enriched the PTMs through knowledge integration, phrase mask-
ing, and named-entity masking.
Table 2
Large-scale multimodal PTMs.

Model Number of
parameters

Pre-training paradigm Pre-training Dat

Denosing
auto-encoder

Causal language
model

DALL-E 12 billion � p
250 million Engl

CogView 4 billion � p
30 million Englis

M6 100 billion
p � 1.9 TB images +

ERNIE-ViLG 10 billion
p p

145 million Chin
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The dramatic progress in language PTMs has attracted research
interest on multimodal pre-training [72,103–107]. Table 2
[69,103,104,107] lists the details of large-scale multimodal PTMs.
DALL-E [69] is a 12-billion variant of GPT-3 that was trained on
250 million English text–image pairs to generate images according
to language descriptions, thereby improving the zero-shot learning
performance. ERNIE-ViLG [107] uses a unified GPT framework for
bidirectional image–text generation, formulating both the image
and text generation as autoregressive generative tasks. As a result,
it outperforms previous methods on generative tasks such as text-
to-image generation and image captioning with a ten-billion
parameter model pre-trained on 145 million high-quality Chinese
text–image pairs. Moreover, the multi-modality-to-multi-modality
multi-task mega-transformer (M6) [104] is a 100-billion-
parameter transformer encoder, which is trained on over 1.9 TB
images and 292 GB Chinese texts. M6 achieved strong performance
in visual question answering, image captioning, and Chinese
image–text matching. In addition to their improvements on multi-
modal tasks, these models can improve the performance of mono-
modal tasks, such as text classification, inference, summarization,
and question generation [105]. These results show that multimodal
pre-training can leverage multimodal information to enhance both
image representation and text representation, which in turn
improves the performance of both multimodal tasks and NLP tasks.

2.2.2. Efficient training of large-scale models
The exponential increment of the PTMs’ size has posed a great

challenge for efficient training due to the limited GPU memory
and unaffordable training time. Therefore, it is non-trivial to lever-
age efficient training techniques to speed up large-scale model
training.

2.2.2.1. Dense models. Data parallelism is a simple solution that
allocates different data partitions to multiple workers and dupli-
cates identical parameters at all workers. However, it usually suf-
fers from a small per-GPU batch size. Another solution is model
parallelism, in which model parameters are partitioned over differ-
ent workers. However, conventional optimization algorithms
require extra memory per parameter to store intermediate states,
which hinders the model size from being updated efficiently. Pipe-
line parallelism combines the merits of both model parallelism and
data parallelism to reduce time costs. GPipe [108] uses a novel
batch-splitting pipelining algorithm by first partitioning a mini-
batch of training samples into smaller micro-batches and then
aggregating the gradient update simultaneously at the end.
Megatron-LM [109] is an intra-layer model parallel approach for
transformer networks, which adds a few synchronization primi-
tives on the self-attention and multi-layer perceptron blocks.
PTD-P [110] combines pipeline, tensor, and data parallelism across
multi-GPU servers with a novel interleaved pipelining scheduling
strategy, increasing the throughput by more than 10%. Recently,
Colossal-AI [111] implemented a combination of various data,
pipeline, sequence, and multiple tensor parallelism for large-scale
model training, which can be a good option for training dense
models.
a Training parallelism Training
platform

Reference

ish text–image pairs Mixed-precision training PyTorch [69]
h text–image pairs — PyTorch [103]
292 GB Chinese MoE — [104]
ese text–image pairs Mixed-precision training PaddlePaddle [107]



Fig. 2. The evolution shift of representation techniques on various NLP bench-
marks. Results are from Refs. [23,39,116,117]. SuperGLUE is an NLU leaderboard
consisting of a set of difficult language understanding tasks; an original Chinese
natural language inference dataset (OCNLI), a Chinese machine reading compre-
hension dataset (DRCD), a large scale Chinese short text summarization dataset
(LCSTS), and a Chinese multi-domain dialogue dataset towards multi-turn
knowledge-driven conversation (KdConv) are evaluation corpora for natural
language inference, machine reading comprehension, text summarization, and
dialogue generation, respectively. w/o: without.
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2.2.2.2. Sparse models. The sparsely gated MoE model [112]
achieved more than 1000 times the increment in model capacity
using a sparsely gated combination of multiple expert sub-
networks. By leveraging the ensemble mechanism, MoE employs
the gated unit to determine which top-k sub-networks should be
activated for prediction.

Switch transformers [91] have advanced the scale of PTMs with
up to trillions of parameters by simplifying the sparse routing and
replacing the feed-forward fully connected layers with switch
routing, in which each sample is routed to only a single expert.

2.2.2.3. Other efficient training strategies. Recent techniques for
memory-efficient optimization include mixed-precision training
[113] and memory-efficient adaptive optimization. Mixed-
precision training utilizes half-precision floating-point numbers
without losing model accuracy, which nearly halves the memory
requirements. Other studies have aimed at memory-efficient adap-
tive optimization. For example, the zero redundancy optimizer
(ZeRO) [114], which is the catalyst that powers Turing-NLG, con-
sists of ZeRO-data parallelism (DP) and ZeRO-residual (R) algo-
rithms that aim at reducing the memory footprint of the model
states and the residual memory consumption, respectively. First,
ZeRO-DP optimizes the optimizer states, gradients, and parameters
by performing optimizer state partitioning, adding gradient parti-
tioning, and adding parameter partitioning. Then, ZeRO-R opti-
mizes the residual memory through the removal of activation
replication, pre-definition of appropriate temporary buffer size,
and proactive memory management.

3. Impact and challenges of PTMs

3.1. Impact of PTMs in NLP

The emergence of PTMs has enabled a significant breakthrough
in the field of NLP. Before PTMs, many studies focused on designing
specialized models for specific NLP tasks, which usually could not
be used for other tasks. For example, Kim [115] proposes
the TextCNN model for text classification, and Hochreiter and
Schmidhuber [8] propose the LSTMmodel for language generation.
Since their emergence, PTMs have started to serve as foundation
models in NLP due to their impressive capabilities in representa-
tion learning. This has opened up a new ‘‘pre-training then fine-
tuning” paradigm for NLP. This paradigm can fully exploit unanno-
tated data to train a foundation model and then fine-tune it with
limited task-specific annotated data. Even with limited annotated
data, the performance of the downstream NLP tasks is greatly
improved. Fig. 2 [23,39,116,117] demonstrates the evolution of
SOTA results on five NLP benchmarks from supervised models
without pre-training to PTMs such as BERT and ERNIE 3.0. It is evi-
dent that PTMs significantly outperform the previous non-PTMs,
and the knowledge-enhanced ERNIE 3.0 has steadily exceeded
BERT on many NLP tasks. Another important trend is to adopt
PTMs to unify almost all NLP tasks. For example, T5 [25] casts both
language understanding and generation tasks in a text-to-text
manner and tackles all NLP tasks using a seq2seq PTM. Thus, the
NLP community has witnessed the emerging trend of task
unification.

GPT-3 [26] has shown a promising performance in zero-shot
learning or few-shot learning. Along with GPT-3, a new prompt-
exploiting training [118] has been proposed to reformulate the task
paradigm. Thus, pre-training then prompt tuning has initiated a
new trend to better leverage PTMs. Instead of adapting PTMs to
downstream tasks with fine-tuning, downstream tasks are pre-
defined as ‘‘slot-filling” tasks: Given a human-designed template
with slots, let the PTMs learn to fill out these templates. This
framework has been proven powerful, as it enables language
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models to adapt to few-shot or zero-shot scenarios; as a result, it
has attracted wide attention in the NLP community. We generally
describe the impact of PLMs in the following three aspects: NLU,
NLG, and dialogue. For dialogue, PTMs focus on response genera-
tion. Here, we take dialogue as a separate category due to its large
amount of related work.

3.1.1. Natural language understanding
NLU is a broad topic in NLP that contains many tasks, such as

named-entity recognition, sentiment analysis, document classifica-
tion, reading comprehension, semantic matching, natural language
inference, and information extraction. Table 3
[39,116,117,119,120] compares the performance of models with
and without pre-training techniques on four different NLU tasks.
It can be seen that models with pre-training outperform those
without pre-training by a clear margin. Thus, PTMs have become
the standard backbone in NLU tasks. Numerous researchers have
employed PTMs to provide task-agnostic representations and then
design task-specific architectures or objectives to enhance the NLU
performance. For example, BertGCN [121] combines the represen-
tative capacity of BERT and transductive learning from graph con-
volutional networks to advance its performance of text
classification, which increases its accuracy by around 4%.

To compare the performances of the PTMs on NLU tasks,
researchers uploaded their results on two benchmarks, GLUE and
SuperGLUE. These PTMs now outperform humans on these two
leaderboards. In addition, multilingual models such as mBERT
[41], XLM [42], mT5 [97], and ERNIE-M [45] use a unified model
to represent various languages such that the learned information
can be shared among different languages. This technology allevi-
ates the data sparseness problem in low-resource languages and
reduces the demand to train specialized language models for each
specific language. This new paradigm is changing the focus of
research on NLP from designing specialized models for multilin-
gual tasks to studying how PTMs can be used in these tasks.

3.1.2. Natural language generation
NLG tasks, such as text summarization, question generation,

and data-to-text generation, are very challenging in NLP. Due to
the huge search space, it is difficult for methods before the PTM
era, which suffer from insufficient annotation data and limited
model parameters, to generate fluent, coherent, and informative
text. As shown in Table 4 [94, 122–125], PTMs have played a key



Table 3
SOTA performance with and without pre-training on NLU tasks.

NLU task Sentiment analysis SST-2 binary
classification
(accuracy)

Natural language inference
OCNLI
(F1)

Nested named entity recognition
GENIA
(F1)

Machine reading comprehension
DRCD
(F1)

SOTA w/o pre-
training

93.2 59.80 74.80 78.03

SOTA w/ pre-
training

97.5 82.75 83.75 95.84

Results are from Refs. [39,116,117,119,120]. w/: with; SST-2: Stanford Sentiment Treebank v2; OCNLI: Original Chinese Natural Language Inference; DRCD: Delta Reading
Comprehension Dataset.
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role in improving the performance of NLG tasks. Large-scale PTMs
automatically learn word combinations and sentence expressions
from unannotated data, which significantly improves the models’
ability in language generation in terms of fluency, coherence, and
informativeness. ERNIE-GEN [93] uses an enhanced multi-flow
seq2seq pre-training and fine-tuning framework and incorporates
a span-by-span generation task to generate consecutive entities,
which has achieved new SOTA results on five typical NLG tasks.
Researchers and practitioners also pre-train task-specific trans-
former models on generation tasks, such as MASS [88] and PEGA-
SUS [94]. More specifically, MASS adopts the encoder–decoder
framework to reconstruct a sentence fragment, given the remain-
ing part of the sentence, and achieves significant improvements
over baselines without pre-training on machine translation. PEGA-
SUS was used to pre-train a large-scale encoder-decoder model
with a well-designed pre-training objective, which achieved a
SOTA performance on all 12 text-summarization tasks. With the
growth of the model size, PTMs gradually show notable ability in
creative writing. Models such as GPT-3, HyperCLOVA, and ENRIE
3.0 are capable of generating articles, questions and answers, nov-
els, and program codes via only zero-shot learning. The quality of
the generated texts is sometimes comparable with that of
human-written texts. For example, humans only achieve 52%
accuracy in distinguishing real news from fake news generated
by GPT-3.
3.1.3. Dialogue
In the past few years, several representative dialogue-

generation models have been pre-trained with human-like conver-
sations collected from social media, including Twitter, Reddit,
Weibo, and Baidu Tieba. Based on the general language model
GPT-2 [83], DialoGPT [126] has been trained for response genera-
tion using Reddit comments. Meena [127] scales up the network
to 2.6 billion parameters and employs more social media conversa-
tions in the training process, resulting in a significant improvement
in response quality. To mitigate undesirable toxic or bias traits in
large corpora, Blender [128] further fine-tunes the PTM with
human-annotated datasets and emphasizes the desirable conver-
sational skills of engagingness, empathy, and personality. In addi-
tion, to alleviate the safe-response problem in open-domain
chitchat, PLATO [129] encodes the discrete latent variable into
transformers for diverse response generation. Moreover, PLATO-2
[130] further scales up PLATO via curriculum learning for both
Chinese and English response generation. The Ninth Dialog System
Table 4
SOTA performance with and without pre-training on NLG tasks.

NLG task Text summarization ESLC
(ROUGE-L)

Dialogue generation
KdConv-film
(BLEU-4)

SOTA w/o pre-training 23.44 5.40
SOTA w/ pre-training 36.51 74.44

Results are from Refs. [94,122–125]. ESLC: English Skills Learning Center; BLEU: bilingual
longest common subsequence.
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Technology Challenge (DSTC-9) [131] revealed that PLATO-2 deliv-
ers a superior performance in multiple conversational tasks,
including open-domain chitchat, knowledge-grounded dialogue,
and task-oriented conversation. Recently, PLATO-XL [132] was
scaled up to 11 billion parameters, with multi-party-aware pre-
training being carried out to better distinguish roles in social media
conversations. Other Chinese dialogue PTMs that have been devel-
oped on a modest scale include Cdial-GPT [133], ProphetNet-X
[134], and EVA [135].

With these large-scale dialogue PTMs, some of the problems
that plague traditional end-to-end neural approaches [136,137]
are alleviated significantly, including deficiencies in response flu-
ency and context relevance. Moreover, in comparison with existing
chatbots that rely on complex frameworks, such as Mitsuku [138]
and XiaoIce [139], these dialogue PTMs demonstrate superior per-
formance in multi-turn conversations, especially in terms of
engagingness and humanness.

3.2. Key research challenges

Although PTMs have significantly improved the performance of
NLP tasks, there are still some key challenges for PTM applications,
such as interpretability, robustness, reasoning capability, and the
deployment of large-scale PTMs. This section describes these chal-
lenges in the hope that additional future efforts can be devoted to
these directions.

3.2.1. Deployability
One trend in PTMs is the substantial increase in capacity. Since

the release of GPT [22] and BERT [23], PTMs have scaled exponen-
tially with respect to both the number of parameters and the size
of the pre-training data. For example, the largest version of GPT-3
[26] requires a total training computation of 3.64 � 103 petaflop-
days, resulting in a total number of around 3.14 � 1023 flops and
costing millions of dollars. The rapid growth in model size raises
concerns regarding the tradeoff between scale and deployability.
Two types of strategy have been proposed to tackle this issue:
① Large-scale PTMs are only used as the foundation model via
application programming interface (API) calls, similar to the way
in which the GPT-3 model is used. This strategy enables the effi-
cient use of PTMs and evades model deployment on each device,
but significantly limits the model’s application scope. ② Large
models are compressed to smaller ones [140] for potential deploy-
ment. Typical compressing techniques include model compression
Question generation SQuAD 1.1
(BLEU-4)

Data-to-text generation WebNLG
(BLEU)

15.87 63.69
25.41 66.07

evaluation understudy; ROUGE-L: recall-oriented understudy for gisting evaluation-
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and knowledge distillation. Unfortunately, existing compressing
techniques are unable to compress super-large PTMs (e.g., GPT-3)
to a suitable size for deployment on a single GPU or terminal
device such as a laptop or cell phone. Advanced research in model
compression is thus imperative in order to make large PTMs avail-
able to more users. Another promising direction is to use
parameter-efficient techniques, such as prompt tuning [141–
146], to reduce the memory budget of deployment; this remains
as a large area for further exploration.

3.2.2. Model trustworthiness
Another challenge of PTMs is their trustworthiness, which

mainly involves their interpretability [147] and robustness [148].
Although PTMs have achieved SOTA performances across various
tasks, how they make decisions are sometimes obscure to humans,
which makes PTM models difficult to be applied in fields where
model interpretability is essential, such as health-care and law
[149]. Consequently, there is a growing interest in interpreting
deep neural models [150]. In particular, many studies aim
to understand what PTMs have learned in their representations
[151].

Some studies have been published on the trustworthiness of
deep neural models. These include: linguistic structural analyses
on PTMs [152], which aim to analyze the linguistic knowledge that
is learned by pre-trained language models and to understand the
reason for their success; model behavioral analyses [153], which
evaluate model robustness and reliability with multiple test sets;
and post-hoc explanation analyses [154], which aim to provide
understandable explanations for the predictions of deep neural
models.

Despite the research that has already been done in this field, the
following challenges must be addressed in order to build trustwor-
thy systems: ① general interpretation methods for NLP tasks
(existing interpretation methods are designed for classification
tasks); ② causal analysis between model prediction and learned
knowledge or extracted explanations; and ③ a comprehensive
evaluation platform for interpretability, including evaluation data
and metrics.

3.2.3. Commonsense knowledge and reasoning
Large-scale PTMs have been found to encode some common-

sense knowledge [155]. Nevertheless, appropriate probing tasks
need to be designed in order to mine the commonsense knowledge
learned in PTMs—such as formulating a relational knowledge-
extraction task as the completion of fill-in-the-blank state-
ments—so as to examine the knowledge-learning ability of PTMs
[156]. Although PTMs learn some knowledge from texts, there is
still a large amount of knowledge that cannot be obtained from
texts alone. One possible direction is to have models learn this kind
of knowledge from both visual inputs and text inputs.

In addition to commonsense knowledge, other studies are
questioning whether PTMs are endowed with reasoning abili-
ties. For example, Talmor et al. [157] design different tasks to
evaluate the reasoning abilities of PTMs. The researchers disen-
tangle pre-training from fine-tuning and find that the reasoning
capabilities are poor for most PTMs, revealing that existing
PTMs lack the ability to reason. To alleviate this problem, one
possible direction could be to integrate prior knowledge into
the PTMs in order to guide the models to learn reasoning rules
implicitly.

3.2.4. Model security
One severe issue with PTMs is their vulnerability to adversarial

examples, which can mislead the model into producing a specific
wrong prediction when perturbations are injected into the input
[158]. This susceptibility exposes PTMs to safety concerns: The
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models can be easily attacked with adversarial patterns by third
parties, resulting in irreparable loss in real-world applications. In
addition to adversarial attacks, another form of attack—namely,
backdoor attacks—is a threat to PTMs. Unlike adversarial attacks,
which usually act during the inference process of a neural model,
backdoor attacks hack the model during training [159]. If a model
is deliberately trained on backdoor data, it will be extremely dan-
gerous for users to use this model in applications involving privacy
and security concerns. Future work could aim to improve the
robustness of PTMs toward adversarial attacks. To deal with back-
door attacks, a model should be able to detect in the input the trig-
gers that can activate the backdoor attack and remove the triggers,
thus enhancing model security.
4. Applications of PTMs

4.1. Platforms and toolkits for applications

Due to their universality, PTMs have become foundation models
in NLP. Many researchers have developed a series of open-source
toolkits and platforms to make better use of PTMs. These toolkits
and platforms usually contain various PTMs, fine-turning tools,
and model-compression tools.
4.1.1. Toolkits
When researchers propose a new pre-trained language model,

they often open-source a corresponding toolkit for developers.
Such toolkits usually provide codes for downstream task develop-
ment based on the specific model, and therefore lack generality.
Typical toolkits include google-research/bert [160], PaddlePaddle/
ERNIE [161], and PCL-Platform.Intelligence/PanGu-a [162]. These
toolkits provide a series of open-sourced PTMs, such as BERT,
ERNIE, and PanGu-a, along with source code and training data.
For example, the ERNIE toolkit provides not only the source code,
training data, and PTM of ERNIE but also a couple of enhanced
ERNIE series models, such as ERNIE-Doc [163] and ERNIE-ViL
[70]. In order to deploy the ERNIE model to online service, the
ERNIE toolkit also provides a model-compression tool.

With the intensive publish of PTMs, knowing how to use these
models in a unified toolkit has become an urgent need. Given this
background, toolkits for general NLP applications have been devel-
oped. Typical toolkits include HuggingFace/Transformers [164],
Fairseq [165], and PaddleNLP [166]. PTMs are integrated in a
user-friendly way into such general-purpose toolkits. Taking Hug-
gingFace as an example, this toolkit integrates the codes for differ-
ent kinds of PTMs and codes for downstream application
developments, including classification, generation, summarization,
translation, question answering, and so forth.
4.1.2. Platforms
Besides toolkits, platforms provide users with PTM services for

customization. These platforms can provide facilities for
developers to build models and deploy them to online services.
For example, Baidu Wenxin [167] is a platform to facilitate the
use of PTMs. This platform meets the needs of both experienced
developers and junior developers. It enables developers to easily
build their models with data and model configuration only. It also
provides experienced developers with toolkits to train their
models that are tailored for applications. Other platforms such
as AliceMind [168] provide similar services with no significant
differences. OpenAI API [169] is another kind of platform that is
used to develop applications based only on PTMs. OpenAI API is
based on GPT-3 [26]; it provides specific high-level functions,
such as English-to-French translation, grammar correction,
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question answering, advertisement generation, and product-name
generation.

4.2. Applications

PTMs have been widely deployed in real applications, including
document intelligence, content creation, virtual assistant, and
intelligent search engines. Below, we describe how PTMs are
applied in each field.

4.2.1. Document intelligence
One widely studied application for PTMs is document intelli-

gence, which includes sentiment analysis, news classification,
anti-spam detection, and information extraction. Sentiment analy-
sis is widely used to identify sentiment polarity, such as public
opinion, for market research, brand reputation analysis, and social
media influence. Garg and Chatterjee [170] propose analyzing the
sentiment of Twitter feeds using a PTM and classifying them into
three categories: positive, negative, and neutral. AlQahtani [171]
proposes analyzing customer reviews on products by combining
data-mining techniques with PTMs. Recently, Singh et al. [172]
analyzed public sentiment on the impact of the coronavirus on
social life using a PTM. Chen and Sokolova [173] propose analyzing
the sentiments in the coronavirus disease 2019 (COVID-19)-related
messages in a popular social media platform, where users share
their stories to seek support from other users, especially during
the COVID-19 pandemic. Experimental results show that PTMs
can achieve significant performance gain in classifying sentiment
polarities, demonstrating the effectiveness of PTMs.

News classification and anti-spam detection can also be mod-
eled as classification tasks. Ding et al. [163] apply PTMs to classify
news into extreme left-wing or right-wing standpoints. Liu et al.
[174] propose classifying the papers published in Arxiv.org into
11 categories, including math, computer science, and so forth.
Jwa et al. [175] use BERT to detect fake news by analyzing the rela-
tionship between the headline and the body text in news.

Document information extraction is widely used in industry.
Many AI cloud services contain tools for information extraction
[176], such as Google AI Cloud, Baidu AI Cloud, and Alibaba AI
Cloud. Among these services, Baidu has built a PTM-based plat-
form, TextMind, for document information-extraction applications,
including receipt analysis for expense reimbursements, informa-
tion extraction from resumes, financial statement analysis, con-
tract analysis, and legal judgment analysis. One of the world’s
largest online home retailers, Wayfair, also applies BERT to extract
information from customer messages.

Document image understanding is another important research
topic in document intelligence for automatically reading, under-
standing, and analyzing business documents. A series of multi-
modal document PTMs [177] has been proposed to jointly model
interactions between text, image, and layout information in busi-
ness documents for many document image understanding tasks,
such as receipt understanding, document image classification,
and document information extraction. Applica proposes a solution
to take into consideration layout, graphics, and text in order to
enable the extraction of precise answers for complex business pro-
cesses in financial services, insurance services, life sciences, and so
on.

4.2.2. Content creation
Content creation tasks are usually designed to verify the perfor-

mance of recently proposed large-scale models [22]. For example,
Narrativa applies GPT-2 for content automation from just a few
words provided by customers and generates high-quality adver-
tisement content [178]. GPT-2 has demonstrated its ability to gen-
erate content for e-commerce in order to relieve humans from
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laborious tasks. Microsoft has also demonstrated that the pre-
trained generation model Turing-NLG is beneficial for autosuggest
recommendations [95]. Moreover, many researchers have built
various demo applications based on GPT-3, including applications
for ad generation, AI copywriting, book writing, code generation,
customer service, and so forth. As for visual content creation,
pre-trained multimodal generative models such as DALL-E [69],
CogView [103], and ERNIE-ViLG [107] have greatly improved the
quality and fidelity of generated images. The results from CogView
have demonstrated this model’s capability to generate high-quality
images in a single domain such as industrial fashion design, so this
model has been deployed in online fashion production.

In addition to these industrial applications, researchers have
shown the potential ability of PTMs for creative writing, including
poem generation [179], lyrics generation [27], e-mail auto comple-
tion [180], to-do generation [181], auto-completion for sentences
and paragraphs, and even a long novel generation [22]. Although
PTMs exhibit strong generative capabilities, an increasing number
of concerns have arisen regarding generative models, including pri-
vacy and copyright.

4.2.3. Virtual assistants
Virtual assistants are adopted in many applications nowadays.

Typical applications include smart speakers, such as Alexa [182]
from Amazon and Xiaodu [129] from Baidu. Such applications have
used PTMs and have shown that PTMs can provide excellent lan-
guage understanding ability for spoken language and voice recogni-
tion [183] in smart speakers. With the benefit brought by PTMs,
these smart speakers can respond to weather forecast queries, sing
songs on demand, and vocally control smart home devices. More-
over, smart speakers can chat with humans on a broad range of
topics and thus establish a closer and more stable relationship
between users and the system. In addition to the usage of PTMs in
smart speakers, PTMs have been deployed in mobile-phone-based
virtual assistants, such as Siri and Google Assistant. For example,
NDTV [184] proposes that PTMs can improve the interactionquality,
while Vincent [185] proposes that PTMs can be used in intelligent
customer service robots to recognize customer sentiments.

As PTMs are applied more and more widely in virtual assistants,
the responses generated by chatting bots are becoming more
human-like. For example, Microsoft has proposed a PLM-based
model called DialoGPT that learns from the comment history of
Reddit and can fluently reply to users. Google has also suggested
the use of PLMs to develop a chatbot application that can ‘‘chat
about anything” [127]. To make the robots more human-like, Face-
book applied PLM to a series of dialogue chatbots named Blender
and Blender 2.0 [128]. Shortly afterwards, Baidu proposed
PLATO-XL [132], a PLM-based model, to further push the perfor-
mance of a chatbot and reach the SOTA in terms of both human
evaluation and automatic evaluation metrics. Thanks to the perfor-
mance improvement brought by PTMs, these applications can be
very robust in interactions with users [186].

4.2.4. Intelligent search
Aside from the applications mentioned above, PTMs are widely

used in search engines. Google has already applied PTMs in its
Google Search and achieved significant improvements [187]. Baidu
has also applied PTMs, ERNIE 2.0 [188] and ERNIE 3.0 [39], as its
backbone to support semantic matching by encoding text into
dense representations for better retrieval performance in Baidu
Search [189]. Facebook [190] has revealed a unified embedding
framework for personalized systems and noted that their future
work will contain PTMs.

To address the surging demand for multimedia content
searches, the performance of image and video search engines can
be enhanced through the utilization of multimodal PTMs. For
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example, WenLan [106] developed two real-world applications
based on image–text matching, thereby demonstrating the power
of multimodal pre-training.

To further improve the performance of search engines,
researchers have recently paid an increasing amount of attention
to multilingual search engine models. Multilingual models are
pre-trained with a multilingual corpus to learn cross-language
information [191]. The most significant advantage of multilingual
models is their transferability across languages, which improves
their performance on low-resource languages.
5. Conclusions and future work

PTMs can fully exploit unannotated data for self-supervised
learning and have become the foundation models in NLP, signifi-
cantly improving the performance of downstream NLP tasks. The
emergence of PTMs opens up a new ‘‘pre-training then fine-
tuning” paradigm for NLP. With the increase of model parameters,
PTMs show promising performance in zero-shot learning or few-
shot learning. Their success in NLP is triggering more research
devoted to PTMs in other fields such as computer vision, speech
processing, and multimodal understanding and generation, reveal-
ing their potential to act as foundation models in these fields.

Despite the dramatic success of PTMs in NLP, there is still a long
way to go to achieve artificial general intelligence. First, PTMs are
black boxes that are poorly understood. Their interpretability and
robustness have yet to be explored due to the nonlinearity of trans-
former models. Thus, it is difficult to use PTMs to make reliable
decisions and reasoning before we fully understand their princi-
ples. It is worth devoting a great deal of effort to researching the
uncertainty of PTMs. Furthermore, current multimodal and multi-
lingual pre-training [192] is still in the early stage. Unifying multi-
modal and multilingual pre-training will emerge as an exciting
trend for further exploration, which may improve the performance
of these low-resource tasks. Another promising direction is to
incorporate prior knowledge into PTMs to improve their reasoning
abilities and efficiency. Existing work on knowledge pre-training,
such as K-BERT [33] and ERNIE 3.0 [39], has injected knowledge
triplets into pre-training or fine-tuning. However, PTMs have
demonstrated limited capability for commonsense awareness and
reasoning, which require further improvement. Although large-
scale PTMs have demonstrated strong generalization capabilities,
efficiently deploying them is still an open question. For applica-
tions that require low latency, model compression of PTMs
remains a promising direction. Existing model-compression meth-
ods consist of distillation [193], pruning [194], quantization [195],
and so forth. However, how to efficiently build large-scale PTMs
with a deployable inference time remains an ongoing challenge.
In addition, designing more efficient architecture in place of or to
improve transformers remains an open problem.

In summary, there is still a long way to go for PTMs to be able to
make reliable decisions and carry out reliable planning, which are
essential elements of AI. More efficient and powerful neural net-
works need to be proposed and developed. Fortunately, the use
of PTMs in real applications continues to provide an increased
amount of data and address new challenges, potentially promoting
the rapid development of new pre-trained methods.
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