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In recent years, data has become one of the most important resources in the digital economy. Unlike tra-
ditional resources, the digital nature of data makes it difficult to value and contract. Therefore, establish-
ing an efficient and standard data-transaction market system would be beneficial for lowering cost and
improving productivity among the parties in this industry. Although numerous studies have been dedi-
cated to the issue of complying with data regulations and other data-transaction issues such as privacy
and pricing, little work has been done to provide a comprehensive review of these studies in the fields of
machine learning and data science. To provide a complete and up-to-date understanding of this topic, this
review covers the three key issues of data transaction: data rights, data pricing, and privacy computing.
By connecting these topics, this paper provides a big picture of a data ecosystem in which data is gener-
ated by data subjects such as individuals, research agencies, and governments, while data processors
acquire data for innovational or operational purposes, and benefits are allocated according to the data’s
respective ownership via an appropriate price. With the long-term goal of making artificial intelligence
(AI) beneficial to human society, AI algorithms will then be assessed by data protection regulations
(i.e., privacy protection regulations) to help build trustworthy AI systems for daily life.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the Internet, big data, cloud computing, artificial
intelligence (AI), and other technologies have accelerated in inno-
vation and have been increasingly integrated into the complete
processes of various fields of economic and social development.
The rapid development speed, wide radiation range, and deep
influence of the digital economy are unprecedented. As a new fac-
tor of production in a digital economy, data has been generated in
enormous quantities and contains a great deal of economic value.
As a result, data-driven methods such as machine learning have
been widely used in many areas, including chemical reaction
prediction [1], protein structure prediction [2], and scientific com-
putation [3], among others. Therefore, establishing an efficient and
standard data-transaction market system would be beneficial for
utilizing the value of the production factor of the digital economy.
Very recently, Pei [4] presented a review connecting economics,
digital product pricing, and data product pricing, which focused
on economics and the fundamental mathematical principles of
data pricing and digital product pricing. Another review by Cong
et al. [5] focused on machine learning pipelines and covered stud-
ies on pricing data labels. Unlike these existing reviews, the current
review discusses three key issues of the digital economy for estab-
lishing a data-transaction market system—namely, data rights,
data pricing, and privacy computing—and consolidates them as
data factors in a computing framework.

Data rights, including rights subjects and rights contents, are
the premise of data transactions, which are identified and pro-
tected by laws and regulations. Recently, an increasing number
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of countries have begun to pay attention to the legislation of big
data. For example, the European Union (EU) has released the Gen-
eral Data Protection Regulation (GDPR), and China has released the
Personal Information Protection Law (PIPL). Technical solutions are
urgently needed to guarantee the data rights stipulated by laws.
Data pricing and privacy computing are essential in the process
of data transaction. Unlike traditional commodity transaction, the
particularity of data requires technical solutions for the formula-
tion of pricing strategies and the protection of data privacy.

Data pricing and privacy computing complement each other in
the process of data transaction. Here, we will introduce technical
solutions for data pricing and privacy computing using three typi-
cal data-transaction scenarios. The first data-transaction scenario
consists of a single data owner and multiple data buyers. In this
scenario, customers typically purchase datasets from compa-
nies—such as Twitter, Bloomberg, or Pistachio—in order to access
the data. Multiple pricing strategies and privacy demands are
needed in this data-transaction scenario. The second data-
transaction scenario consists of multiple data owners and a single
data buyer. In this case, to utilize the data stored among various
data owners, it is typically necessary to build a trusted privacy
computing method to realize the distributed training of the model,
as well as a fair data-pricing method to ensure an incentive mech-
anism for contributions from various data owners. The third data-
transaction scenario consists of multiple data owners and multiple
data buyers. Here, data brokers are typically involved in designing
reasonable and fair compensation functions for data owners and
arbitrage-free price functions for data buyers, in order to achieve
the objective of revenue maximization. In this multi-party data-
transaction process, multiple privacy demands must be met among
data owners, data brokers, and data buyers.

In the first section that follows, we discuss data-rights issues
such as data ownership and privacy protection that have arisen
with the ever-increasing activity in the digital economy. Extensive
concern regarding data-rights issues has eventually led to legisla-
tions such as the GDPR. At present, the question of whether or
not data should be under heavy regulation is still being hotly
debated. New technologies that comply with the existing regula-
tions are becoming the new focus of the industry. In this section,
we provide an overview of data rights in accordance with the
above topic and introduce a few potential solutions in these areas.

In the second section, we discuss technical solutions for data
pricing that have recently been proposed. With the popularity of
mobile terminal devices, an increasing amount of end-to-end per-
sonal information or personal data is being produced and endowed
with certain property attributes. Data processors can use this data
to train models and obtain commercial benefits from it. As the
owner of data assets, individuals should be compensated for their
data being used. In this section, we provide an overview and com-
prehensive review of data-pricing research based on three typical
data-transaction scenarios: query-based pricing, Shapley value-
for-model-based pricing, and data-market-based pricing.

In the third section, we discuss privacy computing, which is a
combination of a range of cryptographic computing technologies.
Sensitive information in data may be reverse acquired by data pro-
cessors through certain methods when the data is accessed, result-
ing in the disclosure and abuse of sensitive information on the
subjects of the data. Certain technical measures are necessary to
achieve data privacy and security in order to prevent this problem
and ensure that data is being lawfully used. Privacy computing
forms a bridge between data factors and data value, by protecting
sensitive information of the data during the data-transaction pro-
cess. In this section, we introduce privacy computing from three
typical data-transaction scenarios covering three technical
threads: cryptography technology, trusted execution environment
(TEE), and collaborative learning.
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In this paper, we consolidate data rights, data pricing, and pri-
vacy computing into a data-factor computing framework. As
shown in Fig. 1, data rights, data pricing, and privacy computing
are the relevant technologies in a data-factor computing system.
In different industries with data being generated by different par-
ticipants (e.g., individuals, business platforms, and government
agencies), it is first necessary to determine data-related rights,
such as the right to use data, data ownership, and data privacy;
next, it is necessary to assess the value of the data and to allocate
revenue according to the attribution of data property ownership;
finally, it is necessary to add the necessary privacy protection in
the process of data utilization to prevent the leakage or malicious
theft of private information. Using this data-factor computing
framework, we review three main data-transaction issues: data
rights, data pricing, and privacy computing. We also provide a per-
spective on interesting challenges for possible future work.
2. Data rights

The generation and exchange of industrial data play critical
roles in the modern digital market; some have even claimed that
industrial data is taking the place of oil as the most valuable
resource [6]. International Business Machines (IBM) Corporation
estimates that 2.5 quintillion bytes of data are being created daily
[7]. With emerging technology that facilitates data transportation,
analysis, and so forth, data can be created and collected even faster.
The high volume of data trading is bringing attention to data’s
intrinsically high externality cost, in that it is ex ante noncon-
tractible [8,9] due to its intrinsic nature of being different from
any other data. As a result, data rights are rising as a form of prop-
erty rights, as it is more profitable for entities to internalize exter-
nalities than to negotiate ex ante [10]. Digital companies provide
the service of smart recommendations based on user data collec-
tion, but there is concern that some content is biased, misleading,
and suggestive in favor of the service provider. As a result, data
subjects are vulnerable to and dependent on so-called data capital-
ism [11]. Therefore, the data economy community is seeking
definitive ruling on data, such as on data ownership and corre-
sponding rights [12].

Data rights represent the entity’s ownership and control over
said types of information, as shown in Fig. 2. We separate data
rights into three categories: personal data rights, industrial data
rights, and government data rights [13].

The GDPR became enforceable in May 2018 in all EU countries.
In quick succession, many nations outside the EU adapted similar
legislations, such as China’s PIPL. The aim of the GDPR is to ensure
that personal data is processed ‘‘lawfully, fairly, and in a transpar-
ent manner,” and to ensure that data subjects are granted the
rights of transparency, modality, access, rectification, erasure, the
ability to object, and automated individual decision-making [14].

To comply with the GDPR, researchers have come up with a few
solutions, one of which is the implementation of a blockchain-
based system. It is almost impossible for service providers with a
traditional centralized client–server architecture to ensure that
they follow the GDPR guidelines on a continuous basis. Here,
blockchain technology is a perfect solution due to its decentralized,
hard-to-tamper-with, and easy-access nature. Truong et al. [15]
offered an example of a GDPR-compliant personal data-
management platform built on top of the Hyperledger Fabric per-
missioned blockchain framework. The main challenge ahead is to
implement mechanisms to resolve the lack of trusted centralized
resource servers and to potentially provide computational capabil-
ity on the blockchain network.

Other methods of GDPR compliance mainly revolve around an
elaborate framework satisfying the GDPR requirements [16–19].



Fig. 1. Data-factor computing.

Fig. 2. Data rights.
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Aside from studies on such methods, there are few publications on
this topic so far. Federated learning [20] is a hot topic in machine
learning under privacy restrictions [19], but it presents a few chal-
lenges regarding the GDPR. For example, Ginart et al. [18]
attempted to address one of these challenges—namely, the right
to be forgotten—with an efficient data-deletion model. Most
data-regulation acts contain an individual right that is referred as
the ‘‘right to explanation.” More specifically, because federated
learning’s global model is an averaging of the local models, it
68
becomes difficult to describe the data subject’s data contribution
[19].

In accordance with high-level initiatives such as the GDPR and
the PIPL, many smaller scale data-rights organizations have also
started to take action. For example, the UK’s Chartered Institute of
Marketing (CIM) has urged organizations to take action on the issue
of responsible management of customer data. They ask their mem-
bers to be clear when managing customer data, to show customers
the benefits of sharing their data, and to show respect for customers’
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data. The CIM claims that 67% of consumers would be willing to
share more personal information if organizations were more open
about their data usage [21]. Open communication and honesty can
earn customers’ trust; in other cases, large data companies such as
Google and YouTube provide cheap or even free services to billions
of people in order to gather data in exchange to improve their algo-
rithms. However, if heavy regulation were to be added to such rela-
tionships, the companies’ ability to provide such services and to
innovate would be drastically reduced. Such heavy dependency on
open access to data promotes a stronger focus on the right to data
access than on people’s exclusive property rights to their data [22].

Business data rights mostly refer to intellectual property and
patents [13]. Atkinson [7] discusses many challenges related to
data rights from a business viewpoint. He claims that the market
force can ensure fairness of trade and a healthy data relationship,
and that governments should only take action when anticompeti-
tive behaviors limit innovation and harm customers. In addition,
governments should take advantage of their ability to easily obtain
aggregated data and should release the data for public access, so
that others may use the data for innovative purposes, ultimately
increasing the total public welfare. In conclusion, Atkinson is a
strong believer that data should remain open by default, and that
governments should only interfere while necessary.

The presence of high externality in the digital market implies
that it is beneficial to integrate data rights [10,23], with whomever
owns the greatest contribution in the collaboration coming out in
the lead in the integration. With such an integration, ex ante nego-
tiations can also be made to provide compensation for other par-
ties. In order to further reduce negotiation costs, firms may even
choose to approximate the payoff allocation with a matching game
such as a least core or a nucleolus [24].

3. Data pricing

A fair and effective data-transaction market can guide the
rational distribution of data factors, so as to promote the rapid flow
of various resource elements, accelerate the integration of various
market entities, help market entities restructure their organiza-
tional models, achieve cross-border development, break time and
space constraints, extend the industrial chain, and smooth the eco-
nomic cycle among countries. As a key issue in the process of data
Fig. 3. Data
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transaction, data pricingwill receive an increasing amount of atten-
tion. With the popularity of mobile terminal devices, an ever-
increasing amount of end-to-end personal information or personal
data is being produced, endowed with certain property attributes.
Data processors can use these data to train models and obtain com-
mercial benefits from them. As the owner of data assets, individuals
should be compensated for the use of their data. Fair and effective
pricing strategies for various data products are essential in order
to motivate data owners to provide high-quality data and data pro-
cessors to mine more information, and then to optimize the alloca-
tion of data factors in the digital economy.

At present, research on and applications of data pricing are still in
their infancy; here, we provide a review of data-pricing research
based on three typical data-transaction scenarios, as shown in Fig. 3.

3.1. Single data owner, multiple data buyers

In this scenario, a company collects data and organizes it into
databases as the data owner in data transactions. Multiple cus-
tomers then directly purchase certain data from the company.
The pricing strategies of the company must meet the various
demands from the customers. For this scenario, direct data pricing
is adopted, which refers to a pricing strategy that is based on the
dataset itself. This pricing strategy is generally determined by the
inherent factors of the original data, such as data quality, data
quantity, and so forth. A typical example of direct data pricing is
query-based pricing, which is based on the number of queries or
data items involved. Intuitively, a data seller may treat a view of
a dataset as a version. Prices on views should be appropriately
set to avoid arbitrages or less than highest prices. Koutris et al.
[25] transformed the query-based pricing problem into a network
flow problem and automatically derived the price of any query
from the price of a given set of views. After that, they adopted a dif-
ferent perspective, which transformed the query-based pricing
problem into optimized integer linear programming, priced the
structured query language (SQL) query based on the price point
specified by the seller, and used the query history to avoid the
repeated charging of overlapping information [26]. Deep and
Koutris [27] proposed a real-time pricing system supporting vari-
ous pricing functions, which can effectively calculate the price of
large-scale SQL queries.
pricing.
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3.2. Multiple data owners, single data buyer

In the case of multiple data owners and a single data buyer, a
large amount of data is produced by individuals and stored in their
mobile terminal devices. A data processor that utilizes this data to
train models must compensate the data owners for their data
usage. The pricing strategy for a data processor should fairly eval-
uate the contribution made by various data owners to the model
training. For this scenario, model-based pricing is adopted.
Model-based data pricing is a data-pricing strategy based on the
model obtained through dataset training. This pricing strategy is
generally determined by the contribution of different data to the
model training. For deep learning models, a single piece of data
often does not directly assist in the training of models, as a deep
learning model must learn from a dataset composed of a large
amount of data. That is, for a deep learning model, it is often diffi-
cult to directly measure the contribution of a single piece of data,
and the contribution of data can only be reflected in combination
with other data. Therefore, such pricing strategies often determine
the contribution of data to model training by calculating the mar-
ginal contribution of data. Such methods, which calculate data con-
tribution through models, are often referred to as ‘‘data valuation”
in the field of machine learning.

Data valuation can be implemented through a variety of tech-
niques, such as leave-one-out [28], leverage or influence score
[29], and reinforcement learning [30]. The Shapley value [31], a
classic notion in cooperative game theory, is a well-known data
valuation approach that benefits from its profound theoretical
background. In cooperative game theory, Shapley gave a definition
of fair revenue distribution [31]. Suppose that there are k agents
cooperatively participating in a game that leads to a payment v
(where k represents the number of agents and v represents game
payment). We denote D as the complete set of k agents, VðSÞ as
the coalition revenue for S � D (where S is the coalition of some
agents), and /i as the valuation for agent i. To obtain fair allocation
for each agent, the following four axioms should be satisfied:

(1) Efficiency. For the complete set D,
P

i2D/i ¼ VðDÞ. In other
words, the sum of the payment to each agent should be equal to
the full payoff.

(2) Symmetry. For any subset S � D� fi; jg, if for agent i and j,
we have VðS [ figÞ ¼ VðS [ fjgÞ, then /i ¼ /j (where /j represents
the valuation for agent j). In other words, if agent i and j always
contribute the same amount to every coalition with the other
agents, they should receive the same payments.

(3) Zero element. For any subset S � D� fig, if V S [ if gð Þ ¼
V Sð Þ, then /i ¼ 0. We call this kind of agent the ‘‘zero element.”
In other words, if agent i does not contribute to any coalition with
the other agents, it should not receive any payment.

(4) Additivity. For any two different coalitional games involving
the same set of agents D but defined by two different coalition rev-
enue functions V1 and V2, for any agent i, we have
/i V1 þ V2ð Þ ¼ /i V1ð Þ þ /i V2ð Þ.

The Shapley value is a unique payoff division that satisfies effi-
ciency; it divides the full payoff v of the complete set D and the
symmetry, zero element, and additivity axioms. The Shapley value
of agent i is given by the following:

/i Vð Þ ¼ 1
Dj j

X
S#D� if g

V S [ if gð Þ � V Sð Þ
Dj j � 1
Sj j

� � ð1Þ

The Shapley value averages over all the different arrangements
of the complete set D, thereby capturing the average marginal con-
tribution of agent i.

However, when calculating the data contribution in a machine
learning model using an exact Shapley value, there will be many
70
problems. For example, such a calculation requires exponential
model evaluations with regard to data quantity, as it is necessary
to obtain the coalition revenue for every data subset. The existing
approaches, which address problems of contribution calculation in
the field of machine learning, can be divided into two categories:
approaches that focus on the optimization of fair revenue distribu-
tion and approaches that focus on the design of coalition revenue
functions.

Earlier approaches typically focus on the optimization of fair
revenue distribution. To address the exponential complexity of
computing the Shapley value, Ghorbani and Zou [32]—who first
introduced the Shapley value to equitable data valuation in super-
vised machine learning—used Monte Carlo and gradient-based
methods to efficiently estimate the Shapley values of data. Jia
et al. [33] introduced a method that allows the computation of
exact Shapley values on a K-nearest neighbors (KNN) model in
Oðklog kÞ time, compared with the exponential complexity of com-
puting the exact Shapley value by definition. To address the stabil-
ity problem of the data Shapley value, which provides no guarantee
of consistency between the data Shapely value and the value of the
data computed using a different dataset, Amirata et al. [34] pro-
posed the distributional Shapley, where the value of a point is
defined in the context of an underlying data distribution to
improve the statistical interpretation of the Shapley value; this
can evaluate the data value of different distributions. This work
was further improved by Kwon et al. [35], who derived analytic
expressions for a distributional Shapley and interpretable formulas
in order to efficiently estimate the distributional Shapley in linear
regression and binary classification problems.

Recent approaches have begun to focus on the design of coali-
tion revenue functions. Earlier approaches typically use the classi-
fication accuracy of a model trained on a certain dataset as the
coalition revenue function of that dataset. However, this coalition
revenue function relies on obtaining validation performances of
converged models, which is computationally costly for large com-
plex models such as deep neural networks (DNNs), due to their
inevitable long-term model training. In addition, a validation set
may not be available in practice, and it can be challenging for data
providers to reach an agreement on the choice of the validation set.
Recent approaches [36,37] use efficient techniques to estimate the
fully converged performances of large complex models as coalition
revenue functions in data contribution computation. More specifi-
cally, with robust volume Shapley value (RVSV), Xu et al. [36]
adopts a perspective in which the value of data is determined by
the intrinsic nature of the data, and the volume of a dataset is pro-
posed as a coalition revenue function. The volume of a dataset is
defined as the determinant of its left Gram matrix, as follows:

VolðXÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X>X
� ��� ��q

¼
ffiffiffiffiffiffi
jGj

p
ð2Þ

where X is data matrix, G is the left Gram matrix of X, and Vol is the
volume of X.

Compared with using validation performances as a coalition
revenue function, the computation complexity is lower, and the
data valuation is not limited by models and tasks. Furthermore,
RVSV uses a robust volume measure that theoretically ensures
the replication robustness via direct data copying. The robust vol-
ume typically discretizes the data space into a set of d-cubes
(where d is the dimension of data space) and merges data points
in the same d-cube as their statistic (e.g., mean vector) to ensure
the robustness via direct data copying, as copied data is merged
in the same d-cube. With RVSV, Xu et al. [36] theoretically proved
the suitability of volume and robust volume as coalition revenue
functions for linear models and one-dimensional cases. However,
this theoretical guarantee cannot be generalized to nonlinear
models or high-dimensional cases. Moreover, an empirical
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demonstration may cause a problem when applied to complex
deep learning models, which are typically nonlinear and high
dimensional. With data valuation at initialization (DAVINZ), Wu
et al. [37] introduced statistical learning theory (SLT) to estimate
the fully converged performances of DNNs as coalition revenue
functions, which completely avoids the need for model training.
More specifically, DAVINZ derives a domain-aware generalization
bound by introducing a domain discrepancy into the recent neural
tangent kernel (NTK) theory. The NTK matrix H 2 Rm�m of a DNN
model f x; hð Þ on the dataset of size m is defined as follows:

H x; x0; hð Þ ¼ rhf ðx; hÞ>rhf x0; hð Þ ð3Þ

where x and x0 denote data points in dataset. h is the parameters of
the DNN model. Recent studies on NTK theory have shown that the
generalization errors of DNNs can be theoretically bounded using
the NTK matrix with initialized model parameters. In addition,
NTK can characterize the training dynamics of any reasonable archi-
tecture DNNs with gradient descent. DAVINZ utilizes the properties
of NTK, which can estimate the performances of DNNs using only
the initialized model parameters, and uses a generalization bound
derived by NTK as coalition revenue functions, without any model
training. Compared with RVSV, DAVINZ utilizes SLT, which is theo-
retically and typically more reasonable for deep learning models.
On the other hand, DAVINZ’s utilization of the upper bound of the
validation performance as the coalition revenue functions may
cause more errors, compared with an exact estimation.

Contribution calculation methods represented by the Shapley
value have various applications in the field of machine learning.
The Shapley Q-value [38] utilizes the Shapley value in multi-
agent reinforcement learning to estimate the contribution of each
agent to a global reward. Wang et al. [39] proposed the Shapley
flow, which uses the Shapley value to calculate the credit assigned
to the edges of a causal graph in order to reason about the impact
of a model’s input on its output. Ghorbani et al. [40] used the
Shapley value to annotate unlabeled data in order to increase the
efficiency of batch active learning while preserving performance
effectiveness. Fan et al. [41] proposed a completed federated
Shapley value for fair data valuation in federated learning. Xu
et al. [42] designed a novel training-time gradient reward mecha-
nism in federated learning that distributes gradients of different
quality to local clients according to the contribution calculated
by the cosine gradient Shapley value (CGSV) in each round. Gradi-
ents of different quality are obtained by different percentage masks
to parameters. Furthermore, there is already some work using the
Shapley value for real scene data valuation. Tang et al. [43] used a
Shapley value to calculate the value of training data in a large chest
X-ray dataset, which provides a framework for using a Shapley
value to estimate data valuation for large-scale datasets.
3.3. Multiple data owners, multiple data buyers

In this scenario, the multiple data owners comprise various data
subjects, from individuals to data companies and governments.
The data transactions involve data itself and data products such
as models trained from data. Data brokers are usually necessary
for the complex transactions between various data owners and
data buyers. Existing studies on this scenario usually consider mar-
ket information in their data-pricing models. We denote these
pricing strategies as market-based pricing. Market-based data pric-
ing is a data-pricing strategy based on the supply and demand rela-
tionship and other information in the data market. The formulation
of this pricing strategy typically depends on a tripartite game
model established by data owners, data buyers, and data brokers
in the data market. Here, we summarize the functions of data own-
ers, data buyers, and data brokers in the data market.
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Data owners are the providers of the source data; to a certain
extent, they undertake the function of integrating and processing
the source data into data products that can be traded in the data
market. Data owners provide data to the data brokers, with differ-
ent requisites on privacy preservation, and receive corresponding
compensation for their data usage, allocated by the brokers.

Data buyers are the final purchasers of data products. Data
products refer not only to data itself but also to information
obtained from data mining or models learned from data training.
Data buyers purchase data products of different quality according
to their own needs and budgets. Data products of different quality
can typically be obtained by adding different levels of noise to
model parameters or training data.

Data brokers provide pricing models and corresponding techni-
cal support for different categories of data products. When making
market decisions, data brokers must design reasonable and fair
compensation functions for data owners and arbitrage-free price
functions for data buyers to achieve the objective of revenue
maximization.

For a multi-party game model constructed by data owners, data
brokers, and data buyers in the data market, data brokers should
provide compensation for data usage to data owners and formulate
price functions to meet the needs of data buyers. To formulate
these functions, Niu et al. [44] studied noisy aggregate statistics
trading from the perspective of a data broker in a data market
and proposed the pricing model, which enables aggregate statistics
pricing over private correlated data and considers dependency fair-
ness among data owners. Chen et al. [45] first proposed a formal
framework of model-based pricing in a data market by focusing
on avoiding arbitrage and provided algorithmic solutions on how
the data brokers can assign prices to models to achieve the objec-
tive of revenue maximization. More specifically, for a machine
learning model with a strictly convex loss function, the researchers
added Gaussian noise to the model parameters to realize arbitrage-
free pricing. Liu et al. [46] and Lin et al. [47] also adopted the per-
spective of model-based pricing and proposed the framework
Dealer, which uses differential privacy (DP) to build several differ-
ent model versions, adopts dynamic programming algorithms to
formulate pricing strategies in order to achieve revenue maximiza-
tion, and applies a Shapley value for the fair distribution of revenue
to data owners. Zheng et al. [48] proposed a pricing framework by
considering the bounded personalized DP of each data owner and
demonstrated that the arbitrage-freeness constraint can be reason-
ably relaxed under bounded utilities by partial arbitrage freeness.

To design a pricing strategy, data brokers must inevitably access
the data from data owners ex ante, which is unfair to data owners,
as data brokers may obtain information from accessing the data
without compensating the data owners. It is important to verify
whether the data brokers have truthfully collected and processed
data. One direct solution is to encrypt sensitive information when
setting up a data marketplace, such as truthfulness and privacy
preservation in data markets (TPDM) [49]. Another solution is to
make the brokers price the data without obtaining the data
through privacy computing technology. However, this solution
introduces a fair transaction problem: The data owner can provide
high-quality data during pricing but provide low-quality data dur-
ing data transaction. To address this problem, Zhou et al. [50] pro-
posed a new notion named zero-knowledge contingent model
payment (ZKCMP), which allows the fair exchange of a trained
machine learning model and a cryptocurrency payment.
4. Privacy computing

Privacy computing is a combination of a series of cryptographic
computing techniques, as shown in Fig. 4. It involves advanced
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mathematics, computer science, cryptography, network communi-
cation technology, and other disciplines (i.e., secure multi-party
computation, DP, homomorphic encryption, zero-knowledge proof,
TEE). It is the bridge between data factors and data value, and the
basis of maturity for the digital economy and the data-factor mar-
ket. By leveraging privacy computing technologies, data becomes
available yet invisible.

Data privacy breaches are happening all over the world. For
example, in 2018, Cambridge Analytica [51] allegedly stole infor-
mation from Facebook users to manipulate the US election and
the UK referendum on the EU. The various privacy breaches show
that research on data privacy protection is extremely necessary to
fully exploit the value of data. That said, laws and regulations
related to data privacy have become increasingly mature and com-
plete in recent years, both domestically and globally. For example,
both the EU’s GDPR and China’s Data Security Management Mea-
sures set out responsibilities and norms regarding the protection
of personal information privacy. Overall, privacy computing is
the key to achieving data privacy and security.

In terms of practical deployment, each privacy computing tech-
nique has its own features, advantages, and disadvantages. Accord-
ing to the deployment scenarios, security requirements, and
efficiency requirements, it is necessary to choose the most suitable
privacy computing techniques for each application. In privacy
computing, the key questions are as follows:

(1) Who owns the data?
(2) Who consumes the data and data derivatives?
Clearly, when the data is owned by a single party that uses the

data itself, privacy computing is not needed. Therefore, in this sec-
tion, we are interested in scenarios in which the data owner(s) and
data consumer(s) are mutually untrusted entities.
4.1. Single data owner, multiple data buyers

In the setting of a single data owner andmultiple data buyers, the
data is positionedwith a single data ownerwhowants to delegate to
a single untrusted computing node in order to compute on a joint
database. The homomorphic encryption techniques mentioned
before can also be used in this scenario; however, doing so might
require distributed key generation and complicated key manage-
ment. The computation task is sometimes too heavy for homomor-
phic encryption. DP [52] is a cheap privacy-enhancement
Fig. 4. Privacy computing. SGX: software guard extensions; ARM: Advanced Reduced
encrypted memory; SEV: secure encrypted virtualization.
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technique that is rooted in cryptographyandbuilt on rigorousmath-
ematical definitions, providing a quantitative evaluation method.
Themain idea ofDP is to protect user privacyby removing individual
features while preserving statistical features. An algorithm is called
e-differentially private [53] if the algorithm is run on two databases
that differ by exactly-one entry and the resulting difference is
bounded by e. A smaller e indicates that the algorithm can ensure
stronger privacy. Informally, the closer the output obtained by an
algorithm processing two similar datasets is, the better the privacy
protection is for a specific piece of data. Recently, local DP (LDP)
has been proposed. Instead of adding noise to the aggregated result
as in DP mechanisms, LDP mechanisms add noise by each user
before sending the data to the central server. Thus, users do not rely
on the trustworthiness of the central server. Both DP and LDPmech-
anismscanbe combinedwithmachine learning.DPmechanismscan
provide privacy protection by adding random noise to the objective
function, gradient, and output results, such as by adding Laplace
noise or Gaussian noise [53]. LDPmechanisms can be applied to pro-
tect various types of training datasets, such as item datasets [54],
itemset [55], and graph [56].
4.2. Multiple data owners, single data buyer

The settingofmultipledataowners anda singledatabuyer canbe
further divided into several sub-cases.When themultiple data own-
ers are also the computing nodes, multi-party computation (MPC) is
an ideal technique. Secure multi-party computation [57] is a
research field that was created in 1982 when Turing Award winner
Chi-Chi Yao proposed the famous millionaire’s problem, which
requires multiple parties to collaborate on solving a problem with-
out revealing private data. Secure multi-party computing has
received continuous attention and research investment since its
inception, and new methods and tools are rapidly emerging in this
area. Among them, the protocol used for secure two-party computa-
tion is generally garbled circuit (GC) [57] combined with oblivious
transfer (OT) [58], while the protocol used for secureMPC (i.e., three
or more parties) is generally secret-sharing (SS) combined with OT.
Themain problemwith the former (i.e., GC + OT) is that the compu-
tational overhead can be higher, although fewer communication
rounds are required. The latter (i.e., SS + OT) [59] usually requires
multiple iterations of OT and a large number of communication
rounds, although its computational overhead is smaller.
lnstruction Set Computer Machine; AMD: Advanced Micro Devices; SEM: secure
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In terms of model training, conventional MPC typically requires
extremely large amounts of communication. Instead, collaborative
learning can be adopted for better efficiency. Collaborative learning
is a class of MPC protocols that aims to train a model on data
owned by multiple parties who want to keep their data private.
Federated learning and split learning are two of the more impor-
tant frameworks in collaborative learning. In federated learning
[60], the central server distributes the current model to the partic-
ipants. Each participant trains the model using its own local data
and then uploads the model to the server for aggregation. This pro-
cess is repeated until the model converges. This technology con-
cept was first introduced by Google in 2016, when it proposed
federated learning for mobile terminals. Since then, WeBank has
proposed the first ‘‘federated transfer learning” [61] solution for
the financial industry, combining transfer learning and federation
learning. At present, various open-source federated learning
frameworks such as Federated AI Technology Enabler (FATE) and
TensorFlow Federated are continuing to emerge and mature in
the field of AI.

In a practical application scenario, assume that N users {U1, . . .,
UN} hold their own datasets {D1, . . ., DN}, which are not directly
accessible to other users. Federated learning is used to learn a
model by collecting training information from distributed devices.
It consists of three basic steps:

(1) The server sends the initial model to each device.
(2) Device Ui does not need to share its own resource data, but

can federally train its own model Wi (Wi is the local model of Ui)
with local data Di.

(3) The server takes the individual local models collected, {W1,
. . .,WN}, aggregated into a global modelW0, and downlinks the glo-
bal model to update the local model for each user.

With the rapid development of federation learning, the effi-
ciency and accuracy of federation learning models are getting clo-
ser to those of centrally trained models. Based on the different
distribution patterns of the sample space and feature vector space
of the data, federal learning can be divided into three categories:
horizontal federated learning, vertical federated learning, and fede-
rated transfer learning. Horizontal federation learning is suitable
for scenarios in which the user feature vectors of two datasets
overlap a great deal, but the users rarely overlap. In other words,
different rows of data have the same feature vector (aligned in
the feature vector dimension). Therefore, horizontal federation
learning can increase the user sample size. For example, Kim
et al. [62] proposed a horizontal federated learning framework
called BlockFL, in which each mobile device uses a blockchain net-
work to update the local model, and Smith et al. [63] proposed a
federated learning approach called MOCHA to address security
issues in multi-tasking, which allows multiple clients to work
together to complete tasks and ensure privacy and security.
Multi-task federated learning also improves the communication
cost of the original distributed multi-task learning and enhances
the fault tolerance.

Vertical federation learning is suitable for scenarios in which
the user feature vectors of two datasets rarely overlap, but the
users overlap a great deal. Therefore, vertical federation learning
can increase the dimensionality of the feature vectors of the train-
ing data. For example, Cheng et al. [64] proposed a vertical feder-
ated learning system called SecureBoost, in which the parties
combine user feature vectors to train together in order to improve
the accuracy of decision-making, in what is a lossless training
scheme. Hardy et al. [65] proposed a vertical federated learning-
based logistic regression model with privacy protection. The
model uses pipelined entity analysis with Paillier semi-
homomorphic encryption for distributed logistic regression, which
can effectively protect privacy and improve the accuracy of the
classifier.
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Federal transfer learning is applicable to this scenario: The users
and user feature vectors of both datasets do not overlap much, but
transfer learning can be used to overcome the lack of data and
labels. The most appropriate situation for migration learning is
when you try to optimize the performance of a task but do not
have enough relevant data to put into training. For example, it is
difficult for a hospital radiology department to collect many X-
ray scans to build a good diagnostic radiology system. Transfer
learning can make it possible to learn a diagnostic radiology sys-
tem in combination with other related and different tasks (e.g.,
image-recognition tasks). Through federal migration learning, we
can not only protect data privacy but also migrate the model of
the auxiliary task to the target model learning, thereby solving
the problem of small data volume.

While federal learning emphasizes splitting at the data level,
the core idea of split learning [66,67] is to split the network struc-
ture. In the simplest example of split learning, the network struc-
ture is split into two parts—one stored on the client side and the
other on the server side. The client has no access to the server-
side model and vice versa. Compared with federated learning, split
learning reduces the amount of computation on the client side.

4.3. Multiple data owners, multiple data buyers

In this setting, the data is owned by multiple entities, and there
will be more than one data consumer. Such scenarios often require
the involvement of a data broker(s), and data privacy is the funda-
mental requirement. Homomorphic encryption [68] is an ideal
technique in this setting. Homomorphic encryption is a form of
encryption that allows users to perform computations on their
encrypted data without decrypting them. The results of these com-
putations are stored in encrypted form and, after decrypting the
results, the output is identical to the results obtained by perform-
ing the same operation on unencrypted data. Common types of
homomorphic encryption include partially homomorphic [69],
somewhat homomorphic [70], leveled fully homomorphic [71],
and fully homomorphic encryption [68]. Since IBM scientist Gentry
constructed the first true fully homomorphic cryptographymethod
[68], the cryptographic community has conducted intensive
research in this area. The second [72,73], third [74], and fourth
[75] generations of fully homomorphic cryptosystems have been
created.

A TEE [76] can also be used as an efficient solution in this set-
ting. TEE protects data in isolation through hardware technology.
In TEE-enabled central processing units (CPUs), a specific enclave
can be created that acts as a secure content container for sensitive
data and the code for its application, ensuring their confidentiality
and integrity. Even if an attacker takes control of the operating sys-
tem and other privileged-level software, the enclave cannot be
accessed (i.e., the information cannot be modified nor read). Appli-
cations running on the TEE are called trusted applications; they are
isolated from each other and cannot read and manipulate the data
of other trusted applications without authorization. Clearly, isola-
tion achieved through software algorithms and hardware tech-
nologies ensures that private information can be securely
computed, stored, transmitted, and deleted. TEE technologies are
often dependent on the specific technology platform and imple-
mentation vendor; common technologies include Intel� software
guard extensions (SGX), Advanced Reduced lnstruction Set Com-
puter Machine (ARM) TrustZone, and Advanced Micro Devices
(AMD) secure encrypted memory (SEM)/secure encrypted virtual-
ization (SEV).

In addition, many other verifiable computing techniques can be
adopted to ensure computation integrity. The zero-knowledge
proof technique is a widely used solution for verifiable computing.
In this proof system, the prover knows the answer to a question
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and must prove to the verifier that ‘‘he or she knows the answer,”
but the verifier cannot obtain any other information besides the
fact that ‘‘he or she knows the answer.” Zero-knowledge proofs
[77] were first conceived in 1985 by Shafi Goldwasser, Silvio
Micali, and Charles Rackoff in their paper ‘‘The knowledge com-
plexity of interactive proof systems” [78]. Subsequently, zero-
knowledge proof technology continued to evolve until 2013, when
cryptographers created the first efficient and commercially avail-
able general-purpose succinct non-interactive zero-knowledge
proof protocols: zero knowledge succinct arguments of knowledge
(zk-SNARKs).
5. Challenges and open questions

In this section, we discuss some interesting unexplored chal-
lenges for possible future work. We hope this discussion will invite
more extensive interest and research efforts into this fast-growing
area.

5.1. Appropriate technical solutions to ensure data rights

Recently, machine learning models have been widely used for
data processing. Although such models, which are completed by
training, can work independently from the data used for training,
they must still meet the requirements of the data subjects. The
black-box characteristic of machine learning models makes it chal-
lenging to ensure various data rights. For example, the right to be
forgotten is a right of a data subject that has been identified by
GDPR. The data subject has the right to obtain from the controller
the erasure of his or her personal data without undue delay. Unlike
traditional databases, the corresponding data can be deleted
directly. However, making a machine learning model forget the
learned data is a nontrivial challenge. In right of access, data sub-
jects have the right to obtain from the controller confirmation as
to whether or not personal data concerning him or her is being
processed. In order to prevent the data shared on the Internet from
being illegally crawled for model training, corresponding technical
solutions are needed to make the data become unlearnable exam-
ples that are visible but unexploitable. The complicated model and
data dependence of machine learning present a major challenge in
ensuring data rights.

5.2. The combination of data pricing and privacy computing

Data pricing provides a technical solution for ownership bene-
fits in the process of data transaction and circulation, while privacy
computing provides a technical solution to protect privacy in the
process of data transaction and circulation. Data pricing and pri-
vacy calculation complement each other in the process of data
transaction. Recently, the training of machine learning models in
a distributed scenario has become a research highlight. In this sce-
nario, data transactions continue to occur in the training process of
the machine learning model. This situation requires the design of
real-time and efficient data-pricing and privacy-computing tech-
nologies that conform to the training of machine learning models
in a distributed scenario. In this paper, we review data-pricing
technology based on model pricing and privacy-computing tech-
nology based on federated learning in a distributed scenario. An
example is the new pricing mechanism proposed by Xu et al.
[42] along with the privacy-computing technology of federated
learning, which compensates data owners through the mechanism
of federated learning. We believe that, for a distributed scenario,
challenges come from the combination of data-pricing and
privacy-computing technologies. Efficient and fair pricing strate-
gies should be designed by utilizing privacy-computing technolo-
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gies, such as through the relevant mechanism of federated
learning.

5.3. Data-factor computing that conforms to the practical situation of
the data-transaction market

A practical data-transaction market contains diverse types of
data transactions, and the form of the data products ranges from
direct data to machine learning models obtained through data
training. Data-factor computing should be based on practical trans-
action types in order to enable transaction completion. The data-
transaction market is complex and changes with supply and
demand information. Data-factor computing provides an explana-
tion of the market, guides each subject of the market in making
judgments, ensures the rights of the subject, stabilizes market
prices, protects data privacy, and enales data transactions.
Research on data-factor computing should not only build a model
based on data science but also include a combination of market
mechanisms and user behaviors in order to conform to the practi-
cal situation of the data market. It is essential to conduct data-
factor computing from an interdisciplinary perspective, covering
data science, economics, and marketing.

6. Conclusions

In the era of big data, big data governance has become a wide-
spread concern in all sectors of society, and appropriate algorith-
mic methods are needed to ensure the circulation and
transaction of big data. This paper provided an overview of data-
factor computing in the data-transaction market system and
reviewed the three main issues of data transaction: data rights,
data pricing, and privacy computing. We also discussed interesting
challenges for possible future work, in the hope that our discussion
will invite more extensive interest and research efforts into this
fast-growing area.
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