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In this work, we present a reconfigurable data glove design to capture different modes of human hand–
object interactions, which are critical in training embodied artificial intelligence (AI) agents for fine
manipulation tasks. To achieve various downstream tasks with distinct features, our reconfigurable data
glove operates in three modes sharing a unified backbone design that reconstructs hand gestures in real
time. In the tactile-sensing mode, the glove system aggregates manipulation force via customized force
sensors made from a soft and thin piezoresistive material; this design minimizes interference during
complex hand movements. The virtual reality (VR) mode enables real-time interaction in a physically
plausible fashion: A caging-based approach is devised to determine stable grasps by detecting collision
events. Leveraging a state-of-the-art finite element method, the simulation mode collects data on fine-
grained four-dimensional manipulation events comprising hand and object motions in three-
dimensional space and how the object’s physical properties (e.g., stress and energy) change in accordance
with manipulation over time. Notably, the glove system presented here is the first to use high-fidelity
simulation to investigate the unobservable physical and causal factors behind manipulation actions. In
a series of experiments, we characterize our data glove in terms of individual sensors and the overall sys-
tem. More specifically, we evaluate the system’s three modes by ① recording hand gestures and associ-
ated forces, ② improving manipulation fluency in virtual reality (VR), and ③ producing realistic
simulation effects of various tool uses, respectively. Based on these three modes, our reconfigurable data
glove collects and reconstructs fine-grained human grasp data in both physical and virtual environments,
thereby opening up new avenues for the learning of manipulation skills for embodied AI agents.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Challenges in learning manipulation

Manipulation and grasping are among the most fundamental
topics in robotics. This classic field has been rejuvenated by the
recent boom in embodied artificial intelligence (AI), wherein an
agent (e.g., a robot) is tasked to learn by interacting with its envi-
ronment. Since then, learning-based methods have been widely
applied and have elevated robots’ manipulation competence.
Often, robots either train on data directly obtained from sensors
(e.g., object grasping from a cluster [1,2], pick-and-place [3], object
handover [4], or door opening [5]) or learn from human demon-
strations (e.g., motor motions [6,7], affordance [8,9], task structure
[10–12], or reward functions [13–15]).

Learning meaningful manipulation has a unique prerequisite: It
must incorporate fine-grained physics to convey an understanding
of the complex process that occurs during the interaction.
Although we have witnessed the solid advancement of certain
embodied AI tasks (e.g., visual-language navigation), these suc-
cesses are primarily attributed to the readily available plain images
and their annotations (pixels, segments, or bounding boxes) that
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are directly extracted from the existing training platforms [16–18],
while physics information during the interactions is still lacking.
Similarly, although modern vision-based sensors and motion-
capture systems can collect precise trajectory information, neither
can precisely estimate physical properties during interactions.
Existing software and hardware systems are insufficient for learn-
ing sophisticated manipulation skills for the following three
reasons:

First, understanding fine-grained manipulation or human–ob-
ject interactions requires a joint understanding of both hand ges-
ture1 and force [20]; distinguishing certain actions purely based on
the hand gesture is challenging, if not impossible. For example, in
the task of opening a medicine bottle that requires either pushing
or squeezing the lid to unlock the childproof mechanism, it is insuf-
ficient to differentiate the opening actions by visual information
alone, because the pushing and squeezing actions are visually similar
(or even identical) to each other [21]. Reconstructing hand gestures
or trajectories alone has already been shown to be challenging, as
severe hand–object occlusion hinders the data collection reliability.
To tackle this problem, we introduce a tactile-sensing glove to jointly
capture hand gestures through a network of inertial measurement
units (IMUs) and force exerted by the hand using six customized
force sensors during manipulation. The force sensors are constructed
from Velostat—a piezoresistive fabric with changing resistance
under pressures, which is soft and thin to allow natural hand
motions. Together, the force sensors provide a holistic view of
manipulation events. A preliminary version of this system has been
presented in the work of Liu et al. [20] (Appendix A).

Second, contact points between hand and object play a signifi-
cant role in understanding why and how a specific grasp is chosen.
Such information is traditionally challenging to obtain (e.g.,
through thermal imaging [22]). To address this challenge, we
devise a VR glove and leverage VR platforms to obtain contact
points. This design incorporates a caging-based approach to deter-
mine a stable grasp of a virtual object based on the collision geom-
etry between fingers and the object. The collisions trigger a
network of vibration motors on the glove to provide haptic feed-
back. The VR glove jointly collects trajectory and contact informa-
tion that is otherwise difficult to obtain physically. A preliminary
version of this system has been presented in the work of Liu
et al. [23] (Appendix A).

Third, much attention has been paid to collecting hand informa-
tion during fine manipulation but not to the object being manipu-
lated or its effects caused by actions. This deficiency prohibits the
use of collected data for studying complex manipulation events.
For example, consider a tool-use scenario. A manipulation event
cannot be comprehensively understood without capturing the
interplay between the human hand, the tool being manipulated,
and the action effects. As such, this perspective demands a solution
beyond the classic hand-centric view in developing data gloves.
Furthermore, since the effects caused by the manipulation actions
are traditionally difficult to capture, they are often treated as a task
of recognizing discrete, symbolic states or attributes in computer
vision [24–26], losing their intrinsic continuous nature. To over-
come these limits of traditional data gloves, we propose to inte-
grate a physics-based simulation using the state-of-the-art finite
element method (FEM) [19] to model object fluents—the time-
varying states in the event [27]—and other physical properties
involved, such as contact forces and the stress within the object.
This glove with simulation captures a human manipulation action
and analyzes it in four-dimensional (4D) space by including:① the
contact and geometric information of the hand gesture and the
1 In this article, the phrase ‘‘hand gesture” is used to refer to the collective
movement of the fingers and palm, whereas ‘‘hand pose” is used to refer to the
position and orientation of the wrist.
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object in three-dimensional (3D) space, and ② the transition and
coherence between the object’s fluent changes and the manipula-
tion events over time. To the best of our knowledge, this is the first
time such 4D data offering a holistic view of manipulation events is
used in this field, and its use will open up new avenues for study-
ing manipulations and grasping.

Sharing a unified backbone design that reconstructs hand ges-
tures in real-time, the proposed data glove can be easily reconfig-
ured to ① capture force exerted by hand using piezoresistive
material, ② record contact information by grasping stably in VR,
or ③ reconstruct both visual and physical effects during the
manipulation by integrating physics-based simulation. Our system
extends the long history of developing data gloves [28] and
endows embodied AI agents with a deeper understanding of
hand–object interactions.

This paper makes three contributions compared with prior
work [20,23]. First, we introduce the concept of a reconfigurable
glove-based system. The three operating modes tackle a broader
range of downstream tasks with distinct features. This extension
does not sacrifice the easy-to-replicate nature, as different modes
share a unified backbone design. Second, a state-of-the-art FEM-
based physical simulation is integrated to augment the grasp data
with simulated action effects, thereby providing new opportunities
for studying hand–object interactions and complex manipulation
events. Third, we demonstrate that the data collected by our
glove-based system—either virtually or physically—is effective for
learning in a series of case studies.

1.1. Related work

1.1.1. Hand gesture sensing
Recording finger joints’ movements is the core of hand gesture

sensing. Various types of hardware have been adopted to acquire
hand gestures. Although curvature/flex sensors [29,30], liquid
metal [31], a stretchable strain sensor [32], and triboelectric mate-
rial [33] are among proven approaches, these can only measure
unidirectional bending angles. Hence, they are less efficient for
recording a hand’s metacarpophalangeal (MCP) joints with two
degrees of freedom (DoFs) for finger abduction and adduction. In
addition, by wrapping around bending finger joints, these instru-
ments sacrifice natural hand movements due to their large foot-
print and rigidness. In comparison, IMUs can measure one
phalanx’s 6-DoF pose, interfere less with joint motions, and per-
form more consistently over an extended period of time. As a
result, adopting IMUs in data gloves has prevailed in modern
design, including IMUs channeled by a Zigbee network [34], a cir-
cuit board with a 6-DoF accelerometer/gyroscope and a 3-DoF
magnetometer placed on each of the 15 phalanxes [35], and a pop-
ulation of IMUs connected through flexible cables [36]. Often, the
raw sensory information requires further filtering [37] and estima-
tion [35,38,39].

1.1.2. Force sensing
Sensing the forces exerted by a hand during manipulation has

attracted growing research attention and requires a more inte-
grated glove-based system. Here, we highlight some signature
designs. An elastomer sensor with embedded liquid–metal mate-
rial [40] was able to sense force across a large area (e.g., the palm)
and estimate joint movements by measuring skin strain. FlexiForce
sensors can acquire hand forces [41], while an optical-based
motion-capture system tracks hand gestures. Forces and gestures
can also be estimated using 9-DoF IMUs without additional hard-
ware [42], although the force estimation is crude. Other notable
designs involve specialized hardware, including force-sensitive
resistors [43] and a specific tactile sensor for fingertips [44].
Recently, soft films made from piezoresistive materials whose
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resistance changes under pressing forces (e.g., Velostat) have
become increasingly popular in robotic applications; this type of
material permits force sensing without constraining the robots’
or human hand’s motions [45–48].

1.2. Overview: The three modes of the reconfigurable data glove

To tackle the aforementioned challenges and fill in the gap in
the literature, we devised a reconfigurable data glove that is cap-
able of operating in three modes for various downstream tasks
with distinct features and goals.

1.2.1. Tactile-sensing mode
We start with a glove design using an IMU configuration [35] to

reconstruct hand gestures. Our system’s software and hardware
designs are publicly available for easy replication. A customized
force sensor made from Velostat—a soft fabric whose resistance
changes under different pressures—is adopted to acquire the force
distributions over large areas of the hand without constraining
natural hand motions. Fig. 1(a) [19,20,23] summarizes this
tactile-sensing glove design.

1.2.2. VR mode
By reconstructing virtual grasps in VR, this mode provides sup-

plementary contact information (e.g., contact points on an object)
during manipulation actions. In contrast to the dominating sym-
bolic grasp methods that directly attach the virtual object to the
virtual hand when a grasp event is triggered [49], our glove-
based system enables a natural and realistic grasp experience with
a fine-grained hand gesture reconstruction and force estimated at
specific contact points; a symbolic grasp would cause finger pene-
trations or non-contacting, since the attachments between the
hand and object are predefined. Although collecting grasp-related
data in VR is more convenient and economical than other special-
ized data-acquisition pipelines, the lack of direct contact between
the hand and physical objects inevitably leads to less natural inter-
actions. Thus, providing haptic feedback is critical to compensate
for this drawback. We use vibration motors to provide generic hap-
tic feedback to each finger, thereby increasing the realism of grasp-
ing in VR. Fig. 1(b) [19,20,23] summarizes the VR glove design.

1.2.3. Simulation mode
Physics-based simulations emulate a system’s precise changes

over time, thus opening up new directions for robot learning
[50], including learning robot navigation [16], bridging human
and robot embodiments in learning from demonstration [12], soft
robot locomotion [51], liquid pouring [52], and robot cutting [53].
In a similar vein, simulating how an object’s fluent changes as the
result of a given manipulation action provides a new perspective
on hand–object interactions. In this article, we adopt a state-of-
the-art FEM simulator [19] to emulate the causes and effects of
manipulation events. As shown in Fig. 1(c) [19,20,23], by integrat-
ing physical data collected by the data glove with simulated
effects, our system reconstructs a new type of 4D manipulation
data with high-fidelity visual and physical properties on a large
scale. We believe that this new type of data can significantly
impact how manipulation datasets are collected in the future and
can assist in a wide range of manipulation tasks in robot learning.

1.3. Structure of this article

The remainder of this article is organized as follows. We start
with a unified design for hand gesture sensing in Section 2. With
different goals, the tactile-sensing mode [20] and the VR mode
[23] are presented in Section 3 and Section 4, respectively. A new
state-of-the-art, physics-based simulation using FEM [54] is inte-
3

grated in Section 5 to collect 4D manipulation data, which is the
very first in the field to achieve such high fidelity, to the best of
our knowledge. We evaluate our system in threemodes in Section 6
and conclude the paper in Section 7.
2. A unified backbone design for gesture sensing

This section introduces the IMU setup for capturing hand ges-
tures in Section 2.1. As this setup is shared among all three modes
of the proposed reconfigurable data glove, we further evaluate the
IMU performance in Section 2.2.

2.1. Hand gesture reconstruction

2.1.1. IMU specification
Fifteen Bosch BNO055 9-DoF IMUs are deployed for hand ges-

ture sensing. One IMU is mounted to the palm, two IMUs to the
thumb’s distal and intermediate phalanges, and the remaining 12
are placed on the phalanxes of the other four fingers. Each IMU
includes a 16-bit triaxial gyroscope, a 12-bit triaxial accelerometer,
and a triaxial geomagnetometer. This IMU is integrated with a
built-in proprietary sensor fusion algorithm running on a 32-bit
microcontroller, yielding each phalanx’s pose in terms of a quater-
nion. The geomagnetometer acquires an IMU’s reference frame to
the Earth’s magnetic field, supporting the pose calibration protocol
(introduced later). The small footprint of the BNO055 (5.0 cm � 4.
5 cm) allows easy attachment to the glove and minimizes interfer-
ence with natural hand motions. A pair of TCA9548A I2C multiplex-
ers is used for networking the 15 IMUs and connecting them to the
I2C bus interfaces on a Raspberry Pi 2 Model B board (henceforth
RPi for brevity); RPi acts as the master controller for the entire
glove system.

2.1.2. Hand forward kinematics
A human hand has about 20 DoFs: both the proximal interpha-

langeal (PIP) joint and the distal interphalangeal (DIP) joint have
one DoF, whereas an MCP joint has two. Based on this anatomical
structure, we model each finger by a 4-DoF kinematic chain whose
base frame is the palm and the end-effector frame is the distal pha-
lanx. The thumb is modeled as a 3-DoF kinematic chain consisting
of a DIP joint and an MCP joint.

After obtaining a joint’s rotational angle using two consecutive
IMUs, the position and orientation of each phalanx can be com-
puted by forward kinematics. Fig. 2 [20] shows an example of
the index finger’s kinematic chain and the attached frame. Frame
1 is assigned to the palm, and Frames 2, 3, and 4 are assigned to
the proximal, middle, and distal phalanx, respectively. The proxi-
mal, middle, and distal phalanx lengths are respectively denoted
by l1, l2, and l3. The flexion and extension angles of the MCP, PIP,
and DIP joints are denoted as h1, h2, and h3, respectively. In addi-
tion, the MCP joint has an abduction and adduction angle denoted
as b. dx and dy are the offsets in the x and y directions between the
palm’s center and the MCP joint. Table 1 derives the Denavit–
Hartenberg (D–H) parameters for each reference frame, wherein
a general homogeneous transformation matrix T from frames
i� 1 to i (where i is the Frame index mentioned above) can be
given by the following:

i�1
i T i�1 ¼

coshi �sinhi 0 ai�1

sinhicosai�1 coshicosai�1 �sinai�1 �sinai�1di

sinhisinai�1 coshisinai�1 cosai�1 cosai�1di

0 0 0 1

2
6664

3
7775

ð1Þ
where ai�1, ai�1, hi�1, and di are the D–H parameters.



Fig. 1. Overview of our reconfigurable data glove in three operating modes, which share a unified backbone design of an IMU network that captures the hand gesture. (a) The
tactile-sensing mode records the force exerted by the hand during manipulation [20]. (b) The VR mode supports stable grasping of virtual objects in VR applications and
provides haptic feedback via vibration motors [23]. Contact configurations are conveniently logged. (c) The simulation mode incorporates state-of-the-art FEM simulation
[19] to augment the grasp data with fine-grained changes in the object’s properties. N: the number of unit(s) used in the prototype.

Fig. 2. The kinematic chain of the index finger with coordinate frames attached.b:
the abduction and adduction angle of MCP joint; l1, l2, and l3: the proximal, middle,
and distal phalanx lengths; h1, h2, and h3: the flexion and extension angles of the
MCP, PIP, and DIP joints; xð�Þ , yð�Þ; and zð�Þ: the x, y, and z coordinate attached to the
corresponding frame. Reproduced from Ref. [20] with permission.
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Table 2 lists the homogeneous transformation matrices of each
phalanx, which can be used to express each phalanx’s pose in the
palm’s reference frame in the cartesian space. The forward kine-
matics model keeps better track of the sensed hand gesture by
reducing the inconsistency due to IMU fabrication error and
anatomical variations among the users’ hands.
4

2.1.3. Joint limits
We adopt a set of commonly used inequality constraints [55] to

limit the motion ranges of the finger joints, thereby eliminating
unnatural hand gestures due to sensor noise:

MCP joint :
0

� � h1 � 90
�

�15
� � b � 15

�

(

PIP joint : 0
� � h2 � 110

�

DIP joint : 0
� � h3 � 90

�

ð2Þ
2.1.4. Pose calibration
Inertial sensors such as IMUs suffer from a common problem of

drifting, which causes an accumulation of errors during operations.
To overcome this issue, we introduce an IMU calibration protocol.
When the sensed hand gesture degrades significantly, the user
wearing the glove can hold the hand flat and maintain this gesture
(Fig. 3 [23]) to initiate calibration; the system records the relative
pose between the IMU and world frames. The orientation data
measured by the IMUs are multiplied by the inverse of this relative
pose to cancel out the differences, thus eliminating accumulated
errors due to drifting. This routine can be performed conveniently
when experiencing unreliable hand gesture sensing results.

2.2. IMU evaluation

We evaluated an individual IMU’s bias and variance during
rotations. Furthermore, we examined how accurately two articu-
lated IMUs can reconstruct a static angle, indicating the perfor-
mance of an atomic element in sensing the finger joint angle.

2.2.1. Evaluations of a single IMU
As the reliability of the gesture sensing primarily depends on

the IMU performance, it is crucial to investigate the IMU’s bias
and variance. More specifically, we rotated an IMU using a precise



Table 1
Denavit–Hartenberg parameters of a finger.

Link Index Parameter

ai�1 ai�1 hi di

1 0 0 b 0
2 p=2 l1 h1 0
3 0 l2 h2 0
4 0 l3 h3 0

Table 2
Concatenation of transformation matrices.

Phalanx Transformation

Proximal 0
1T0

1
2T1

Middle/distal for thumb 0
1T0

1
2T1

2
3T2

Distal 0
1T0

1
2T1

2
3T2

3
4T3
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stepper motor controlled by an Arduino microcontroller. Four rota-
tion angles—90�, 180�, 270�, and 360�—were executed 20 times
each at a constant angular velocity of 60 r�min�1. We did not test
for a rotation angle exceeding 360�, as this is beyond the fingers’
motion range. Fig. 4(a) [20] summarizes the mean and the standard
deviation of the measured angular error. Overall, the IMU per-
formed consistently with a bias between 2� and 3� and a ±1.7�
standard deviation, suggesting that post-processing could effec-
tively reduce the sensor bias.
2.2.2. Evaluations of articulated IMUs
Evaluating IMU performance on whole-hand gesture sensing is

difficult due to the lack of ground truth. As a compromise, we 3D
printed four rigid bends with angles of 0�, 45�, 90�, and 135� to
emulate four specific states of finger bending, which evenly
divided a finger joint’s motion range as defined in Eq. (2). Using
two IMUs to construct a bend, assuming it to be a revolute joint,
we tested the accuracy of the reconstructed joint angle by comput-
ing the relative poses between the two IMUs. Fig. 4(b) [20] shows
the errors of the estimated joint angles. Fig. 4(c) [20] shows a sche-
matic of this experimental setup, and Fig. 4(d) [20] shows the
physical setup with a 90� bending angle. During the test, one
IMU was placed 2 cm behind the bend, and another was placed
1 cm ahead, simulating the IMUs attached to a proximal phalanx
and a middle phalanx, respectively. We repeated the test 20 times
for each rigid bend. As the bending angle increased, the reconstruc-
tion errors increased from 4� to about 6�, with a slightly expanded
confidence interval. Overall, the errors were still reasonable,
Fig. 3. The IMU calibration protocol. The protocol starts by holding the hand flat, as sho
IMU’s local coordinate system is recorded. The inverse of the recorded relative pose cor
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although the IMUs tended to underperform as the bending angle
increased. Through combination with the pose calibration protocol,
these errors can be better counterbalanced, and the utilized IMU
network can reliably support the collection of grasping data (see
Section 6 for various case studies).
3. Tactile-sensing mode

Our reconfigurable data glove can be easily configured to the
tactile-sensing mode, which shares the unified backbone design
described in Section 2. The tactile-sensing mode measures the dis-
tribution of forces exerted by the hand during complex hand–ob-
ject interactions. We start by describing the force sensor
specifications in Section 3.1, which is followed by details of proto-
typing in Section 3.2. We conclude this section with a qualitative
evaluation in Section 3.3.

3.1. Force sensor

We adopt a network of force sensors made from Velostat to pro-
vide force sensing in this tactile-sensing mode. Fig. 5(a) [20] illus-
trates the Velostat force sensor’s multi-layer structure. A taxel (i.e.,
a single-point force-sensing unit) is composed of one inner layer of
Velostat (2 cm � 2 cm) and two middle layers of conductive fabric,
stitched together by conductive thread and enclosed by two outer
layers of insulated fabric. A force-sensor pad consisting of two tax-
els is placed on each finger, and a sensor grid with 4 � 4 taxels is
placed on the palm. Lead wires to the pads and grid are braided
into the conductive thread.

As the Velostat’s resistance changes with different pressing
forces, the measured voltage across a taxel can be regarded as
the force reading at that region. To acquire the voltage readings,
we connect these Velostat force-sensing taxels in parallel via ana-
log multiplexers controlled by the RPi’s GPIO and output to its
serial peripheral interface (SPI)-enabled ADS1256 analog to digital
converter (ADC). More specifically, two 74HC4051 multiplexers are
wn by the virtual hand model. The relative pose between the world frame and the
rects the IMU data. Reproduced from Ref. [23] with permission.



Fig. 4. Evaluations of IMU performance. The measurement error is summarized as the mean and standard deviation of (a) a single IMU and (b) two articulated IMUs under
different settings. The red horizontal lines, blue boxes, and whiskers indicate the median error, the 25th and 75th percentiles, and the range of data points not considered to
be outliers, respectively. (c) A schematic of the experimental setup for evaluating the angle reconstruction with two articulated IMUs is and (d) its physical setup with a 90�
bending angle. Reproduced from Ref. [20] with permission.
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used for the palm grid, and a CD74HC4067 multiplexer is used for
all the finger pads. A voltage divider circuit, shown in Fig. 5(b) [20],
is constructed by connecting a 200 O resistor between the RPi’s
ADC input channel and the multiplexers.

We now characterize the sensor’s force–voltage relation [56]. A
total of 13 standard weights (0.1–1.0 kg with 0.1 kg increments,
1.2, 1.5, and 2.0 kg) were applied to a taxel, and the associated volt-
ages across that taxel were measured. The calibration circuit was
the same as that in Fig. 5(b) [20], except that only the taxel of inter-
est was connected. The weights in kilograms were converted to
forces in Newtons with a gravitational acceleration g = 10 m�s�2.
We first tested the power law [56] for characterizing the force–
voltage relation of a taxel. The result was F = � 1.067
V�0.4798 + 3.244, with the correlation coefficient R2 = 0.9704, where
F is the applied force, and V is the output voltage. However, we fur-
ther tested a logarithmic law, resulting in a better force–voltage
relation: F = 0.569 � log(44.98 V) with a higher R2 = 0.9902. Hence,
we adopted the logarithmic fit to establish a correspondence
between the voltage reading across a taxel and the force the taxel
is subjected to. Fig. 5(c) [20] compares these two fits.
3.2. Prototyping

Fig. 1(a) [19,20,23] displays a prototype of the tactile-sensing
glove. The capability of force sensing is accomplished by placing
one Velostat force-sensing pad on each finger (one taxel in the
proximal area and another in the distal area) and a single 4 � 4
Velostat force-sensing grid over the glove’s palm region. Based
on the established force–voltage relation, these taxels collectively
measure the distribution of forces exerted by the hand. Meanwhile,
the 15 IMUs capture the hand gestures in motion. These compo-
6

nents are all connected to the RPi, which can be remotely accessed
to visualize and subsequently utilize the collected gesture and
force data in a local workstation, providing a neat solution to col-
lect human manipulation data.

By measuring the voltage and current across each component,
we investigated the power consumption of the prototype. Table 3
reports the peak power of each component of interest as the pro-
duct of its voltage and current in a ten-min operation. The total
power consumption was 2.72 W, which can be easily powered by
a conventional Li-Po battery, offering an untethered user experi-
ence and natural interactions during data collection.

3.3. Qualitative evaluation

We evaluated the performance of the tactile-sensing glove in
differentiating among low, medium, and high forces by grasping
a water bottle in three states, empty, half-full, and full, whose
weights were 0.13, 0.46, and 0.75 kg, respectively. The participants
were asked to perform the grasps naturally and succinctly—exert-
ing a force just enough to prevent the bottle from slipping out of
the hand; Fig. 5(d) [20] shows such an instance. Ten grasps were
performed for each bottle state. To simplify the analysis, the force
in the palm was the average of all 16 force readings of the palm
grid, and the force in each finger was the average reading of the
corresponding finger pads. Fig. 5(e) [20] shows the recorded forces
exerted by different hand regions.

4. VR mode

Since the different modes of our data glove share a unified back-
bone design, reconfiguring the glove to the VR mode in order to



Fig. 5. Characterization of the Velostat force sensor. (a) The multi-layer structure of a Velostat force sensor. (b) The circuit layout for force data acquisition. (c) The force–
voltage relation of one sensing taxel. Instead of using a power law, our choice of a logarithmic law fits the data better. (d) A grasp of the half-full bottle. (e) Force responses of
grasping empty, half-full, and full bottles, respectively. ADC: analog to digital converter. Rv: the resistance of one Velostat taxel; Rm: the resistance of the voltage divider; Vcc:
the input voltage; Vout: the measured voltage. Reproduced from Ref. [20] with permission.

Table 3
Power consumption of the tactile-sensing
glove.

Component Power (W)

Gesture sensing
15 IMUs 0.60

Force sensing
6 Velostat 0.02

Computing
RPi 2.15

Total 2.77
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obtain contact points during interactions can be achieved with
only three steps. First, given the sensed hand gestures obtained
by the shared backbone, we need to construct a virtual hand model
for interactions (see Section 4.1). Next, we must develop an
approach to achieve a stable grasp of virtual objects (see Sec-
tion 4.2). Finally, grasping objects in VR introduces new difficulty
without a tangible object being physically manipulated; we lever-
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age haptic feedback to address this problem in Section 4.3. We con-
clude this section with an evaluation in Section 4.4.
4.1. Virtual hand model

Generating a stable grasp is the prerequisite for obtaining con-
tact points during interactions. Existing vision-based hand gesture
sensing solutions, including commercial projects such as LeapMo-
tion [57] and RealSense [58], struggle with stable grasps due to
occlusions, sensor noises, and a limited field of view (FoV); inter-
ested readers can refer to Fig. 6(a) [23] for a comparison in a typical
scenario. In comparison, existing VR controllers adopt an alterna-
tive approach—the virtual objects are directly attached to the vir-
tual hand when a grasp event is triggered. As illustrated in Fig. 6
(b) [23], the resulting experience has minimal realism and cannot
reflect the actual contact configuration. The above limitations
motivate us to realize a stable virtual grasp by developing a
caging-based approach that is capable of real-time computation



Fig. 6. Comparison of a grasp among (a) a LeapMotion sensor, (b) an Oculus Touch controller, and (c) our reconfigurable glove system in the VR mode. The grasp in (a) is
unstable, as reflected by the motion blur, due to occlusion in the vision-based hand gesture sensing approach. While (b) affords a form of ‘‘stable” grasp (i.e., it removes the
gravity from the cup) by directly attaching the object to the hand, this approach is unnatural, with minimal realism. It does not reflect the actual contact between a hand and
an object, and sometimes the hand even fails to come into contact with the object. The proposed reconfigurable glove in VR mode offers a realistic and stable grasp, which is
crucial for obtaining contact points during interactions. Reproduced from Ref. [23] with permission.
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while offering sufficient realism; an example is provided in Fig. 6
(c) [23].

Thanks to the reconfigurable nature of the glove, creating a vir-
tual hand model in VR is simply the reiteration of the hand
gesture-sensing module described in Section 2; Fig. 7 [23] shows
the structure of the virtual hand. More specifically, the hand ges-
tures in the local frames are given by the IMUs, and a VIVE tracker
with HTC Lighthouse provides the precise positioning of the hand
in a global coordinate, computed by the time-difference-of-arrival.

4.2. Stable grasps

Methods for realizing a virtual grasp in VR can be roughly cat-
egorized into two streams, with their unique pros and cons. One
approach is to use a physics-based simulation with collision detec-
tion to support realistic manipulations by simulating the contact
between a soft hand and a virtual object made from varied materi-
als. Despite its high fidelity, this approach often demands a signif-
icant amount of computation, making it difficult—if not
impossible—to use in real time. Alternatively, symbolic-based
and rule-based grasps are popular approaches. A grasp or release
is triggered based on a set of predefined rules when specific condi-
Fig. 7. Structure of the virtual hand model. Each phalanx is modeled by a small cylind
reconstructed from the data read by the IMUs. The VIVE tracker provides direct trackin
proximal, middle, and distal phalanx. R(.): the rotation between two consecutive part
permission.
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tions are satisfied. This approach is computationally efficient but
provides minimal realism.

Our configurable glove-based system must balance the above
two factors to obtain contact points during interactions. It must
provide a more natural interaction than those of rule-based meth-
ods, such that the contact points obtained on the objects are rela-
tively accurate, while ensuring more effective computation than
high-fidelity physics-based simulations, such that it can be
achieved in real time.

In this work, we devise a caging-based stable grasp algorithm,
which can be summarized as follows. First, the algorithm detects
all collisions between the hands and objects (e.g., the red areas
in Fig. 8(a) [23]). Next, the algorithm computes the geometric cen-
ter of all collision points between the hands and objects and checks
whether this center is within the object. Supposing that the above
situation holds (Fig. 8(b) [23]), we consider this object to be
‘‘caged”; thus, it can be stably grasped. The objects’ physical prop-
erties are turned off, allowing them to move along with the hand.
Otherwise, only standard collisions are triggered between the hand
and object. Finally, the grasped object is released when the colli-
sion event ends or the geometric center of the collisions is outside
the object. This process ensures that a grasp only starts after a
er whose dimensions are measured by a participant. The pose of each phalanx is
g of the hand pose. q(.): the quaternions of the IMU placed on the palm or on the
s of the hand converted from their quaternions. Reproduced from Ref. [23] with



Fig. 8. Detecting a stable grasp based on collisions. (a) Various grasps of a small green cylinder. The red regions of the hand indicate the contacts with the object. (b) When the
geometric center (green dashed circle) of all the collision points (red balls) overlaps with the object (yellow cylinder), the object is considered to be stably grasped and will
move along with the hand. Reproduced from Ref. [23] with permission.
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caging is formed, offering a more natural manipulation experience
with higher realism than rule-based grasps.

4.3. Haptic feedback

By default, the participants have no way to feel whether or not
their virtual hands are in contact with the virtual objects while
operating the glove in VR mode due to the lack of haptic feedback,
which prevents they from manipulating objects naturally. To fill
this gap, the VR mode implements a network of shaftless vibration
motors that are triggered when the corresponding virtual pha-
lanxes collide with the virtual object; this offers an effective means
of providing each finger with vibrational haptic feedback in the
physical world that corresponds to the contact feedback that the
participants should receive in VR. Connected to a 74HC4051 analog
multiplexer and controlled by the RPi’s GPIO, these small
(10 mm � 2 mm) and lightweight (0.8 g) vibration motors provide.

14 500 r�min�1 with a 3 V input voltage. Once a finger touches
the virtual object, the vibration motors located at that region of the
glove are activated to provide continuous feedback. When the hand
forms a stable grasp, all motors are powered up, so that the user
can maintain the current hand gesture to hold the object.

4.4. Qualitative evaluation

We conducted a case study wherein the participants were asked
to wear the VR glove and grasp four virtual objects with different
shapes and functions, including a mug, a tennis racket, a bowl,
and a goose toy (Fig. 9 [23]). These four objects were selected
because ① they are everyday objects with a large variation in their
geometry, providing a more comprehensive assessment of the vir-
tual grasp; and ② each of the four objects can be grasped in differ-
ent manners based on their functions, covering more grasp types
[59,60]. We started by testing different ways of interacting with
virtual objects, such as grasping a mug by either the handle or
the rim. Such diverse interactions afforded a natural experience
by integrating unconstrained fine-grained gestures, which is diffi-
cult for existing platforms (e.g., LeapMotion). In comparison, our
reconfigurable glove in VR mode successfully balanced the natural-
ness of the interactions with the stability of the grasp, providing a
better realism in VR, which was close to how objects are manipu-
lated in the physical world.

Notably, the reconfigurable glove in VR mode was able to track
hand gestures and maintain a stable grasp even when the hand
was outside the participant’s FoV, thus offering a significant advan-
tage compared with vision-based approaches (e.g., the LeapMotion
sensor). In a comparative study in which the participant’s hand
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could be outside of the FoV, the performance using the VR glove
significantly surpassed that of LeapMotion (Table 4), thereby
demonstrating the efficacy of the VR glove hardware, the caging-
based grasp approach, and the haptic feedback.
5. Simulation mode

A manipulation event consists of both hand information and
object information. Most prior work has focused on the former
without paying much attention to the latter. In fact, objects may
be occluded or may even change significantly in shape as a result
of a manipulation event, such as through deformation or cracking.
Such information is essential in understanding the manipulation
event, as it reflects the goals. However, existing solutions, even
those with specialized sensors, fall short in handling this scenario,
so a solution beyond the conventional scope of data gloves is called
for.

To tackle this challenge, we integrate a state-of-the-art FEM
simulator [19] to reconstruct the physical effects of an object, in
numeric terms, during the manipulation. Given the trajectory data
obtained by the proposed glove-based system, both physical and
virtual properties and how they evolve over time are simulated
and rendered, providing a new dimension for understanding com-
plex manipulation events.
5.1. Simulation method

We start with a brief background of solid simulation. Solid sim-
ulation is often conducted with FEM [61], which discretizes each
object into small elements with a discrete set of sample points as
the DoFs. Then, mass and momentum conservation equations are
discretized on the mesh and integrated over time to capture the
dynamics, in which elasticity and contact are the most essential
yet most challenging components. Elasticity is the ability of an
object to retain its rest shape under external impulses or forces,
whereas contact describes the intersection-free constraints on an
object’s motion trajectory. However, elasticity is nonlinear and
non-convex, and contact is non-smooth, both of which can pose
significant difficulties to traditional solid simulators based on
numerical methods [62]. Recently, Li et al. [19] proposed incre-
mental potential contact (IPC), a robust and accurate contact-
handling method for FEM simulations [63–67]; it formulates the
non-smooth contact condition into smooth approximate barrier
potentials so that the non-smooth contact condition can be solved
simultaneously with electrodynamics using a line search method
[68–70] with a global convergence guarantee. As it is able to



Fig. 9. Various grasp results for four virtual objects: (a) a mug, (b) a tennis racket, (c) a bowl, and (d) a goose toy. The top and bottom rows show the approach and release of
the target objects, respectively. Reproduced from Ref. [23] with permission.

Table 4
Success rates of grasping and moving four different objects using the VR glove and the LeapMotion sensor.

Task Setup Mug Racket Mug Racket

Grasp LeapMotion sensor 80% 13% 27% 67%
VR glove 100% 100% 100% 93%

Move LeapMotion sensor 33% 7% 0 47%
VR glove 100% 93% 93% 87%
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consistently produce high-quality results without numerical insta-
bility issues, IPC makes it possible to conveniently simulate com-
plex manipulation events, even with extremely large deformations.

We further extend the original IPC to support object fracture by
measuring the displacement of every pair of points; that is, we go
through all pairs of points for a triangle and all triangles on the
mesh. If the displacement relative to the pair of points’ original dis-
tance exceeds a certain strain threshold (in this work, we set it to
1.1), we mark the triangle in between as separated. At the end of
every time step, we reconstruct the mesh topology using a
graph-based approach [71], according to the tetrahedra face sepa-
ration information. Due to the existence of the IPC barrier, which
only allows a positive distance between surface primitives, it is
essential to ensure that, after the topology change, the split faces
do not exactly overlap. Therefore, we perturb the duplicate nodes
on the split faces by a tiny displacement toward the normal direc-
tion, which works nicely even when edge-edge contact pairs are
ignored for simplicity.
5.2. Prototyping and input data collection

The simulation-augmented glove-based system is essentially
the same as the VR glove, except for the lack of vibration motors;
however, it is augmented with the simulated force evolved over
time. Compared with the aforementioned two hardware-focused
designs, the simulation-augmented glove-based system offers an
in-depth prediction of physics with fine-grained object dynam-
ics—that is, how the geometry (e.g., large deformation) and topol-
ogy (e.g., fracture) evolve. To showcase the efficacy of this system,
we focus on a tool-use setting wherein a user manipulates a tool
(e.g., a hammer) to apply on a target object (e.g., a nut), causing
geometry and/or topology changes. To collect one set of data, the
hand gestures and poses are reconstructed similarly using the
other two glove-base systems. The tool’s movement is further
tracked to simulate the interactions between the tool and the
object.

More specifically, two VIVE trackers track the movements of the
glove-based system (i.e., the hand) and the tool, respectively. The
third tracker, which serves as the reference point for the target
object (e.g., a nut) is fixed to the table. All three VIVE trackers are
calibrated such that their relative poses and the captured trajecto-
ries can be expressed in the same coordinate. The target objects
and the tool’s meshes are scanned beforehand using a depth cam-
era. By combining the scanned meshes and captured trajectories,
we can fully reconstruct a sequence of 3D meshes representing
the movements of the hand and tool and simulate the resulting
physical effects of the target object. The captured mesh sequences
Fig. 10. Four types of tool-use events captured by a slow-motion camera at 120 frames p
cracked, (c) smashed, and (d) cut in half.
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are directly input to the simulation as boundary conditions, and
the DoFs being simulated are primarily those on the target object.
Fig. 10 shows some keyframes of the data collection for cracking
walnuts and cutting carrots. It should be noted that capturing
how the object changes and its physical properties over time is
extremely challenging—if not impossible—using visual information
alone.

5.3. Simulation setup

An object’s material properties in a simulation are mainly
reflected by its stiffness (i.e., the object is more difficult to deform
or fracture if it is stiffer), governed by its Young’s modulus and
Poisson’s ratio. These parameters must be set appropriately in
the simulation in order to produce effects that match those in
the physical world. The Young’s modulus and Poisson’s ratio of a
material can be found in related works [72–74]. Another parameter
that must be set is the fracturing strain threshold, which determi-
nes the dimension of the segments when fracturing is triggered.
This parameter is tuned so that the simulator can reproduce the
type of effects observed in the physical world. The time step of
the simulation is the inversion of the sampling frequency of the
Vive trackers that acquire the trajectories.

6. Application

In this section, we showcase a series of applications by reconfig-
uring the data glove to the tactile-sensing mode (Section 6.1), VR
mode (Section 6.2), and simulation mode (Section 6.3), all of which
share the same backbone design (video demonstrations in the
Appendix A).

6.1. Tactile-sensing mode

We evaluated the tactile-sensing mode by capturing the manip-
ulation data of opening three types of medicine bottles. Two of
these bottles are equipped with different locking mechanisms
and require a series of specific action sequences to remove the
lid. More specifically, Bottle 1 does not have a safety lock, and sim-
ply twisting the lid is sufficient to open it. The lid of Bottle 2 must
be pressed simultaneously while twisting it. Bottle 3 has a safety
lock in its lid, which requires a pinching action before twisting to
unlock it. Notably, the pressing and pinching actions required to
open Bottle 2 and Bottle 3 are challenging to recognize without
using the force information recorded by the glove.

Fig. 11 [20] shows examples of the recorded data with both
hand gesture and force information. The first row of Fig. 11 [20]
er second (fps). These categories, in terms of fluent changes, are: (a) uncracked, (b)
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visualizes the captured manipulation action sequences of opening
these three bottles. The second row shows the corresponding
action sequences captured by a red–green–blue (RGB) camera for
reference.

Qualitatively, compared with the action sequences shown in the
second row, the visualization results in the first row differentiate
the fine manipulation actions with additional force information.
For example, the fingers in Fig. 11(b) [20] are flat and parallel to
the bottle lid, whereas those in Fig. 11(c) [20] are similar to those
in the gripping pose. The responses of the force markers are also
different due to varying contact points between the human hand
and the lid: The high responses in Fig. 11(b) are concentrated on
the palm area, whereas only two evident responses on the distal
thumb and index finger can be seen in Fig. 11(c) [20]. Taken
together, these results demonstrate the significance of accounting
for forces when understanding fine manipulation actions.
Fig. 11. Visualizations of the hand gesture and force of opening three bottles, (a) Bottl
pinching the lid to unlock, collected using the tactile-sensing glove. These visualizations
opening a conventional bottle; the essence of this task is that visual information alone is
from Ref. [20] with permission.
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Quantitatively, Fig. 12 [20] illustrates one taxel’s force collected
on the palm, the thumb’s fingertip, and the flexion angle of the
index finger’s MCP joint. In combination, these three readings
can differentiate among the action sequences of opening the three
bottles. More specifically, as opening Bottle 2 involves a pressing
action on the lid, the tactile glove successfully captures the high
force response on the palm. In contrast, the force reading in the
same region is almost zero when opening the other two bottles.
Bottle 30s pinch-to-open lock necessitates a greater force exerted
by the thumb. Indeed, the opening actions introduce a high force
response at the thumb’s fingertip, with a longer duration than
the actions involved in opening Bottle 1 without a safety lock.
Without contacting the lid, the thumb yields no force response
when opening Bottle 2. Since opening both Bottle 1 and Bottle 3
involves a similar twist action, the measured flexion angles of
the index finger’s MCP joint are around 50� in both of these cases.
e 1, no childproof lock; (b) Bottle 2, pressing down the lid to unlock; (c) Bottle 3,
reveal the subtle differences between the actions of opening medicine bottles and
insufficient to distinguish between the opening of the various bottles. Reproduced
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Since only the palm touches the lid and the fingers remain
stretched, a small flexion angle occurs when opening Bottle 2.

A promising application of the proposed glove is learning fine
manipulation actions from human demonstrations. The collected
tactile data has facilitated investigations into a robot’s functional
understanding of actions and imitation learning [12,75], inverse
reinforcement learning [76], and learning explainable models that
promote human trust [21]. Fig. 13 [15] showcases the robot’s
learned skills of opening different medicine bottles [75].
Fig. 13. A Baxter robot learns to open medicine bottles from the collect

Fig. 12. Force and joint angle recorded by the tactile-sensing glove. (a) The forces
exerted by the palm, (b) forces exerted by the thumb’s fingertip, and (c) the flexion
angle of the index finger’s MCP joint can disentangle the grasp actions of opening
different bottles. Reproduced from Ref. [20] with permission.
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6.2. VR mode

When operating in VR mode, the reconfigurable glove provides
a unique advantage compared with traditional hardware. Below,
we showcase two data types that can be collected effectively in
this mode.

6.2.1. Trajectories
Hand and object trajectories are particularly useful in robot

learning from demonstration. Diverse object models can be placed
in the VR without setting up a physical apparatus to ensure a nat-
ural hand trajectory. Fig. 14 [23] shows some qualitative results of
collected trajectories: the hand movement (red line) and the five
fingertips’ trajectories (blue lines) by combining global hand pose
and hand gesture sensing, and the grasped object’s movement
(black line) as the result of hand movement and grasp configura-
tion (stable grasp or not). These results demonstrate the reliability
of our design and the richness of the collected trajectory informa-
tion in a manipulation event.

6.2.2. Contact points
It is extremely challenging to obtain the contact points of the

objects being manipulated. Despite relying heavily on training
data, computer vision-based methods [77] are still vulnerable to
handling occlusion between hands and objects. Our reconfigurable
glove operating in the VR mode can elegantly log this type of data.
Given the meshes of the virtual hand model and the object, the
VR’s physics engine can effectively check the collisions between
them. These collisions not only determine whether the object can
be stably grasped based on the criteria described in Section 4.2
but also correspond well to the contact points on the grasped
object. By treating a collision point as the spatial center of a spher-
ical volume whose radius is set to the diameter of the finger, Fig. 15
shows three configurations of contacts collected from different
participants grasping diverse objects. To better uncover the general
grasp habits for an object, the contact points shown in the bottom
row of Fig. 15 are obtained by averaging the spatial positions of
contacts across different trails, fitted by a Gaussian distribution.

A fundamental challenge in robot learning of manipulation is
the embodiment problem [12,78]: The human hand (five fingers)
and robot gripper (usually two or three fingers) have different mor-
phologies. While this problem demands further research, individ-
ed manipulation data. Reproduced from Ref. [75] with permission.



Fig. 14. Examples of hand and object trajectories collected by the reconfigurable glove operating in VR mode. Red triangles indicate the starting poses. The red line and the
blue lines show the recorded hand movement and the trajectories of the fingertips, respectively. Once the contact points (green circles) are sufficient to trigger a stable grasp,
the object moves together with the hand, following the black line, until the grasp becomes unstable—that is, until it is released at the orange circles. Reproduced from Ref. [23]
with permission.

Fig. 15. Contact points in grasping various objects. (a) Objects to be grasped. (b–d) Three configurations of the contact points performed by different participants. (e) The
distance from each contact point. (f) The average of contact points aggregated from all participants, indicating the preferred regions of contact, given the objects.
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ual contact points can also indicate a preferred region of contact if
aggregated from different participants (see the last row in Fig. 15).
Such aggregated data can be used for training robot manipulation
policies despite different morphologies [12].
14
6.3. Simulation mode

By incorporating the state-of-the-art physics-based simulation,
we empower the data glove to capture fine-grained object dynam-



Fig. 16. Reconstructed 4D manipulation events of tool use by integrating trajectories collected by the reconfigurable glove and physics-based simulation. This high-fidelity
4D data reveals fine-grained object fluent changes and physical properties at each time step. The results are produced with a simulation at 20 Hz; one time step is 0.05 s. (a)
Reconstructed tool-use events by simulation. The first/third rows show the contact moments between the tool and the object. The second/fourth rows are the corresponding
stress given by the simulator; red indicates greater stress. The fifth row shows the objects’ final status. (b) The energy imposed on the objects, the number of fractured pieces,
and the contact pressure calculated by the simulator at each time step during tool use.
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ics during manipulations. Fig. 16 showcases simulated objects’ flu-
ent changes in tool uses. Even when recorded at 120 fps, it is chal-
lenging—if not impossible—to capture an object’s fluent changes
(e.g., how a walnut smashes) using a vision-based method. By feed-
ing the collected trajectory into the simulation, our system renders
object fluent changes that are visually similar to the physical real-
ity (Fig. 16(a)), thereby revealing critical physical information
(Fig. 16(b)) on what occurs in the process.
6.3.1. Results
Fig. 16(a) depicts various processes of hammering a walnut. The

first column illustrates that a gentle swing action only introduces a
small force/energy to the walnut, resulting in a light stress distri-
bution that is quickly eliminated; as a result, the walnut remains
uncracked. When a strong swing is performed (third column in
Fig. 16(a)), the larger internal stress causes the walnut to fracture
into many pieces, similar to a smashing event in the physical
world. This difference is reflected in Fig. 16(b), which was obtained
using the physics-based simulator. It is notable that these physical
15
quantities are challenging to measure in the physical world, even
with specialized equipment.

6.3.2. Failure examples
The fourth column of Fig. 16(a) shows an example of cutting a

carrot. The imposed stress is concentrated along the blade that
splits the carrot in half. However, when the cutting action is com-
pleted and the knife is lifted, it can be seen that the collision
between the blade and the carrot has caused undesired fracturing
around the cut, which illustrates the limit of the current simulator.

7. Discussion

We now discuss two topics in greater depth: Are simulated
results good enough, and how do the simulated results help?

7.1. Are simulated results good enough?

A central question regarding simulations is whether the simu-
lated results are helpful, given that they are not numerically iden-
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tical to those directly measured in the physical world. We argue
that simulators are indeed helpful, as a simulation preserves the
physical events qualitatively, making it possible to study complex
events. As illustrated in Fig. 16(b), the walnut’s effects have a clear
correspondence to the pressure imposed on the contact. Con-
versely, although a similar amount of energy is imposed when
cracking the walnut with a hammer and cutting the carrot with a
knife (see the second and fourth columns of Fig. 16), the resulting
pressures differ in magnitude, as the knife introduces a much smal-
ler contact area than the hammer does, producing distinct defor-
mations and topology changes. Hence, the simulation provides a
qualitative measurement of the physical events and the objects’
fluent change rather than precise quantities. Similar arguments
are found in the intuitive physics literature in psychology: Humans
usually only make approximate predictions about how states
evolve, sometimes even with violations of actual physical laws
[79]. Such inaccuracy does not prevent humans from possessing
an effective object and scene understanding; on the contrary, it is
a core component of human commonsense knowledge [80–82].
Recent work in robot tool use [83–85] and physics-informed scene
understanding [86–94] has also demonstrated the essential role of
physics in understanding objects and scenes.
7.2. How do the simulated results help?

The fine-grained object effects produced by the simulation open
up new venues for studying existing AI and robotics problems. For
example, combining task planning and motion planning [95–97] is
a grand challenge in the field of planning. Simulation could help
with this challenge in two aspects [83]: ① by grounding ambigu-
ous task symbols to desired outcomes (e.g., the action symbol of
‘‘crack”), and ② by modeling implicit goal specifications (e.g., the
status of ‘‘cracked”). In addition, simulations can be used to aug-
ment existing datasets, such as GARB [98] and GenDexGrasp [84]
in grasping and HUMANISE [99], CHAIRS [100], and LEMMA
[101] in scene understanding with unobservable information. Ulti-
mately, we hope that this type of 4D data empowered by physics-
based simulation can shed light on several profound questions in
manipulation: What and why an object is chosen (i.e., the physics
involved), how to properly operate that object (i.e., its affordance),
what effect the actor is trying to achieve (i.e., the actor’s task
goals), and what happens when the goal is not achieved (i.e., plan-
ning and replanning).
8. Conclusions

In this study, we presented three different configurations of a
glove-based system based on a unified backbone design, which dif-
fers from most conventional data gloves that only capture hand
gestures. Utilizing piezoresistive Velostat material, the glove’s
tactile-sensing mode can aggregate the hand force information
during manipulation events. In VR mode, the sensed hand gestures
can be reconstructed into a virtual hand to facilitate hand–object
interactions in VR by incorporating a caging-based approach,
resulting in stable grasps and providing vibrational haptic feed-
back. The simulation mode further uses an FEM simulator to pro-
duce fine-grained object fluent changes and physical properties
based on hand-related movements, resulting in 4D manipulation
events.

We evaluated the components of the system, including the
IMUs, Velostat force-sensor taxels, and haptic feedback provided
by the vibration motors, to demonstrate the capability and efficacy
of the proposed design. By ① capturing spatiotemporal signals of
force and gesture,② recording hand trajectories and contact points
on objects, and ③ collecting 4D manipulations in challenging
16
manipulation events (e.g., tool use), we demonstrated that the pro-
posed glove-based system can play a crucial role in robot learning
from humans and in facilitating embodied AI-related research.
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