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The release of the generative pre-trained transformer (GPT) series has brought artificial general intelli-
gence (AGI) to the forefront of the artificial intelligence (AI) field once again. However, the questions
of how to define and evaluate AGI remain unclear. This perspective article proposes that the evaluation
of AGI should be rooted in dynamic embodied physical and social interactions (DEPSI). More specifically,
we propose five critical characteristics to be considered as AGI benchmarks and suggest the Tong test as
an AGI evaluation system. The Tong test describes a value- and ability-oriented testing system that delin-
eates five levels of AGI milestones through a virtual environment with DEPSI, allowing for infinite task
generation. We contrast the Tong test with classical AI testing systems in terms of various aspects and
propose a systematic evaluation system to promote standardized, quantitative, and objective bench-
marks and evaluation of AGI.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. AGI evaluation in embodied dynamic environments

With the recent release of the generative pre-trained trans-
former (GPT) series, artificial general intelligence (AGI) is once
again the center of attention in the field of artificial intelligence
(AI). Recent foundation models exhibit the ability to generalize
within specific domains, such as GPT-4 [1] in natural language pro-
cessing (NLP), Segment Anything Model (SAM) [2] in image seg-
mentation, and PaLM-E [3] in NLP and robotics. However, there
is contention regarding whether human-like characteristics such
as the Theory of Mind (ToM) or cognitive abilities have emerged
in foundation models [4–8]. In the era of AGI, new benchmarks
are urgently needed to clarify what defines AGI and how AGI
may be evaluated.

Can AGI be evaluated through the classic Turing test? The
answer is likely ‘‘no.” The nature of AGI differs from AI in terms
of generality. Whereas the generality of AI lies mainly in data gen-
eralization (i.e., going beyond training data and performing well on
unseen testing data), the generality of AGI emphasizes task gener-
alization. Here, task generalization means that AGI must be able to
adapt and behave well in a dynamic environment in which it may
encounter an infinite number of unexpected scenarios, similar to
how humans adapt to and behave within their living environ-
ments. It is widely recognized that the human capacities for under-
standing and reasoning are grounded in the biological processes of
organism–environment interactions [9,10]. In the field of psychol-
ogy, evaluations of human subjects—particularly infants—generally
closely integrate face-to-face interviews with tests [11–14], allow-
ing for a more comprehensive assessment that encompasses not
only knowledge and problem-solving abilities but also other
important aspects of human cognition and behavior. In the context
of AGI, such testing scenarios for intelligent agents can be summa-
rized as environments involving dynamic embodied physical and
social interactions (DEPSI) with other agents.

Here, we propose that AGI evaluation should be rooted in sce-
narios with the complex environments of DEPSI. For example, con-
sider an AGI whose role is to serve humans in a household: The AGI
may encounter a crying baby sitting on the floor or a hundred-
dollar bill fallen on the ground near a spilled cup of coffee. It is only
through evaluations within DEPSI that the human-like abilities of
cal and
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AGI, such as commonsense reasoning, intention inference of social
interactions, self-awareness, and trust, can be sufficiently assessed.
Furthermore, only AGIs that pass tests within DEPSI can be
expected to be able to truly integrate into human daily life.

1.1. The AGI task space within DEPSI: A novel definition

As AGI agents are introduced into the embodied real world, it is
natural to expect that AGI benchmarks will be established in DEPSI,
where AGIs will be examined on their performance and learning of
various aspects of the world within the constraints of physical
rules and social norms, as shown in Fig. 1. However, current bench-
marks for AI models are primarily limited to specific tasks in sub-
spaces and lack immersive interaction with the environment. A
recent review has shown that current embodied AI tasks mainly
include visual exploration, visual navigation, and embodied
question-answering [15]. But obviously, the tasks that humans
must contend with in daily life far exceed these categories. In
essence, complex events in our world can be described in a unified
space that encompasses both physical and social dimensions [16],
and the internal structure of this task space determines the funda-
mental abilities and values of the AGI agents inhabiting it.

Here, we propose a novel definition of a task T based on DEPSI
for AGI evaluation: T = (/initial, /target), where /initial represents
Fig. 1. Based on value representations, AGI achieves the self-driven abilities of self-correc
feedback with interactive learning processes makes possible the idea of AGI generating

2

the equivalence set of the initial states of DEPSI, and /target repre-
sents the equivalence set of the target states of DEPSI. Considering
the complexity and diversity of the DEPSI environment, it is diffi-
cult to obtain the same DEPSI state every time the task starts or
ends. Therefore, we define the start or target of a task as an equiv-
alent set of all eligible states, / = {s | fi(s) = ti, i = 1, 2, . . ., k}, where
functions fi(�) represent the features of the DEPSI environment
state s, such as distances between objects in the physical state
space or the most probable position in the social state space, k is
the number of features, and ti is the corresponding function value.

Next, we further delineate the internal structure of the task
space of DEPSI. The task space can be decomposed into physical
and social state spaces. The physical state space includes physical
quantities that describe the world (e.g., position x of an object),
while the social state space comprises agents’ estimations of the
physical state (e.g., an agent’s belief about the object’s position)
represented by probability, based on observations, interactions
with the world, and feedback from other agents or environments.
Therefore, both physical and social tasks can be formally defined
within DEPSI. Physical tasks involve actions related to the physical
environment, such as retrieving an object or preparing food, which
require common knowledge of the world. Social tasks involve
social interactions such as cooperation with other agents, which
require an understanding of others’ social states and values while
tion, active learning, and task generation. In DEPSI environments, combining human
infinite tasks that align with human values.
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imposing constraints on social states. The complexity of tasks can
be determined by the scale of physical and social states the task
requires the AGI to manipulate. For example, relatively simple
first-order tasks may be atomic actions such as pressing a button,
which can hardly be further decomposed, whereas more difficult
composite tasks may be multi-atomic, such as requiring AGI agents
to create tools that can complete another task.

1.2. Basic features of AGI in DEPSI

To survive and adapt to an environment of DEPSI, we propose
that the evaluation of a typical AGI system should target the fol-
lowing features.

1.2.1. Infinite tasks
At present, a shift is occurring in AI development from single-

task specified models to multi-task foundation models. However,
as AIs are empowered to perform more tasks, the question arises:
How many tasks are required for a system to be considered
‘‘general”? If 100 tasks are insufficient, what about 101 tasks? If
N tasks do not constitute ‘‘general” intelligence, then neither do
N + 1 tasks. Human intelligence is not limited to a specific number
of tasks. Rather, humans can perform an infinite number of tasks
that are not predefined, which also applies to AGI as a fundamental
feature (Fig. 1).

1.2.2. Self-driven task generation
To deal with unexpected situations in real life (e.g., a household

with young children, a senior care clinic, or the ruins of a city after
an earthquake), an AGI must go beyond human-defined tasks and
be self-driven (i.e., initiating actions driven by its own ‘‘purpose”).
More specifically, when placed in an open environment, an AGI
should have the ability to know what to do next and to autono-
mously generate tasks that drive its actions without fine-grained
instructions or prompts from a human operator. For example,
assuming that an AGI serves humans in a household, will the AGI
be indifferent to a baby who is crying, simply because it was never
trained to deal with such a situation? When faced with a hundred-
dollar bill that falls to the ground, will it treat the bill as garbage
and recycling? Does the AGI loyally obey a small child who
requests sharp scissors to play with?

Although one can provide extensive training data and define
comprehensive rules that attempt to exhaust all possible scenarios,
these are confined as finite sets and are prone to corner cases. Self-
driven agents, however, can accumulate experience and increase
their coverage of corner cases by learning from the accumulated
experience of exploration and human feedback. Existing research
has shown promising results indicating that self-driven AI systems
powered by curiosity can discover skills that can be composed to
solve complex and challenging tasks [17,18].

1.2.3. Value alignment
We propose that values are the fundamental driving forces

behind self-driven behaviors. To enable AGI to autonomously gen-
erate and complete various tasks that satisfy human needs, one
feasible approach is to endow AGI with a value system. Here, the
proposed value system differs from the concept of value in rein-
forcement learning (RL) from a few perspectives. In RL, the value
is the expected reward of a state when a policy p is adopted, being
used to guide the agent to make better sequences of actions in
order to achieve the goal. In comparison, the values in AGI systems
cover a greater space that does not rely on tasks; this is defined as
the ‘‘fluent space” (see Section 3.1), which can cover as small a
space as a game or as large a space as a society or an agent’s life.
Furthermore, values in AGI drive behaviors and actions that are
not necessarily dependent upon goals. For example, an agent can
3

prefer the color blue to red, tidiness to messy arrangements, and
cooperation to competition. These value representations do not
necessarily change depending on tasks or goals. Such value sys-
tems can be explicit, implicit, or mixed. Instead of explicitly defin-
ing a value system, AGIs can also acquire implicit value
representations through preference learning, contrastive learning,
safe RL [19], and so forth. Both the values in RL and those in AGI
agents serve as the fundamental factors that drive actions, with
the aim of maximizing the values. However, they are different con-
cepts, serving different purposes in different problem spaces.

The endowed value system of AGI involves the same fundamen-
tal value dimensions as the human value system, making it possi-
ble for AGI to learn human preferences in the value system through
limited interactions with humans, thereby achieving value align-
ment. Such value alignment can be achieved through different
approaches, including defining value functions based on prior
knowledge (e.g., assigning a high value to human safety in AGI),
and fine-tuning functions based on human-in-the-loop feedback
through interactive explorations (e.g., see Ref. [20]).

Human values have been widely studied in psychology, such as
Maslow’s hierarchy of needs [21], the existence, relatedness, and
growth (ERG) theory [22], and the Schwartz Value Survey [23].
Based on the principle of AGI aligning with human values and
these classical value theories, the AGI value system includes five
levels, from the most basic level of satisfying survival needs t to
the highest level of group value (Fig. 2). Furthermore, to ensure
the safety of the value-driven AGI to humans, it is essential to
design systems that are independent of the value-driven AGI in
order to regulate and constrain the tasks generated by and behav-
iors executed by it. In this way, the AGI’s actions align with the val-
ues of human society, rather than the values of specific individuals
or organizations.

AGIs can gain the trust of humans by aligning with human val-
ues. This trust comes from two perspectives: trust in AI abilities—
that is, when humans trust AGIs to correctly perform tasks and
achieve task generalization; and, more importantly, trust in AGIs’
values—that is, when humans trust AGIs to behave according to
human society’s rules and morals.

1.2.4. Causal understanding
Causal reasoning emerges early in human developmental tra-

jectories [24–30]. AI researchers have also proposed causal under-
standing as one of the foundational pillars that support cognitive AI
with human-level common sense [31,32], which makes explain-
able AI (XAI) and ethically responsible AI possible [33].

Causality is the crucial chain that connects values and behav-
iors. In the context of AGI, causality is based on natural and social
laws in DEPSI that determine the path of task completion. For
example, in the case of a monkey picking bananas, the task is first
generated autonomously, driven by the intrinsic value function of
‘‘hunger,” which results in the task goal of ‘‘needing to pick bana-
nas to eat.” The task is constrained by the causality of physiological
and physical laws (e.g., friction and gravity); for example, a mon-
key cannot directly jump up 2m to pick a banana. In the end, under
the constraints imposed by the value–causality–behavior chain,
the monkey climbing a tree to pick bananas becomes a feasible
solution. Take cleaning up a messy table as another example:
The internal driving force of this task is the individual’s or others’
aesthetic demand for tidiness; therefore, the individual needs to
clean up the table, and the act of ‘‘cleaning up” is bound by physical
laws, such as how to place items in a stable way. Finally, under the
impetus of the value–causality–behavior chain, the individual pro-
duces a series of behaviors and decisions to complete the task.

Despite the importance of causal understanding for both
humans and AIs, existing AI evaluations rarely examine machines’
causal understanding in the DEPSI world. Most tests take the form



Fig. 2. An illustration of the Tong test pipeline, including the testing interface, DEPSI environments, and AGI evaluation. The testing interface positions the AGI models within
a virtual simulation environment and supports human-involved embodied interactions with AIs through virtual reality (VR). The DEPSI environments cover a wide range of
daily-life household scenarios and tasks with insights from classical psychological theories. More specifically, tasks can be represented by spatial–temporal–causal parse
graphs of the dynamic environment. Tasks can be decomposed into subtasks by sampling from the parse graph, as shown by the red pathway. Infinite tasks can be created
with combinations of different objects, physical and social fluent states, and actions. Finally, in the AGI evaluation module, the AGI scores can be quantified into
multidimensional abilities (i.e., vision, language, cognition, motor, and learning) and values through task decomposition. The final model performance can be quantified
through a function F of performance scores across tasks and represented with a radar plot. T-PG: temporal parse graph, C-PG: causal parse graph, S-PG: spatial parse graph.
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of question-answering and evaluate the textual causal reasoning
abilities [34], without ensuring understanding in an embodied
environment. Attempts to test AI’s understanding of physical and
social laws in the real world have been limited to specific scenar-
ios, such as simple classical mechanics puzzles in a two-
dimensional (2D) physical environment [35], causal inference of
traffic events [34], robotic manipulation tasks of constructing
three-dimensional (3D) shapes from a given set of blocks in a 3D
world [36], and so forth. In fact, existing evidence suggests that
AI encounters major challenges in describing the world in a causal
manner. For example, Lake et al. [32] documented instances in
which the neural networks reported in Ref. [37] failed to generate
accurate image captions with the correct causal relationship.
4

1.2.5. Embodiment
The fundamental purpose of developing AGI is to serve human

society and move human civilization forward. Therefore, AGI must
be able to participate in human life and industrial production in a
way that directly benefits humans. Regardless of what embodied
form AGI exists in (e.g., whether in a human form or as an object,
or whether in a physical embodiment or virtual environment), the
aim should be to build a feasible human–machine interaction para-
digm and be able to establish smooth communication between AGI
and humans. Hence, developing embodied AI may serve as a funda-
mental approach to reaching the goals of AGI. In addition, embod-
ied AI can be integrated into virtual and physical environments and
serve humans without any barriers across different embodied
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forms. For example, an AGI might appear as a teacher in a virtual
environment and demonstrate using a physical embodiment such
as robot arms, thus making presentations to human learners to
improve teaching effectiveness. This example foreshadows the
possibility that embodied AI could be a promising technology path
for AGI.
1.3. Large language models and AGI

Despite the impressive performance of large language models
(LLMs) on various language tasks, a few systematic evaluations
have pointed out the limitations of LLMs. For example, LLMs have
been found to suffer from forgetting issues, fail on commonsense
reasoning tasks, perform worse in contexts of under-represented
languages [38], and occasionally fail to systematically demonstrate
problem-solving skills [39]. In studies comparing LLMs and chil-
dren using developmental psychology experiments, researchers
found that LLMs had limitations in the domains of object and
action understanding, ToM, and—especially—causal reasoning
tasks, which may require embodied and self-initiated explorations
and cannot be fully acquired from language inputs [40].

Based on the aforementioned AGI criteria, it is worth noting that
current LLMs, such as the GPT series, may not be appropriately
labeled as AGI. Instead, current LLMs are essentially statistical
models that rely on large amounts of data to acquire complex sta-
tistical regularities, achieving close-to-human-level performance
on text-based tasks and being able to generalize across tasks
within the language domain. Importantly, current LLMs still lack
the ability to generate tasks in a self-driven manner, driven by a
value system that aligns with that of human society. Moreover,
current LLMs are confined to the language domain, and are far from
being able to cope with the dynamic and unexpected scenarios in
embodied human life

Furthermore, without an embodied environment, it is difficult
to disentangle thoughts from language in LLMs. Language and
thoughts are correlated yet different concepts, where thoughts
refer to ideas that are represented mentally, and language provides
a tool to express thoughts. In LLMs, fluent language production
captures only one aspect of thoughts, while many other aspects
of thoughts—such as emotions, memories, and perceptions—may
not be fully captured by the language domain.

Based on the criteria of AGI, we propose the Tong test (where
‘‘Tong” corresponds to the pronunciation of the Chinese character
of ‘‘general,” as in ‘‘artificial general intelligence”) as a systematic
AGI evaluation system that is based on an environment with DEPSI,
shifting from task-oriented to ability-and value-oriented evalua-
tions of AGI. The proposed virtual platform could also support
embodied AI in training and testing, with embodied AI agents
acquiring information within this platform and continuing to learn
and fine-tune their values and abilities in an interactive manner.

The structure of this paper is organized as follows: Section 2
provides a review of classic AI benchmarks in the past, including
human discrimination and task-oriented problem benchmarks.
This section also discusses developmental psychology and intelli-
gence theories, which provide insights for the proposed Tong test.
In Section 3, we introduce the Tong test’s technical architecture
and design features, which constitute a systemic evaluation system
targeting the basic features of AGI.
2. From the Turing test to the Tong test

2.1. Classic AI evaluations

Benchmarks are urgently needed to guide the future develop-
ment of AGI. However, as mentioned earlier, classic AI and intelli-
5

gence evaluation approaches in the past have shown major
limitations when applied in the domain of AGI. Here, we briefly
review past AI evaluations from the perspectives of human dis-
crimination tests and task-oriented problem benchmarks (includ-
ing dataset-based and environment-based evaluations). See
Table 1 for comparisons between different AI evaluations.

As the first major category of past AI evaluation, human dis-
crimination tests evaluate AI based on human observations, as rep-
resented by the classic Turing test. The Turing test, initially named
the Imitation Game, grew out of a thought experiment devised by
Alan Turing. This test pits human respondents against a machine to
test the machine’s ability to exhibit human-like responses and
intelligence. To pass the Turing test, an AI algorithm is required
to interact with a person based on language or text in such a
way that the person cannot distinguish whether it is a person or
a machine. Such human discrimination tests provide a simple
and operational definition of AI but also have major limitations.
For example, the Turing test can only be tested qualitatively
(i.e., pass or fail) and cannot be used to quantitatively measure
ability. Such tests also rely heavily on the knowledge and cognitive
level of the human judge, making it difficult to achieve objective
and standardized testing. Interestingly, there have been several
instances of chatbots passing the Turing test based on the imple-
mentation of specially designed response strategy algorithms,
which are far from being truly intelligent. In addition to the afore-
mentioned factors, the major limitation of the Turing test lies in its
lack of embodiment when being considered in the context of eval-
uating AGI, given the language-specific nature of the Turing test.

The second major category can be summarized as task-oriented
problem benchmarks. Numerous datasets have been proposed over
the past 10–20 years (e.g., Refs. [41–45]), which have been used as
benchmarks in thousands of papers on specific areas of AI. More
specifically, with the expansion of annotation, there has been a
transition from single task-oriented benchmarks (e.g., the Ima-
geNet dataset that is solely for the task of image classification) to
multitask-oriented benchmarks (e.g., General Language Under-
standing Evaluation (GLUE) for single-sentence tasks, similarity
and paraphrasing tasks, and natural language inference tasks).
Nevertheless, in essence, these task-oriented benchmarks empha-
size the solving of highly specific problems, instead of pushing AI
toward AGI (for a review, see Ref. [46]).

Aside from dataset-based benchmarks, several environment-
based benchmarks have been developed, such as OpenAI Gym
[47], DeepMind Lab [48], iGibson [49], ThreeDWorld [50], Allen
Institute for Artificial Intelligence (AI2)-The House Of inteRactions
(THOR) [51], AI Habitat [52], House3D [53], and VirtualHome [54].
Moreover, an increasing number of researchers are emphasizing
embodiment in evaluations of AIs [55]. These systems share
common goals, which include: providing realistic and diverse sce-
narios, supporting rich and flexible interactions, and facilitating
data collection and analysis. However, such evaluation systems
are predefined by humans and cannot generate infinite tasks.

Recently, efforts have been made by the AI community to
develop AGI benchmarks. For example, the French National Labora-
tory of Metrology and Testing has proposed a high-level taxonomy
of AI capabilities and has grouped evaluation tasks into the capa-
bilities of the traditional ‘‘recognition, understanding, mission
management, and generation” pipeline [56]. The AI2 has collected
dozens of standard AI measurements, such as the AI2-THOR Rear-
rangement Challenge [51] and AI2 Reasoning Challenge (ARC) [57],
on the AI2 Leaderboard in a simply listed, unsystematic way.
Google introduced the Beyond the Imitation Game benchmark
(BIG-bench), a creative collaborative effort with over 200 tasks
from various fields for language models [58], while Stanford’s
Behavior dataset serves as a comprehensive simulation benchmark
for human-centered robotics [59]; both benchmarks evaluate



Table 1
Comparisons between the Tong test and the traditional AI evaluations of the Turing test and task-oriented problem benchmarks.

Features AI evaluation methods

Tong test Turing test Task-oriented problem benchmarks

Dataset-based
benchmarks

Environment-based benchmarks

Core mechanism DEPSI Human discrimination Predefined datasets Virtual environment with predefined tasks
Evaluation format Subjective and standard Yes No Yes Yes

Composite tasks across ability domains Yes No Maybe Maybe
Infinite task generation Yes Yes No No
Embodied interactions with humans Yes No No Yes

Evaluation content Testing values and trust Yes Maybe No No
Testing self-driven Yes Maybe No No
Testing casual understanding Yes No No No
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specific abilities of AGI. More recently, Xu et al. [60] proposed an
evaluation method named Artificial Open World, in which devel-
opers are unable to perceive the world and solve problems by
themselves before testing, with the aim of avoiding the influence
of developers’ prior experience. Furthermore, OpenAI tested GPT-
4 on various professional and academic exams [1], such as the Uni-
form Bar Examination, Scholastic Assessment Test (SAT), Graduate
Record Examination (GRE), and Law School Admission Test (LSAT),
which are originally designed for humans. However, these bench-
marks are limited to finite tasks within a specific subspace of gen-
eral AI.
2.2. Insights from developmental psychology and intelligence theories

Given the challenges above, we review psychological develop-
mental and intelligence theories and tests as inspiration for future
AGI evaluations. Several classic psychological intelligence tests
mark advances in our understanding of human intelligence, such
as the Stanford-Binet Intelligence Scales [61], Bayley Scales of
Infant and Toddler Development [62], Wechsler Adult Intelligence
Scale [63], and Raven’s Progressive Matrices [64]. These tests share
several features in common: defined developmental milestones
(i.e., achieving which abilities at what stages); and integrated tasks
that comprise multiple dimensions of abilities (e.g., vision, natural
language, cognition and reasoning, motor skills, and learning).
Reflecting upon the intelligence tests, the Tong test shares com-
mon ground with classic intelligence theories. For example, the
Triarchic Theory of Intelligence [65] proposes three major compo-
nents of intelligence: practical (the ability to adapt to different
contexts); creative (the ability to come up with new ideas); and
analytical (the ability to evaluate information and solve problems).
These components can be mapped to the concepts of embodiment,
self-drive, and causal understanding in the Tong test.
3. The Tong test: AGI evaluation in a virtual environment with
DEPSI

To promote the transition from specific AI to general AI rooted
in DEPSI, we propose the Tong test, a benchmark and evaluation
system focusing on essential features such as infinite tasks, self-
driven task generation, value alignment, causal understanding,
and embodiment. Therefore, we define the Tong test as an AGI
evaluation system that emulates the complexity of the real physi-
cal social world in a virtual environment, enables the generation of
infinite tasks, and quantifies levels of multidimensional abilities
and values of AGI through interactions between embodied AGI
and human agents.
6

3.1. An infinite task-generation system

To build a Tong test platform that supports infinite tasks, we
adopt a compositional graphical model (i.e., a ‘‘parse graph” [66])
as a basic form of knowledge representation that parses the spatial,
temporal, and causal relations of any given scene (Fig. 2). Building
upon this, we define ‘‘fluent space” as a space for the time-varying
variables of attributes in a given parse graph, where ‘‘fluent” repre-
sents a time-varying quantity or variable [67]. With the proposed
knowledge representation form (i.e., a parse graph with fluent
space), all possible scene configurations can be represented within
a continuous space of DEPSI environments. Therefore, we define a
task as a transition between two sample points within the fluent
space of DEPSI environments, where the starting sample point cor-
responds to an initial scene configuration and the ending sample
point corresponds to the desired status (e.g., from state 1, where
a cup is empty, to state 2, where the cup is filled with water). Fur-
thermore, tasks can be decomposed into subtasks by sampling
from the parse graph, creating a hierarchical task space. The Tong
test platform is capable of generating a series of 3D virtual scenes
with physically realistic and interaction-rich features, which satis-
fies the required scene configurations. In this way, an infinite task-
generation process can be achieved by sampling configurations
(e.g., combinations of different objects, physical and social fluent
states, and actions) in the continuous space of DEPSI environments
and building corresponding 3D virtual scenes via the Tong test
platform.

3.2. Value- and ability-oriented evaluations: Testing the
understanding of AGI models

Based on the value-causality-behavior chain, the Tong test
spans two domains—that is, ability and value, or the U–V dual sys-
tem. The U-system describes the agent’s understanding of extrinsic
physical or social rules, while the V-system comprises the agent’s
intrinsic values, which are defined as a set of value functions upon
which the self-driven behaviors of the agent are built. Following
the U–V dual system, ability and value are the two basic core
aspects of tasks, and all the tasks can be decomposed into and
described by a set of abilities and values.

Inspired by the core systems in human developmental trajecto-
ries [68] and the major subdisciplines in AI research, the ability
system is divided into five dimensions (i.e., vision, natural
language, cognition and reasoning, motor skills, and learning).
Furthermore, each ability dimension is designed with five levels
that increase with the complexity of the tasks. The benchmarks
are proposed based on a combination of infant development mile-
stones (e.g., Refs. [61–63]), AI expert judgments, and a review of AI
development patterns. The higher levels define an ability space
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that covers a wider scope of world representations, similar to
human child development over the years. Once the testing tasks
for all ability levels are determined, the ability level can be identi-
fied by examining whether tasks representing certain levels can be
accomplished. On our Tong test platform, classical psychological
tests such as self-awareness [69,70] and ToM [71,72], as well as
all kinds of social value tasks [73–75] and so forth are made possi-
ble. More specifically, the debated question of whether AGIs pos-
sess consciousness and mind may be evaluated through a series
of interactive tasks covering self-knowledge, self-control, the expe-
rience of existence, and curiosity [76]. For example, the mirror test
is a classic paradigm to determine the self-awareness of an agent
(e.g., a human child). In the test, an experimenter surreptitiously
places a dot on the face of the child. The child is then positioned
in front of a mirror. If the child touches the mark on her or his fore-
head, it is an indicator of self-recognition [13].

One major contrast between the Tong test and previous bench-
marks lies in its evaluation of values. Values have been modeled in
previous works (for a review, see Ref. [77]). However, past evalua-
tions of AIs have been solely focused on abilities. For AGIs, the
value system is the source of the driving force for task generation,
leading to infinite tasks.

Based on the principle of AGI aligning with human values and
classic value theories in psychology (e.g., Maslow’s hierarchy
[21], the ERG theory [22], and Schwartz’s Rokeach Value Survey
[23]), the Tong test proposes a value system with five levels
(Table 2), from physiological and survival needs, to emotional
and social values, and finally to group values. By designing testing
scenarios that do not specify clear task goals, the values of AGIs can
be observed from their autonomous behaviors. The testing of an
agent’s values should be based on the extent to which it completes
testing tasks of value dimension. More specifically, values can be
measured through an open-ended testing scenario in which an
AGI is assessed on whether it can actively generate tasks according
to the environment setup. For example, in a room where a cup is
dangerously placed on the edge of a table, whether the AGI agent
actively moves the cup to a safer location in a self-driven manner
would reflect the AGI’s values of safety.

Importantly, although the U–V spaces are divided into different
dimensions and levels, quantifying the levels of AGI not only
assesses the level within a single dimension but also emphasizes
the cross-dimension measurement and a high degree of integration
of all dimensions. We propose one possible approach to achieve
cross-domain evaluations. First, abilities can be examined within
every single dimension, where the AGI agent yields a set of scores
representing the estimated ability and value levels across individ-
ual dimensions. For example, the task of cleaning tables can be
decomposed into different levels of ability and value dimensions
(e.g., vision level 2, motor skill level 3, cognition and reasoning
level 3, and value level 2). The highest level of tasks that can be
completed by the AGI agent will be labeled as the AGI’s level for
the corresponding ability or value dimension. Then, a six-
dimension vector can serve as the testing result of the agent
(Fig. 2). It should be noted that it is not feasible to go through infi-
nite tasks (i.e., infinite combinations of abilities and values) for
each AGI agent. Instead, we could test a finite number of tasks rep-
resenting combinations of multiple dimensions of abilities and val-
ues as a more practical way of evaluating AGI.

3.3. The pipeline and architecture of the Tong test platform

The Tong test is implemented as a virtual simulation platform
that enables AGI agents to perceive, learn, interact, and evaluate
within 3D environments. In practice, the Tong test can be con-
structed based on DEPSI environments. This platform will provide
the necessary infrastructure for examinations across ability and
7

value dimensions. The system generates infinite tasks with
dynamic embodied interaction scenarios across all dimensions of
abilities and values. Notably, we propose that AGI evaluations
can be constructed in either real or virtual environments. Consid-
ering the goal of infinite tasks while controlling costs, we tenta-
tively construct the idea based on a virtual platform as a
prototype. The test pipeline is shown in Fig. 2.

The Tong test platform is proposed for testing embodied AI,
considering both the ability and value dimensions, and aligning
with the idea of an embodied Turing test [55]. However, unlike
previous testing platforms, human-AI interaction must be consid-
ered in order to simultaneously test the capability and value
dimensions of the AI agents. Therefore, the Tong test platform
combines a general algorithmic testing paradigm with a human-
AI interaction-based testing paradigm, which follows the philoso-
phy of the Turing test.

As mentioned earlier, the Tong test focuses on testing the ability
and value dimensions. In terms of implementation, for the ability
dimension, the Tong test platform is leveraged to generate tasks
over a large scale in order to measure the performance of an AGI
agent. For the value dimension, the AGI agent is placed in different
task scenarios to test whether it can actively generate various tasks
based on observations and whether its execution of the self-
generated tasks exhibits the value factors. These task scenarios
for testing can also be training task scenarios to provide training
support for AGI agents. It should be noted that the test scenarios
must be regenerated each time in order to avoid overfitting situa-
tions due to repeated testing. Moreover, a feasible way to increase
the randomness and effectiveness of the testing scenes is to intro-
duce human interaction into some testing scenes.

We have built several basic systems that may serve as support-
ing modules in building the Tong test platform. For example, we
have proposed the VRGym [78] and VRKitchen [79] test beds for
physical and interactive AI, to foster AI training tasks that involve
human-AI interactions. These test beds shed light on human-in-
the-loop AI training and testing in physical-realistic and
interaction-rich virtual environments. Recently, we released a
novel dataset, Situated Question Answering in 3D Scenes (SQA3D),
for evaluating embodied scene understanding, where an agent
must comprehend the scene it is situated within from a first-
person perspective and answer questions [80].

Based on previous technological accumulation and the afore-
mentioned test pipeline, we develop the Tong test platform by
building upon three essential components: infrastructure, DEPSI
environments, and evaluation tools, as shown in Fig. 3.

First, to establish the infrastructure of the Tong test platform, a
significant amount of hardware—including servers, databases, and
communication networks—is required to support thousands of
application instances working in parallel. In addition, a wide range
of software and interaction device ecosystems is necessary. Vari-
ous graphical engines, such as Unity 3D, Unreal Engine 4/5, and
the Omniverse platform, have been utilized to develop metaverse
applications, and these software tools can be used to create content
for the Tong test platform. To facilitate the integration of human
users into the DEPSI environments and enhance the complexity
of the test scenarios, we utilize virtual reality (VR) and augmented
reality devices as human interfaces. Digital assets are a crucial
component of the infrastructure and play a foundational role in
building task environments for the Tong test platform. We sample
various reasonable layouts of indoor rooms and place interactive
objects related to tasks, thereby making infinite test scenarios
possible.

Second, the DEPSI environments serve as the test environments,
which are constructed on top of the essential functional modules
and task-generation modules. The functional modules include the
data sensor module, physics simulation, fine-grained manipula-



Table 2
The Tong test AGI benchmarks of abilities and values, from levels 1 to 5.

Level Values Abilities

Vision Natural language Cognition and
reasoning

Motor skills Learning

Level 1 Primary values of oneself Geometric understanding of a
single object

Comprehension of words and
phrases

Basic cognition of
spatial–temporal
numbers

Body movement Passive statistical learning

Physiologic values (e.g. food, water) Object detection and
segmentation

Word understanding Digital perception Controlling gaze direction Classification of various
data

Perception values (e.g. flavor,
temperature)

Object recognition Synonym extraction Spatial reasoning Pointing Regression of various data

Safety, avoidance of injury, stability of
environment and objects

Shape and space understanding — Causal determination Locomotion Probabilistic modeling and
generation of various data

Level 2 Advanced values of oneself Spatial–temporal relationships
of objects

Comprehension of sentences in
context

Causal commonsense
reasoning

Manipulating surrounding
objects

Perceptual causal learning

Values of objects (e.g. color, shape) Visual tracking Text categorization Causal discovery and
inference

Picking up and placing down
objects

Concept formation

Emotion values (e.g. pleasure, satisfaction,
enjoyment)

Action recognition, behavior
understanding

Syntax analysis IQ test: induction and
deduction

Reorientating objects Analogical reasoning

Curiosity, familiarity with objects Understanding the relationship
between objects

Text visual grounding Commonsense
learning and
reasoning

— Causal transfer learning

— 3D scene reconstruction — — — —
— Visual grounding — — — —

Level 3 Values of multi-agent interaction Representations of unobserved
objects

Knowledge graph and
commonsense for reasoning

Belief, intentions, and
preferences

Interactions with the
environment

Causal chain learning

Basic values of others (e.g. like
acquaintances, dislike strangers), sense of
belonging, intimacy, need for attention
(without theory of mind here)

Visual commonsense
understanding and reasoning

Knowledge graph understanding
and reasoning

Belief reasoning Coordinating movements of
body and environment
structures (e.g. opening a door
without hitting it)

Causal environment
modeling

Understanding values of others (e.g. value
alignment, cooperation and competition,
role switching, autonomic adjustment to
one’s own values)

Visual navigation Commonsense extraction and
understanding

Intent prediction Mobile manipulation
(integrating locomotion and
manipulation)

Causal reinforcement
learning

Being respected, trusted, and other social
values based on theory of mind

— Reasoning and comprehension of
multi-turn dialogues and
complex texts

Preference estimation Tool use and forceful
manipulation

Counterfactual sequential
inference

Level 4 Primary social values Perception and understanding
based on individuality concepts

Cognitive understanding of the
mental models of agents’
interaction

Interaction and
interpretation

Interactions with other agents Communicative learning of
values

One’s own values in a group, reputation Expressions and emotions Multilayer theory of mind
analysis in dialogue interaction

Exchange and
cooperation

Bimanual manipulation Value extraction from
trajectories

Social status, prestige, wealth Intent understanding Machine emotional intelligence
analysis

EQ test Cooperative manipulation with
others

Value-based deductive
planning

— Active vision Pragmatic intent analysis Interpretability — Human-machine value
alignment

Level 5 Advanced social values Value-driven understanding and
decision making

Understanding multi-person,
multi-agent interactions

Social norms Social interaction and value flow Multi-agent
communicative learning

Social norms, group values (social norms,
customs, culture, etc.)

Complex task decision-making
and planning

Multiple rounds of dialogue
incorporating social values

Social value Interactive learning Multi-agent reinforcement
learning

Collective culture, group structure
(hierarchy, roles, leadership, etc.)

Task-driven vision Conversation-based
understanding of social network

Social norms Autonomous task generation Extraction of common
values of multiple agents

Values of the race and species Value-driven vision Dialogue-based understanding
of multiple people’s mental state

Social structure — Multi-agent task planning
based on shared values
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Fig. 3. An illustration of the architecture of the Tong test platform. The architecture consists of three main parts: infrastructure, DEPSI environments, and evaluation tools.
With the support of physically and socially realistic task generation, the Tong test platform provides a standardized test pipeline for evaluating and benchmarking AGI
models. PC: personal computer.
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tion, and other general modules that ensure that the system works
normally. The task-generation modules consist of two core sub-
modules (i.e., physical and social task generation), which help gen-
erate physically and socially realistic task scenarios. The DEPSI
environments prioritize dynamic embodied interactions across
physical and social spaces, requiring the integration of human
users to build highly complex interactive environments. This inte-
gration can be achieved through the development of VR or
monitor-based user interfaces. With the above settings, the DEPSI
environments can receive various models and carry out a series
of tests. If a tested algorithmic model lacks any ability dimension
compared with a complete AGI model that is suitable for the Tong
test, the platform provides an adapter to transform the model into
a standard AGI model. This standard model uses built-in algorith-
mic model libraries to make up for any missing abilities.

Third, the Tong test platform includes two key evaluation mod-
ules. The first module is responsible for intermediate data visual-
ization, which assists in the model-debugging process when the
model output is not as expected. The second module is a panel that
displays the model’s performance, indicating how well the tested
model performs according to the value- and ability-oriented eval-
uation paradigm.

Overall, the above design of the Tong test architecture may be a
good starting point for building AGI testing systems and will foster
AGI development and standardization in the long term.
4. Conclusions

In sum, this perspective article discussed AGI as a promising
future direction of AI and proposed benchmarks and the evaluation
of AGI based on DEPSI environments. We defined the critical fea-
tures of AGI systems—namely, infinite tasks, self-driven task gener-
ation, value alignment, causal understanding, and embodiment—
and suggested that the value-causality-behavior chain may be
9

the root of intelligence phenomena. We further proposed the Tong
test as a value- and ability-oriented evaluation system in a
dynamic embodied environment. Classic task-oriented evaluation
approaches cannot be applied to AGI evaluation, because the test-
ing of AI cannot be based on a series of human-defined tasks. Thus,
we proposed the Tong test based on DEPSI, as it defines not only
the five multidimensional levels of values and abilities but also
provides a practical pathway for building an embodied platform
with infinite tasks, where AI algorithms can be evaluated onsite
with human interactions.

As a whole, this perspective proposes a standardized, quantita-
tive, and objective evaluation system for AGI, with the aim of pro-
viding theoretical guidance for the development of AI algorithms.
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