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With the development of edge devices and cloud computing, the question of how to accomplish machine
learning and optimization tasks in a privacy-preserving and secure way has attracted increased attention
over the past decade. As a privacy-preserving distributed machine learning method, federated learning
(FL) has become popular in the last few years. However, the data privacy issue also occurs when solving
optimization problems, which has received little attention so far. This survey paper is concerned with
privacy-preserving optimization, with a focus on privacy-preserving data-driven evolutionary optimiza-
tion. It aims to provide a roadmap from secure privacy-preserving learning to secure privacy-preserving
optimization by summarizing security mechanisms and privacy-preserving approaches that can be
employed in machine learning and optimization. We provide a formal definition of security and privacy
in learning, followed by a comprehensive review of FL schemes and cryptographic privacy-preserving
techniques. Then, we present ideas on the emerging area of privacy-preserving optimization, ranging
from privacy-preserving distributed optimization to privacy-preserving evolutionary optimization and
privacy-preserving Bayesian optimization (BO). We further provide a thorough security analysis of BO
and evolutionary optimization methods from the perspective of inferring attacks and active attacks.
On the basis of the above, an in-depth discussion is given to analyze what FL and distributed optimization
strategies can be used for the design of federated optimization and what additional requirements are
needed for achieving these strategies. Finally, we conclude the survey by outlining open questions and
remaining challenges in federated data-driven optimization. We hope this survey can provide insights
into the relationship between FL and federated optimization and will promote research interest in secure
federated optimization.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The huge success of deep learning over the past decade can be
partly attributed to the availability of big data. In many cases, data
are collected from a large number of edge devices and then sent to
a central server to be used for training deep learning models. How-
ever, this process may raise serious concerns about the security
and privacy of the data. To address these concerns, federated learn-
ing (FL) [1,2] has been proposed; it involves training a global model
by sharing parameters or gradients of the parameters of the local
models trained on local raw data, thereby lifting the requirement
on sharing sensitive data. It is notable that the training structure
and technical settings of FL obey the General Data Protection
Regulation (GDPR) [3].

Although no raw data are transmitted to the server or other
local devices in the most widely considered horizontal FL [2,4],
malicious attackers may still infer the private information of other
clients via the transmitted gradients during the learning process
[5]. Therefore, malicious attacks—such as poisoning attacks, infer-
ence attacks, backdoor attacks, and many others—may pose secu-
rity threats to FL schemes [6]. As a result, security and other
privacy-preserving computing techniques such as encryption and
differential privacy (DP) [7] are usually adopted in FL to more
strictly protect the privacy and security of private data. Another
vulnerability in the server-client-based FL structure is the security
of the communication channels. Eavesdroppers could obtain all
messages transmitted in the communication channels and thereby
.1016/j.
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infer sensitive information. Thus, secure learning algorithms must
also establish secure communication. Username-password authen-
tication, hypertext transfer protocol, and transport layer security
protocols are standard approaches adopted in FL frameworks to
build secure communication and a trusted execution environment
[8].

While security and privacy protection have attracted an enor-
mous amount of attention in machine learning, not much attention
has been paid to privacy and security in optimization—particularly
in data-driven optimization [9,10] or surrogate-assisted optimiza-
tion [11,12], in which an optimizer relies on data to find the opti-
mum of a black-box optimization problem. Most research on
evolutionary computation and Bayesian optimization (BO) oper-
ates on the fundamental assumption that all resources for an opti-
mization task reside on a single device. However, when several
clients aim to collaboratively optimize a task without sharing their
sensitive information, the natural question of whether the existing
mechanisms are still applicable arises. Furthermore, given the
involvement of multiple clients, the security of information trans-
fer between them must be prioritized.

It is worth mentioning that, unlike in machine learning tasks,
the data to be protected in optimization tasks include not only
the raw data used for optimization but also the parameter settings
in the objective function and the global optima. However, common
optimization algorithms such as gradient methods, evolutionary
algorithms [13,14], BO [10], and alternating direction method of
multipliers (ADMM) [15], where the latter is particularly designed
for distributed optimization, seldom consider privacy protection.

1.1. Related reviews

Due to the rapid developments in FL, many reviews have been
published that provide an overview of recent advances and appli-
cations, from various perspectives and with different focuses. Sev-
eral reviews have attempted to provide a comprehensive overview
of the fundamentals and state of the art of FL [6,16–19]. For exam-
ple, in Ref. [19], FL schemes are introduced and discussed in detail
from the perspectives of data distribution, communication archi-
tectures, and privacy-preservation mechanisms. By contrast, other
reviews [8,16] have focused more on security and privacy-
preservation perspectives. Lyu et al. [6] discussed various vulnera-
bilities and possible attacks of the basic FL scheme, such as poison-
ing attacks and inference attacks. In addition, Mothukuri et al. [16]
recapped defensive and privacy-preserving and -enhancing tech-
niques targeting the unique security threats in FL. Truong et al.
[8] discussed the effectiveness of the privacy-preserving schemes
adopted in FL from the perspective of GDPR, concluding that some
privacy-preserving FL approaches may not meet the GDPR stan-
dard. Recently, Cao et al. [20] summarized recent work on FL from
the perspective of Bayesian learning, in which the main focus is on
FL; however, they discussed very few studies on federated
optimization.

A small number of surveys have been published on topics
related to privacy-preserving and secure schemes in optimization,
a few of which focus on distributed optimization [21–24]. Yang
et al. [22] categorized distributed optimization algorithms based
on whether an algorithm is in discrete or continuous time. A survey
published by Molzahn et al. [24] focused on the applications of dis-
tributed optimization algorithms for electric power systems, which
can be grouped into online and offline approaches. Still, no privacy-
preserving and security technologies are touched upon in these
surveys [22–24]. Weeraddana et al. [21] provided a survey of early
ideas on secure distributed optimization with or without a central
server node, in which privacy-preserving techniques such as cryp-
tography approaches, transformation-based approaches, and
decomposition-based methods are implemented. Recently, Li
2

et al. [23] provided a summary of general mutual information-
based information-theoretical metrics, relating existing privacy-
preserving techniques in distributed optimization to distributed
processing. The researchers also discuss passive and eavesdropping
adversary models, providing helpful guidelines for the future
design of privacy-preserving and secure distributed optimization
algorithms.

However, the distributed optimization discussed in the above-
mentioned surveys typically assumes that analytical functions
are available for formulating the objectives and constraints, and
traditional mathematical programming techniques are employed
to solve the problems. Regarding privacy-preserving evolutionary
algorithms that can handle problems with no explicit expressions,
Zhao et al. [25] provided a brief summary of work on privacy-
preserving evolutionary computation based on three typical opti-
mization paradigms.

1.2. Motivation

To date, no survey has been published on secure and privacy-
preserving data-driven optimization, including BO [10,26] and
data-driven evolutionary optimization [9,27], which rely on data
to solve complex optimization problems. In fact, privacy-
preserving data-driven optimization, such as federated BO or fed-
erated data-driven evolutionary optimization, is a new emerging
topic, and only sporadic research results have been reported.

1.3. The scope of this survey

This survey aims to provide a comprehensive overview of the
background and recent advances in secure and privacy-
preserving data-driven optimization. It introduces various security
and privacy-preservation techniques, discusses the relationship
between security and privacy preservation, elaborates on similari-
ties and differences in security and privacy-preservation require-
ments in machine learning and optimization, and outlines future
research topics. For a deeper understanding of the research areas
in privacy-preserving and secure evolutionary optimization, we
first provide a concise overview of distributed optimization and
FL, including the challenges encountered in these areas. These
three areas share common questions and challenges in the imple-
mentation of cryptographic measures or a federated/distributed
structure. For example, in distributed optimization, the noise asso-
ciated with DP diminishes to zero throughout the optimization
iterations to ensure convergence. Similarly, in federated or
privacy-preserving BO, it is essential to examine the equilibrium
between noise levels and algorithmic convergence. We also review
privacy-preserving BO in this survey, because many infill sampling
criteria developed in BO are widely used in data-driven evolution-
ary optimization to achieve effective surrogate model manage-
ment, which is strongly related to secure evolutionary
optimization.

We hope that this survey will lay a solid foundation for secure
and privacy-preserving evolutionary optimization, raise interest in
considering security and privacy preservation in optimization, and
promote research in this emerging field.

1.4. Structure

The rest of this survey is organized as follows. Section 2 first
introduces the basic definitions and concepts related to this survey,
including FL and optimization, security, privacy preservation, and
the main privacy-preserving computing techniques. Section 3 pre-
sents the fundamentals of FL, including its research history and
main research domains in terms of privacy preservation aspects.
Section 4 first introduces the difference between learning and
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optimization, then provides a comprehensive literature review
regarding privacy-preserving BO, evolutionary algorithms, dis-
tributed optimization, and federated optimization. Section 5 is
the main part of the paper, which summarizes the challenges of
secure optimization and raises open questions and future direc-
tions for researchers. Finally, Section 6 concludes the survey. The
main structure of this paper is outlined in Fig. 1.
2. Definitions and terminologies

This section introduces formal definitions of FL and federated
optimization, security protection, and privacy preservation. Here,
it should be noted that, although security and privacy are strongly
related concepts, they have different focuses. We then introduce
various privacy-preserving computing techniques, including prim-
itives of DP, homomorphic encryption (HE) [28], multi-party com-
putation (MPC) [29], secret sharing [30], oblivious transfer, and
garbled circuits. These schemes are widely used cryptographic
building blocks for achieving security and privacy.
2.1. Definitions of FL and optimization

To provide a roadmap from secure FL to secure federated opti-
mization, it is essential to clarify the relationship between machine
learning and optimization by introducing the mathematical defini-
tion of the objectives in learning and optimization.

2.1.1. Objective in FL
Given a set of training datasets D ¼ D1;D2; :::;DK (in which

each Di is composed of a pair ðz; lÞ, where z and l are the attributes
and corresponding label in a learning task, respectively; and K is
the number of clients). The objective of FL is to approximate a func-

tion F̂ from all possible hypotheses to minimize the expected value
of loss over dataset D.
Fig. 1. The structur
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F̂ ¼ argmin� ðLðl; FðzÞÞÞ ð1Þ
where Lðl; FðzÞÞ is the loss of FðzÞ to label l, � is the expectation, and
FðzÞ is the predicted labels of z.

2.1.2. Objectives in optimization
An optimization problem is defined as follows.

min F ¼ ðf 1ðxÞ; f 2ðxÞ; :::; f MðxÞÞ
subject to x ¼ ðx1; x2; . . . ; xDÞ; x 2 RD ð2Þ

where x is a vector of D decision variables in the D-dimensional
decision space RD in an optimization task, R denotes one-
dimensional decision space, F is the multi-objective objective func-
tion composed of M single objective functions, denoted by
f 1; f 2; :::; f M , and M is the number of objectives. When M = 1, Eq.
(2) refers to a single-objective optimization problem; when M > 1,
Eq. (2) refers to a multi-objective optimization problem.

2.2. Security protection

In machine learning or FL, security protection refers to the
mechanisms that protect the model from active and passive out-
sider and insider attacks that may deteriorate the model’s perfor-
mance and availability. To ensure system availability, it protects
users’ data from being stolen or hacked by malicious parties. There
are three pillars in information security; these are considered the
primary security attributes and are commonly referred to as ‘‘the
CIA triad.” As a guideline for organizations to evaluate their secu-
rity capabilities and risks, the CIA triad model includes three core
security properties: confidentiality, integrity, and availability
[31], which are defined as follows:
� Confidentiality: Only persons authorized to access information
or systems should be given access to the information or system.

� Integrity: Only authorized persons or applications can alter the
system or information. Unauthorized modification is not
allowed.
e of this paper.
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� Availability: The information assets are available to authorized
parties when needed.
In information security, another fundamental requirement is to

define an adversary model, which formalizes the capability of the
participating parties. The participant behavior can be divided into
three settings: honest, semi-honest, and malicious, which are
defined as follows:
� Honest: Honest parties follow the protocol strictly and preserve
the data from being leaked.

� Semi-honest: A semi-honest participant follows the protocol
honestly but may attempt to learn as much as possible from
legitimately received messages. This is also known as an
honest-but-curious party.

� Malicious: A malicious participant can deviate from the proto-
col in any possible way in order to learn information regarding
other parties’ input.

2.3. Privacy preservation

In Ref. [18], privacy protection or preservation is defined to be
the non-public exposure of sensitive personal information. By ‘‘pri-
vacy protection” in FL, we refer to the protection of sensitive user
information, such as users’ local data, gradients, and trained mod-
els. To ensure privacy, it is necessary to protect user data from
being revealed by third parties without the consent or knowledge
of the data owner. Given the importance of data privacy, legal
restrictions such as the GDPR have been established to prevent
the misuse of sensitive user data.

Most privacy-preservation schemes can be divided into non-
cryptographic and cryptographic techniques. A taxonomy of pri-
vacy preservation techniques is provided in Fig. 2. In non-
cryptographic techniques, researchers use different schemes to
protect data privacy. Among these solutions, the most popular
schemes are FL, hardware-based trusted execution environment,
the non-perturbative masking approach, mainly anonymization,
and perturbative masking. Anonymization schemes are expanded
into k-anonymity [32], l-diversity [33], and t-closeness [34]. The
common method of perturbative masking involves adding noise
to sensitive information, where the most classic approach is DP.
Cryptographic techniques function powerfully in data protection.
In modern cryptography, the techniques can be categorized into
Fig. 2. Data privacy-pr
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normal encryption (e.g., symmetric encryption), asymmetric
encryption, identity-based encryption, attribute-based encryption,
searchable encryption, HE, MPC, secret sharing, and oblivious
transfer, among others. Some of these approaches have been
implemented in privacy-preserving FL or optimization. The details
of some algorithms can be found in Section 2.4.

2.4. Data security and privacy protection schemes

The basic FL framework is usually insufficient for the strict pro-
tection of security and privacy. Therefore, different cryptographic
primitives have been proposed and implemented in FL. It should
be noted that these cryptographic primitives can also be imple-
mented in privacy-preserving evolutionary/Bayesian optimization
and federated optimization to enhance privacy protection and
security. To understand these schemes, we introduce in greater
detail the most popular cryptographic techniques used in FL,
including DP, HE, and secure MPC.

2.4.1. Differential privacy
DP was first proposed by Dwork [7] in 2008. As a perturbation-

based privacy-protection method, the core idea of DP is to add
noise to ensure statistical privacy for individual information.
According to where the noise is added, DP in FL is categorized into
global and local DP. Local DP inserts noise into the raw data
directly. The server receives the masked data and is not necessarily
trusted. However, there is a significant impact on the accuracy, as
the addition of noise significantly changes the raw data. By con-
trast, in global (central) DP, the server aggregates clients’ results
and masks them before publishing them. In this scenario, the noise
compromises a trustworthy server but maintains a certain level of
accuracy.

Definition 1. (ðe; dÞ-DP): A random algorithm M is ðe; dÞ-DP, if for
all S#RangeðMÞ and for all, and D0 adjacent datasets:

PðMðDÞ 2 SÞ � eePðMðD0Þ 2 SÞ þ d ð3Þ
where P is the possibility and S represents all possible outcomes of
M. The parameter e is known as the ‘‘privacy loss” of information
disclosure, while the parameter d represents the probability of
otection schemes.
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information being accidentally leaked. The parameter e measures
the resistance ability of the random algorithmM, where the smaller
the parameter e is, the greater the privacy protection it provides.
This is because of the noise generation functions, such as the
Laplace noise mechanism. As the noise level is determined by
noise ¼ GS=e, where GS is the global sensitivity, so the smaller e
is, the bigger the Laplace noise is.

Definition 2. (global sensitivity): Global sensitivity measures the
amount of noise to be added to the results. Given a sequence of
counting queries Q, global sensitivity measures the maximal
change in the result on dataset D0 that removes one record from
dataset D. The random algorithm M satisfies the global sensitivity
if the following holds:

For Q : D ! R, the global sensitivity of Q is defined as follows:

GS ¼ max
D;D0

k QðDÞ � QðD0Þ k ð4Þ

where R is real value and Q is the sequence of counting queries.
To generate noise, there are two primary noise generation

mechanisms in DP: the Laplace mechanism and the exponential
mechanism.

Theorem 1. (the Laplace mechanism): Given an function
Q : D ! R, for an arbitrary domain D, the random algorithm M

provides e-DP, if M satisfies the following:

M ¼ QðDÞ þ Lap GS=eð Þð Þ ð5Þ
where the noise Lap GS=eð Þ is drawn from a Laplace distribution.

Theorem 2. (the exponential mechanism): Given a sequence of
counting queries Q and the generation of an entity object r 2 R, let
qðD; rÞ be a score function to assign each output r a score. The
mechanism M maintains e-DP, if:

Mðr; qÞ ¼ return rwithprobability / exp
eQðD; rÞ
2GS

� �� �
ð6Þ
2.4.2. Homomorphic encryption
In standard encryption methods, a receiver must decrypt the

data using private keys and convert it from ciphertext into plain-
text before being used. Unlike other encryption methods, HE pro-
vides the possibility of conducting algebraic operations directly
on the encrypted data without decryption. HE methods are divided
into partially, somewhat, and fully homomorphic schemes, based
on the operations they can support. If the cryptosystem enables
either addition or multiplication operations only, the encryption
schemes are referred to as ‘‘partially homomorphic;”examples
include the ElGamal cryptosystem and the Paillier systems, among
others. Rivest et al. [35] were the first to discover that the Rivest–
Shamir–Adleman (RSA) public key encryption algorithm is par-
tially homomorphic. By contrast, if the cryptosystems can support
both the addition and the multiplication of ciphertexts, they are
called ‘‘fully HE” schemes. The definition of HE is given as follows:

Let ðG; �Þ and ðH;� Þ be two groups. f : G ! H is a map. If for
8a; b 2 G (where a and b are any values), f ða � bÞ ¼ f ðaÞ�f ðbÞ, then
f is said to be a homomorphic map from G to H.

Definition 3. Let E be an encryption algorithm and let Eðc; qÞ
denote the encryption of q with cryptographic key c. O denotes an
operation on n variables. n denotes the number of input. An
encryption Eð:Þ is homomorphic with respect to the operation O:

Eðc; Fðq1; :::; qnÞÞ ¼ OðEðc; q1Þ; :::; Eðc; qnÞÞÞ ð7Þ
If Eq. (7) is only true for Oðq1; :::; qnÞ ¼

Pn
i¼1qi, then the encryp-

tion scheme is an additively HE scheme.
5

If Eq. (7) is only true for Oðq1; :::; qnÞ ¼
Qn

i¼1qi, then the encryp-
tion scheme is a multiplicatively HE scheme.

If Eq. (7) holds for both addition and multiplication, the encryp-
tion scheme is called ‘‘fully homomorphic.” If the encryption only
supports addition and a small number of multiplications, it is
called ‘‘somewhat homomorphic.”
2.4.3. Secure MPC
Secure MPC is the collaborative computation of an agreed-upon

function by multiple participants without a trusted third party. It is
made secure by ensuring certain security properties, such as pri-
vacy and correctness, so that each party only obtains its own calcu-
lation results and cannot infer the input and output data of any
other party from the interaction data during the calculation. MPC
was first proposed by Yao [29] in 1986 through Yao’s ‘‘millionaire
problem”, which was later extended to secure MPC. MPC is impor-
tant in digital signatures, electronic auctions, and secret sharing
scenarios.

To be more formal, let g be a public function of n variables,
where there are n participants with private inputs v1;v2; :::;vn.
The goal of MPC is to compute the common function value
gðv1;v2; :::;vnÞ by the participants such that no non-trivial infor-
mation on the individual inputs can be revealed from the compu-
tation and the output. However, MPC is not a single technology; it
is a protocol stack composed of a series of different technologies.
The details of the composition of MPC are provided in Fig. 3.

As shown in Fig. 3, an MPC structure often consists of two lay-
ers: the supporting technology layer and the scheme layer.

(1) The supporting technology layer provides the fundamental
technology implementation for building MPC, including
standard encryption and decryption, hash function, key
exchange, HE, pseudorandom function, and many others. It
also contains the essential tools in MPC, such as secret shar-
ing, oblivious transfer, and oblivious pseudorandom.

(2) The scheme layer can be further divided into two main cat-
egories: specific schemes and general schemes. They aim to
solve different privacy computing problems. Specific algo-
rithms are designed for specific privacy computing logic
and are more efficient but can only support a single comput-
ing logic; general-purpose frameworks can support most
privacy computing logic.

� A general scheme is supported by garbled circuits and can the-
oretically support any computational task. This is done by com-
piling the computational logic into a circuit and then
obfuscating the execution. However, for complex computa-
tional logic, the efficiency of the garbled circuits is reduced to
varying degrees, and there can be a significant difference in effi-
ciency compared to specific schemes.

� Specific schemes are constructed to solve specific problems.
Due to the targeted construction and optimization, the effi-
ciency of dedicated algorithms is much higher than the general
framework, including arithmetic operations, comparison opera-
tions, matrix operations, the intersection of privacy sets, privacy
data query, DP, and many others.
From a security perspective, MPC should meet three require-

ments: decentralization, privacy, and correctness, as detailed
below.
� Decentralization: There is no participation of privileged third
parties.

� Privacy: The data input of each party in the process of secure
MPC is independent, and no local raw data is leaked during
the computation.

� Correctness: The results obtained by the secure MPC algorithm
are consistent with the local computation results of the original
plaintext data.



Fig. 3. An illustrative MPC composition structure. OT: oblivious transfer.
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3. Federated learning

This section provides a detailed description of FL frameworks,
which serve as the fundamentals for secure federated optimiza-
tion. Federated optimization is an emerging field that integrates
the strengths of FL, BO, and evolutionary optimization. Given that
federated optimization fundamentally builds on a federated frame-
work and incorporates surrogate modeling within each client, as
well as the suggestion of newly infilled solutions, it is crucial to
delve into FL before discussing federated optimization.
3.1. Background

FL emerged from privacy-preserving and trustful machine
learning. The traditional way to increase training accuracy is cen-
tralized learning, in which a trusted third party or data center
aggregates data from different participants and performs model
training centrally. However, this approach requires a trusted third
party, which is not privacy preserving. Moreover, data controlled
by different organizations cannot be combined for privacy reasons,
which presents barriers to data sharing and collaborations from
different domains. This is known as the ‘‘data silos” problem.

Several existing approaches to multi-institution distributed
training for alternative centrally hosting information have been
proposed in the past decade. These solutions include model aver-
aging [36], large-scale synchronous gradient descent [37], cyclical
weight transfer [38], FL [1], cyclic institution incremental learning
[39], and split learning [40]. Some of these solutions share the basic
idea of a distributed learning structure and are very similar to FL.

FL is a distributed machine learning method in which partici-
pants train local models and upload the updated model parameters
to the server; the server then aggregates them to obtain the param-
eters of a global model. Compared with traditional machine learn-
ing techniques, FL can not only improve learning efficiency but also
solve the problem of data silos and protect local data privacy [41].
6

Since the raw data does not leave the owner’s local device, FL is
almost the only option for cross-border model training in data-
sensitive scenarios such as medical records, personal photo
albums, and personal voice recordings.

A typical FL training process is given as follows. The participants
in FL include a server, clients, and outside users. The server con-
trols the learning and communicates with the clients. The clients
are the data owners; they perform the local training and update
the trained model. Outside users are the owner of the model after
the models are aggregated and published by the server.

The classical FL training process is described in Fig. 4; it consists
of the following steps:

(1) Initialization: The server defines the problem to solve and
prepares an initial global model. It chooses the clients and
sends the initialized parameters of the global model to the
clients to start the training process.

(2) Repetition: The following steps are repeated until the train-
ing process is converged or the maximum accuracy has been
achieved:

� Step 1. Broadcasting: The server forwards the parame-

ters of the initialized or aggregated global model to the
clients;

� Step 2. Local model training and uploading: Each client
trains the model downloaded from the server using the
local data, and the updated model is uploaded to the
server;

� Step 3. Model aggregation: The server collects the
updated local models and aggregates them to obtain an
updated global model;

� Step 4. Repeating until convergence: Repeat step 1 to
step 4 if the convergence condition is not met.
3.2. Challenges in privacy-preserving and secure FL

It has been found that basic FL schemes are not strictly privacy
preserving, since they are vulnerable to gradient leakage attacks



Fig. 4. The FL training process. An FL process includes four main steps: local model training, uploading the local model weights to the server, aggregating the model weights
on the server, and downloading the aggregated models. In this plot, there are k participating clients at round t.hkt is the model parameters of client k at round t. ht is the
aggregated model parameters at round t. N is the number of clients. nk is the number of training data in client k and n is the number of all training data in all clients. h0 is the
initial gradient parameter.
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[5], inference attacks [42], and data-poisoning attacks [43]. Sensi-
tive information in FL include the raw data of each client and inter-
mediate information in learning, such as the gradients. To defend
against attacks and protect this sensitive information, several stud-
ies have focused on improving the privacy of FL. Current
approaches fall into two main categories: encryption methods,
such as secure MPC [44] and HE [35], and data-scrambling meth-
ods, such as DP [7]. Encryption methods encode data from plain-
texts into ciphertexts by specifying the access control to provide
data security. However, such methods often require significant
computational overhead and are more challenging to apply in
practical scenarios, while data-perturbation methods are relatively
lightweight. Randomized noise is added to the data to ensure that
an attacker cannot infer sensitive information about an individual
based on the differences in output [45]. However, noise reduces the
accuracy of the models. Thus, the privacy-robustness tradeoff must
be balanced when choosing privacy encounter measurements. The
main research directions in privacy-preserving and secure FL focus
on techniques with DP [46], HE [47], MPC, secure aggregation, k-
anonymity [48], and so on.

Most schemes rely solely on cryptography (represented by MPC
and HE) or perturbation techniques (represented by DP). Secure
aggregation is an alternative strategy aiming at enhancing data
security. For example, Song et al. [49] proposed EPPDA, an efficient
fault-tolerant and privacy-preserving data-aggregation FL scheme.
Still, none of the abovementioned schemes can fully resist privacy
attacks. Encryption effectively hides the client’s upload but cannot
resist an inference attack on the output side; perturbation ensures
that the output model satisfies DP while the upload model remains
plaintext. For this reason, Truex et al. [50] proposed an FL scheme
combining HE and DP, in which the client perturbs the data locally
and then aggregates the perturbed data via Paillier encryption.
Similarly, Xu et al. [51] combined function encryption and DP
and proposed the Hybrid Alpha FL scheme. However, this scheme
only supports linear function operations such as summation, and
the paper does not provide rigorous proof that the definition of
DP is satisfied. Zhu et al. [52] combined HE and DP in training
XGBoost decision trees in vertical FL. In their work, labels are
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assumed to be distributed on different clients, which is more real-
istic. Similarly, Lian et al. [53] introduced a decentralized, efficient,
and privacy-enhanced federated edge learning system (DEEP-FEL)
framework, which integrates DP with a ring-based signature
scheme to offer an efficient and privacy-enhanced federated edge
learning solution for healthcare cyber-physical systems.
4. Secure and privacy-preserving optimization

Following the discussion on secure and privacy-preserving FL in
the previous section, this section introduces the concepts and
related work on privacy-preserving and secure optimization. First,
we point out the differences between learning and optimization in
terms of their objectives and methodologies. Then, we cover
related work on privacy-preserving evolutionary optimization,
privacy-preserving BO, privacy-preserving fully distributed opti-
mization, and secure federated optimization to provide a relatively
complete picture of the field. This section ends with a discussion on
interesting points, such as the unique privacy-preserving tech-
niques needed for optimization, what strategies in FL can be
directly applied to federated optimization, and the additional
requirements for secure federated optimization. These questions
can provide inspiration for the development of secure and
privacy-preserving optimization techniques.

4.1. Differences between learning and optimization

The main differences between learning and optimization can be
discussed in terms of their final targets and applied strategies.
Table 1 [15,54–61] elaborates the differences between FL, dis-
tributed optimization, evolutionary optimization, and BO in terms
of problem assumptions, sensitive information in tasks, and classic
algorithms.

4.1.1. Aims
As given in the problem definitions in Eqs. (1) and (2), the objec-

tives of a learning problem differ from those of an optimization



Table 1
The differences between FL, distributed optimization, evolutionary optimization, and BO.

Task type Aim Method Sensitive information Problem assumption Classic algorithms examples

A learning task Prediction
classification

FL � Training/validation
data

� Gradients

The loss function
is a sum of local loss functions

SGD [54], Adam [55]
(loss function optimizer for optimizing
model weights)

An optimizationtask Obtain
global
optima

Distributed
optimization

� Initial state values
� Local objective
functions

� (Sub-)gradients

The global function is a sum of local
objective functions Objective functions
are usually convex and differentiable

ADMM [15], PDMM [56]
(common optimizers in distributed
optimization)

Evolutionary
algorithms

� All evaluated
solutions

� Global best optima

No explicit expression is required GA [57], NSGA-II [58], RVEA [59]
(inspired by biological evolution,
including operators like reproduction,
recombination and environmental
selection)

Bayesian
optimization

� Local training data
� Next query points
� Global best optima

No explicit expression is required GP-UCB [60], MES [61]
(three core components: model con-
struction, model management strategy
and an optimizer)

SGD: stochastic gradient descent; PDMM: primal–dual method of multipliers; GA: genetic algorithm; NSGA-II: non-dominated sorting genetic algorithm II; RVEA: reference
vector guided evolutionary algorithm; GP-UCB: Gaussian process-upper confidence bound; MES: max-value entropy search.
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problem. In general, machine learning is a process in which a
model is trained on the available training data and updates its
parameters to accurately predict outputs for given inputs. In con-
trast, optimization targets aim to achieve solutions that minimize
or maximize given objective functions. In fact, a machine learning
problem aims to minimize a loss function (typically prediction
accuracy, among others) based on the training data. Optimization
problems may also include a variety of engineering optimization
problems [62] or decision-making problems [63,64]. It should be
noted that a model is involved in handling both machine learning
and optimization tasks. However, the models in these different
tasks serve different purposes. In machine learning, the model is
trained to minimize the loss function, which is also an optimiza-
tion task. In solving a data-driven optimization task, a surrogate
model is typically also trained to approximate the objective func-
tions, usually for expensive black-box optimization problems.
4.1.2. Solution strategies
The solution strategies in learning and optimization tasks are

different. In machine learning, gradient-based methods are often
used as the optimizer, since the loss function is usually derivative.
However, in handling optimization tasks, it can be the case that
there are no analytic mathematical expressions of the objective
function, or there are multiple conflicting objectives. Thus, heuris-
tic methods such as evolutionary algorithms are often adopted.

The strategies for solving machine learning tasks are often
known as learning algorithms; in general, learning algorithms
can be divided into supervised learning, unsupervised learning,
and reinforcement learning. In supervised learning, there are two
main tasks: a regression task and a classification task. In unsuper-
vised learning, there are two main research lines: dimension
reduction, such as principal component analysis [65] and t-
distributed stochastic neighbor embedding [66], and clustering
[67,68]. Both supervised and unsupervised learning tasks are com-
monly seen in various applications, such as image recognition [69],
speech recognition [70,71], and natural language processing [72].
Over the past decade, many new variants of machine learning algo-
rithms, such as semi-supervised learning [73], transfer learning
[74], and self-supervised learning [75], have been proposed.
Regardless of which learning task it is, gradient-based methods
are the most widely used for minimizing a loss function in machine
learning; such methods are usually conjugated with heuristic
derivative-free optimization methods, such as coordinated descent
for solving learning tasks such as variational inference [76].
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The strategies for solving learning and optimization problems
may also differ. For an optimization task, the strategies for opti-
mization heavily depend on the nature of the objective functions
and the number of objectives. For example, traditional mathemat-
ical programming methods such as gradient-based methods can be
adopted for solving single-objective problems whose objective
function is differentiable, whereas meta-heuristic approaches such
as evolutionary algorithms [77] and simulated annealing [78], or
model-based algorithms such as BO [12], have been proven to be
more effective for solving non-differentiable or black-box opti-
mization problems. For the multi-objective optimization problem
in Eq. (1), the objectives often conflict with each other, resulting
in a set of Pareto optimal solutions (called a ‘‘Pareto set”), instead
of a single optimal solution, which achieves the best possible
tradeoffs among the objectives. The mapping of a Pareto set in
the objective space is called a ‘‘Pareto front.” Evolutionary algo-
rithms are particularly well-suited for solving multi-objective opti-
mization problems, as they can obtain a set of optimal solutions in
a single run due to their population-based nature. The existing
multi-objective evolutionary algorithms can be roughly catego-
rized into four groups: dominance-based [58,79], decomposition-
based [59,80–82], performance-indicator-based [83–85], and
preference-based approaches [86]. Most multi-objective evolution-
ary algorithms aim at well-converged and well-distributed approx-
imations of the whole Pareto front/Pareto set. However, in real-
world applications, decision-makers are interested in a preferred
subset of the whole Pareto front. Hence, preference-based multi-
objective evolutionary algorithms incorporate decision-makers’
preferences to guide the search toward the region of interest, in
which the preference can be involved before (a priori) [87], after
(a posteriori) [80], or during (interactive) [88] the optimization.

In general, multi-objective evolutionary algorithms require a
large number of objective function evaluations to generate satisfy-
ing approximations to Pareto fronts, which is unaffordable for
computationally expensive multi-objective optimization problems
such as aerodynamic design optimization and structural optimiza-
tion [11]. Surrogate-assisted evolutionary algorithms have
emerged as a powerful solution to overcome the computational
obstacle of applying multi-objective evolutionary algorithms to
computationally expensive multi-objective optimization problems
[89]. Among various surrogate-assisted evolutionary algorithms,
BO has shown promising performance in many applications due
to its sample efficiency [26]. Typically, BO constructs a Gaussian
process (GP) that defines a distribution over the objective function.
Then, conditioned on the observed data and the prior, the posterior
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can be calculated using the Bayes rule, which quantifies the
updated belief about the unknown objective function. As a result,
the next sample can be identified by leveraging the posterior,
which is achieved by optimizing acquisition functions.

4.1.3. Differences between secure FL and federated optimization
Due to the close relationship between learning and optimiza-

tion, especially data-driven optimization, it is very natural to
extend ideas in FL to federated optimization. Due to the differences
in their aims and strategies, the requirements for security and pri-
vacy preservation are also different. FL differs from federated opti-
mization in terms of its aim, sensitive information to protect,
model framework, and strategy for obtaining optimal learning/op-
timization performance.

� Aim: FL aims to approximate a function F̂ from all possible
hypotheses to minimize the expected value of loss over the
whole dataset composed of the attributes (z) and the corre-
sponding labels (l). Federated optimization aims to find the glo-
bal optima—that is, the best decision variable X, of an
optimization problem by fitting the objective function of the
problem using the dataset composed of the individuals (X, y)
that have been evaluated using real function evaluations. Each
party in FL and federated optimization only holds a portion of
the whole dataset.

� Sensitive information: In secure FL, the local training data
require protection. By contrast, in federated optimization, not
only the local data collected on each client before optimization
but also the final optimization results—that is, the best global
optima—require protection.

� Model frameworks: In classical FL, the server conducts secure
aggregation of model parameters to obtain the global model.
In federated optimization, however, the server (or trusted cli-
ents) must also implement a surrogate-model management
process, such as the optimization of an acquisition function in
BO, while the classical averaging method in FL no longer works;
newly sampled data during the optimization must also be
protected.

� Strategy: Given the distinct objectives of FL and federated opti-
mization, the approaches to achieving these aims differ signifi-
cantly. In FL, the primary goal is to develop a global model
tailored for effectively fitting datasets from all clients. In
essence, a model that yields more accurate predictions is
strongly preferred. However, in federated optimization, there
is an additional emphasis on model management strategies
alongside model fitting, since the final aim is to effectively find
the global optima of an optimization problem.

4.2. Privacy-preserving optimization

This subsection discusses privacy-preserving optimization,
including evolutionary optimization and BO. Before introducing
the details of these privacy-preserving schemes, we first discuss
attacks and defenses in BO and evolutionary optimization. Only
by understanding the security issues in the optimization algorithm
can we better provide security protections.

4.2.1. Attacks and defenses in optimization
Attacks and defenses in optimization can be divided into infer-

ence attacks and active attacks.
(1) An inference attack aims to infer sensitive information, such

as whether a specific data point is involved in the training
data or what the sensitive optimization results are. In exist-
ing secure scalar product protocols, such as the protocols in
Ref. [90], the vectors in one party can be easily inferred by
using a vector containing only one element whose value is
one. To defend against such probing attacks, in Ref. [91],
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the scalar product of two binary vectors is expressed as
the sum of two component values using the Du-Atallah pri-
vate scalar product protocol [92], where each vector is pri-
vately held by each party. In Ref. [93], when solving the
distributed graph coloring problem using a Tabu search,
there is a potential inference risk of guessing the vertex color
of another party by comparing the difference of the total
number of conflicts between one solution and its neighbor-
ing solution. Hong et al. [93] proposed a mechanism called
the synchronous move to overcome this issue by choosing
to possibly change the color of one of the vertices of another
party.

(2) In an active attack, it is mainly necessary to consider the case
of conducting optimization with malicious adversaries. Con-
sidering that the final returned input point after conducting
BO may be perturbed by an adversary, Bogunovic et al. [94]
proposed a robust GP assisted algorithm by seeking to obtain
the optimal e-stable solution via a confidence-bound-based
acquisition function. As a result, even though the final
returned point is perturbed, the obtained solution is still
applicable, since the obtained point is located in a relatively
wider region. In Ref. [94], it is assumed that only the final
input result adversary is reachable to an adversary. How-
ever, in fact, an adversary can access any intermediate
results, such as corrupting each sample in terms of the input
or output space at each step of an optimization process, as
discussed in Ref. [95]. For example, in Ref. [96], the out-
put—that is, the reward in the multi-arm bandit setting—is
corrupted by an adversary during optimization, posing con-
siderable challenges under an infinite action space—that is,
the input space. To overcome this problem, Bogunovic
et al. [96] proposed the inclusion of the corruption value in
the weighting parameter in the upper confidence bound
function under the known corruption setting and attempted
to strike a balance between a fast or slow shrinkage of
uncertainty under the unknown corruption setting. The
abovementioned work discusses optimization under adver-
sarial attacks from the perspective of algorithm designers;
however, very recently, Han and Scarlett [97] were the first
to discuss optimization from the perspective of the attackers
and proposed several targeted attack strategies, such as the
subtraction attack and the clipping attack, regardless of
whether the objective function is known or not. The effec-
tiveness of the proposed attacks was demonstrated by being
applied to the GP bandit algorithms mentioned above, such
as those in Ref. [96].

Surprisingly, only a handful of studies conduct optimization
with adversaries. This could be because most BO or evolutionary
algorithms are currently conducted in one device. However, with
the development of federated BO and federated data-driven evolu-
tionary optimization, there will be a surge of interest in conducting
optimization with malicious adversaries.

4.2.2. Privacy-preserving evolutionary optimization
In privacy-preserving FL methods, it is not only the final result

but also the intermediate results during the training process that
can reveal users’ privacy. Similarly, in evolutionary optimization,
the course of the optimization process in the service provider can
disclose private information such as the raw data, real objective
functions, and current best optima. Hence, we group privacy-
preserving evolutionary optimization into two categories by con-
sidering whether or not the whole optimization process is
protected.

In the first group, only the fitness calculation is secured. For
example, in Ref. [98], the user attempts to protect the real fitness
values from being disclosed by just sending the relative ranking
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between every two fitness values to the service provider for con-
ducting the optimization process. However, the disclosure of rank-
ing in the optimization will inevitably disclose the best global
optima, which is usually unacceptable, as the target of any opti-
mization is to obtain the final global optima. In Ref. [98], only
one user is involved, meaning that the decision variables and
objective function calculation are only held by one user. However,
it may be the case that the optimization of one objective function
involves interaction between multiple users. In Ref. [91], a secure
fitness evaluation protocol is proposed to securely calculate the fit-
ness values of a drug rule based on private arbitrarily partitioned
data held by two parties. The protocol is demonstrated to be able
to prevent probing attacks. Another scenario, called the master–
slave framework, involves multiple agents and one server. To pro-
tect privacy under this scenario, Zhao et al. [99] applied the Paillier
cryptosystem to a distributed particle swarm optimization algo-
rithm, with each slave client holding one particle, to protect the
position of the current global best solution from being exposed
to a master server.

In the second group, driven by the fact that most privacy-
preserving approaches only secure the calculation of the fitness
evaluation, which may reveal sensitive information, an intuitive
idea is to secure the whole optimization process. However, for dif-
ferent optimization algorithms, the optimization procedures are
quite different. For example, genetic algorithms involve reproduc-
tion operators, objective value calculation, and environmental
selection, while particle swarm optimization updates the velocity
and positions of particles based on the local best and global best
optima. It can also easily be found that, apart from the algorithm
type, different kinds of problems may require different primitive
protocols for encrypting the optimization process. For example,
in Ref. [100], the calculation of the objective value only involves
addition and multiplication in solving a linear programming prob-
lem, such as a subset cover problem, so encrypting the whole opti-
mization process requires addition, multiplication, and comparison
primitive protocols. Another work [101] proposes solving the sub-
set cover problem in an outsourcing manner by utilizing a masked
bloom filter and Diffie–Hellman data exchange protocol. In Ref.
[102], two parties—the supplier and the producer—collaboratively
optimize their production planning to minimize their costs
separately.

To ensure that no intermediate results are revealed during the
optimization process, every step of a multi-objective evolutionary
algorithm is secured by cryptography protocols. To be specific,
Yao’s protocol [29] is for the security of calculating the objective
function, HE for the environmental selection, and secret sharing
for individual mutation in the population. Since the environmental
selection is based on Pareto non-dominated sorting, a specific
primitive protocol for sorting is designed in this work for handling
a multi-objective optimization problem. Very recently, Zhao et al.
[103] proposed a framework only for handling combinatorial opti-
mization problems. The main idea is to outsource the encrypted
problem to the cloud server. It is notable that, in combinatorial
optimization problems such as traveling salesman problems, the
sensitive content owned by users is the city list and traveling cost
between each city pair. Sending the encrypted content obtained by
the hash function to the server means that the optimization must
be conducted based on the encrypted data, which poses great chal-
lenges to traditional evolutionary algorithms. Thus, a secure com-
parison protocol and a secure division protocol are proposed.
Similarly, in Ref. [104], the optimization of the double digest prob-
lem is outsourced to a cloud server to utilize its powerful compu-
tational resources. When an order-preserving homomorphic index
scheme is proposed, the optimization procedure of the quantum-
inspired genetic algorithm, which is conducted on the cloud, does
not need any decryption process with encrypted double-digest
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data as the input. Experimental results show that this approach
is very effective and can also protect the valuable double-digest
data of the user.

In addition to privacy-preserving evolutionary algorithms, other
privacy-preserving heuristic algorithms such as Tabu search and
simulated annealing have been studied over the past two decades,
especially in handling distributed combinatorial optimization
problems and linear programming problems. For example, in Refs.
[93,105], simulated annealing and Tabu search algorithms are
applied to handle the traveling salesman and distributed graph col-
oring problem, respectively, with the help of HE and a secure com-
parison protocol to secure the calculation of objective values and
fitness comparison between one solution and its neighbors.

Apart from single-/multi-objective problems and combinatorial
optimization problems, some studies aim to solve distributed lin-
ear programming and quadratic programming problems. To effi-
ciently handle such problems, the researchers proposed using
transformation-based and DP-based methods to protect users’ pri-
vacy and solve the distributed problems. Under distributed scenar-
ios, the objective function and constraints of the linear
programming problem are distributed on different clients. A situa-
tion can occur in which each client holds only parts of the con-
straints via horizontal partitioning, vertical partitioning, or
arbitrary partitioning. Most approaches consider the horizontal
partitioning case. In transformation-based methods, such as those
in Refs. [106,107] for linear programming problems and that in Ref.
[108] for quadratic programming problems, the main idea is to
protect the problem parameters and decision variables of each user
from being disclosed to the server by transforming the problem
parameters. Hong and Vaidya [106] proposed solving horizontally
partitioned linear programming problems with an arbitrary num-
ber of constraints, regardless of equality or inequality constraints,
by letting every user generate artificial constraints and applying
a random matrix to transform the problem parameters. Aside from
transformation-based approaches, DP-based methods such as that
in Ref. [109] are also studied because DP can provide rigorous
proof. However, unlike cryptography or transformation methods,
DP-based methods suffer from some extent of performance
degradation.

In summary, the general privacy-preserving approaches applied
in FL, such as HE, have also been adopted in privacy-preserving
heuristic algorithms for the same purpose. Cryptography methods
such as HE will inevitably be computationally demanding, as each
component of the optimization process must be encrypted. More-
over, an optimization process usually contains multiple varying
operators, such as Pareto non-dominated sorting, crossover, and
environmental selection. The issue of how to efficiently protect
the whole optimization process using different schemes such as
secret sharing and HE remains a huge challenge.

4.2.3. Privacy-preserving BO
BO begins with the construction of a surrogate model, usually a

GPmodel, based on the training data available before the optimiza-
tion. Next, it optimizes an acquisition function to suggest the next
query input—that is, a new data point to be sampled. Therefore, the
sensitive information in BO includes the training data for con-
structing the surrogate and the new query points. An example of
the framework of outsourcing BO is given in Fig. 5. On the experi-
menter side, the users’ local training data can be perturbed by add-
ing noise to the objective values or transforming the dataset into
another new dataset before sending it to the service provider. On
the service provider side, BO is conducted, and the query input sug-
gested by the BO is sent back to the experimenter. Kusner et al.
[110] were the first to propose protecting the best query point
using DP at the end of a BO process by adding Laplace noise to
the true objective values of the best query point. However, if a



Q. Liu, Y. Yan, Y. Jin et al. Engineering xxx (xxxx) xxx
communication attack occurs during the BO process, intermediate
results such as the predictions of a GP model can also be sensitive
information, since they may disclose information on solutions that
have been evaluated using real functions. For example, the real
objective values of an individual can be inferred based on the ker-
nel matrix, as discussed in Refs. [111,112]. Nguyen et al. [113]
addressed this leakage risk by adding noise to every objective value
corresponding to every next query input. A new question brought
about is whether the constructed surrogate model based on the
obfuscated objective values will degrade the performance of the
optimization of the acquisition function. Moreover, the error in
model construction will accumulate with an increase in the num-
ber of newly suggested query points. Apart from directly adding
noise to the objective values, such as in Ref. [113] in regression
tasks, DP has been extended to handle expensive classification
problems for data protection. In Ref. [114], the Laplace noise gen-
eration mechanism is adopted and implemented using the
expected value of the classification probability; classification tasks
are then accomplished with an embedded squash function.

Apart from DP, a few attempts have been made along the line of
transformation and HE, which is more accurate than DP-based
approaches. Given an experimenter that is unwilling to directly
send either decision variables or true objective values to an out-
sourcing party, Kharkovskii et al. [115] proposed transforming
the decision variables by means of a defined matrix, which is only
private for the experimenter, while the optimization process of the
acquisition function is based on the transformed decision vari-
ables. At the end of the optimization process of the acquisition
function, the next query point is converted back by the experi-
menter. Another approach without degrading the accuracy is the
HE-based method. GP model construction and prediction are
secured by using a modular approach [111], ensuring that any cli-
ents can still make predictions of the mean and standard deviation
of any observed points, even though no local data in the service
provider is transmitted. Compared with DP and transformation-
based methods, HE-based approaches are relatively time-
consuming. Very recently, Luo et al. [112] adopted a secret-
sharing strategy in model construction and predictions that can
be extended to three scenarios—horizontal data sharing, vertical
data sharing, and prediction data sharing—with a relatively high
model-training efficiency.

To sum up, the three main approaches—namely, DP, transfor-
mation, and HE-based privacy-preserving methods—mainly
attempt to protect the training data, the optimization of the acqui-
sition function, or the next query point. However, due to the model
construction errors, existing DP-based approaches usually perform
Fig. 5. A framework for p
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much worse than traditional BO. Transformation-based
approaches seem to be a promising direction, as they are much
more time-efficient than HE-based approaches and do not intro-
duce as much uncertainty into the optimization process of the
acquisition function as DP-based methods.

4.3. Privacy-preserving fully distributed optimization

A situation in which all agents work collaboratively to solve a
global optimization problem is formulated as the sum of local
functions private to all participating agents via a fully connected
network. This framework requires each agent to explicitly
exchange its state to its neighboring agents over many iterations
to obtain the best global optima of the global optimization prob-
lem. It should be noted that there are no servers in this scenario,
and each agent does not transmit the information to the servers
but to the neighboring clients, in what is called fully distributed
optimization. To handle this class of fully distributed problems,
researchers have proposed many algorithms, such as ADMM [15]
and many variants of the ADMM, over the past decade. However,
the mechanisms of these approaches all rely on exchanging the
state of one agent with neighboring agents, which fails to protect
the privacy of each agent, considering that the exchanged states
may leak sensitive information about the agents.

One intuitive way is to encrypt the exchanged states. Because of
the interacting message passing among the agents in a fully decen-
tralized setting, cryptographic techniques usually require a trusted
third party to avoid the state values of one agent being inferred
from the transmitted information. Motivated by the fact that a
trusted third party is not always available in real-world applica-
tions, researchers have made attempts to incorporate crypto-
graphic techniques into ADMM [116] and a projected sub-
gradient algorithm optimizer [117], assuming that there are no
third parties or aggregators, to address fully distributed optimiza-
tion problems. For a dual-variable update, the method of incorpo-
rating the Paillier cryptosystem is the same as that used in Refs.
[116,117]. Average consensus problems are also important prob-
lems in distributed computing. In Ref. [118], considering that the
coupling weights for the undirected graph are symmetric, the cou-
pling weights are also separated into the product of two random
positive numbers. Gao et al. [119] successfully implemented a
privacy-preserving push sum algorithm by introducing different
time-varying coupling weights and using partially homomorphic
cryptography to reach an average consensus on directed graphs.
Since the coupling weights for out-neighbors are unknown, one
node cannot infer the actual state values by decrypting the
rivacy-preserving BO.
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weighted state values. It is well known that Paillier cryptosystem
approaches suffer from heavy computational and communication
costs, making them impractical for dealing with real-time opti-
mization problems. Apart from the Paillier cryptosystem, secret
sharing as another popular cryptographic approach that has been
widely used in fully distributed optimization because of its
computational-efficient properties. Representative work is
included in Refs. [120,121].

With a sound theoretical proof, DP has also been applied to fully
distributed optimization by adding noise to the primal and/or dual
variables in ADMM iterations [122,123] or the local functions
[124], according to what must be protected. It is notable that, for
a distributed optimization problem, either the objective functions
or the constraints may contain sensitive information. Hence, most
studies attempt to protect these two pieces of information. With
regard to DP-based approaches, research has been conducted along
two lines: providing a DP guarantee for each iteration or for all iter-
ations. In the first line, for example, in Ref. [122], dynamic a-DP is
achieved at each iteration, including the final iteration, by adding
noise to primal variables or dual variables at every ADMM itera-
tion. However, only ensuring the DP of the local objective function
at each iteration will result in error accumulation over all itera-
tions, breaking the convergence property of the iteration process
and degrading the optimization performance. A promising idea is
to achieve the DP guarantee over all iterations. In Ref. [125], in
order to ensure a certain level of privacy budget over all iterations
for iteration-distributed algorithms, Laplace noise with a decaying
noise rate is added to the estimated global optima before broad-
casting to neighboring agents. It should be noted that, when stud-
ies such as Refs. [122,123,126] rely on a decaying step size over the
iterations to ensure convergence, a DP-based approach has been
proposed [127] to achieve linear convergence in the mean under
a constant step size. This work shows that the noise added to the
state and direction values is indispensable, with each value
accounting for privacy and convergence, respectively.

4.4. Federated data-driven evolutionary optimization

It is intuitive to borrow ideas from FL for privacy-preserving
federated data-driven optimization since both methods assume
raw data are decentralized in different clients and all participating
clients collaboratively attempt to finish learning or optimization
tasks. Despite their similarities, there are notable distinctions
between the frameworks of FL and federated data-driven optimiza-
tion, as illustrated in Fig. 6. Two special properties of the frame-
work of federated data-driven optimization are: suggestion of
next query input by optimizing an acquisition function and update
of training data after evaluating newly infilled solutions. Although
federated data-driven evolutionary optimization, as a newly
emerging and promising topic, is effective in solving optimization
tasks under the premise of privacy protection, only a few studies
have explored this direction. A pioneering work is presented in
Ref. [128], which proposes optimizing the hyperparameters of
deep neural networks using BO, where the deep neural networks
are locally trained on different clients. To reduce the transmitted
parameters and prevent the local training data from being dis-
closed, a federated Thompson sampling acquisition function is pro-
posed and optimized by conducting optimization of the acquisition
function on a randomly selected local client at each round of the GP
model update. Motivated by the fact that user-level privacy may
not be ensured in Ref. [128], DP is applied to add noise to the
model weights in Ref. [129], as in DP-assisted FL. It is notable that
a central server is introduced in Ref. [129] in order to implement
the DP. The optimization of the acquisition function is conducted
on a randomly selected client in both Refs. [128] and [129] at each
round of GP update.
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While most existing data-driven surrogate-assisted evolution-
ary optimization algorithms assume that the data is centrally
stored and sampled [27], it is of paramount practical importance
to extend these optimization algorithms to the federated setting.
Xu et al. [130,131] made the first attempt to achieve this by adapt-
ing the FL framework to federated data-driven evolutionary opti-
mization. It should be noted, however, that GPs are non-
parametric; therefore, the canonical FedAvg algorithm cannot be
directly introduced in evolutionary BO. To address this issue, a
radial basis function neural network model is built as the surrogate
model on each client, based on their own data, to ensure that only
model parameters rather than the local training data are uploaded
to the server [130,131]. In addition, a federated lower confidence
bound is designed as the acquisition function based on both the
global surrogate model aggregated on the server and all local sur-
rogate models. Inspired by these ideas, cloud edge model manage-
ment was proposed [132] by weighting predicted local objective
values based on coverage function values, and a blocking- and
unblocking-based communication scheme was introduced to avoid
deadlock during the optimization process.

Beyond the goal of federated optimization through shared
model weights, an alternative strategy involves the direct sharing
of insensitive data, such as model predictions or hyperparameters,
between clients and the server. For example, particle swarm opti-
mization can be integrated with a federated framework by sharing
the velocity update directions of one client’s particles instead of
the real positions of these particles with a central server, thereby
safeguarding the original raw data [133]. However, the conver-
gence speed of this approach is somewhat compromised, due to
the incorporation of a DP mechanism to increase the privacy pro-
tection. By contrast, Ref. [134] uses the predictions of a GP model
to guide the velocity update of particle swarm optimization within
a federated setting. Notably, this research is driven by the effi-
ciency in tuning GP models rather than privacy concerns. Cheng
et al. [135] individualized the optimization of the hyperparameters
of the surrogate model of each client under a federated framework.
This was accomplished by sharing transformed client encoding
through random Fourier features, ensuring that each client’s raw
data remained confidential. It is essential to recognize that the fed-
erated optimization techniques discussed above assume complete
honesty from all clients. However, in practice, a subset of these
agents might be Byzantine. With this in mind, Zhang et al. [136]
enabled the amalgamation of local GP models by aggregating the
GP model predictions from all clients. This process accounts for
arbitrary predictions from Byzantine clients. To mitigate Byzantine
attacks, the largest and smallest b fractions of local predictive
means and variances are strategically discarded. Furthermore, in
Ref. [137], each client achieves the aim of merging the information
of all clients by sharing the weighted local and global function val-
ues of a decision. The weights in each client are randomly sampled
to preserve the actual local function values and to incorporate
insights from other clients. Lastly, in a recent publication, Zhu
et al. [138] employed the hyperparameters of GP models to infuse
global information. A set of pseudo-data was introduced to gauge
similarities between clients. This ensures that only the GP models
of akin tasks are merged, representing a promising direction for
federated BO.

In decentralized/federated optimization, the contributions from
each client can vary significantly, depending on the volume and
quality of the raw data they provide. Consequently, it might be
unfair to suggest the same number of newly infilled solutions for
all clients. For this reason, researchers have attempted to consider
fairness, in addition to performance, in federated optimization.
This direction holds considerable promise for concurrently glean-
ing insights from fairness-aware decentralized optimization when
designing federated optimization frameworks. For example, in



Fig. 6. Comparison between (a) the frameworks for FL and (b) federated data-driven optimization. AF: acquisition function; SQL: structured query language.
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collaborative BO, assigning input queries to different parties with
different information gains and rewards may hinder the collabora-
tion [139]. Although an increasing number of studies have been
dedicated to achieving fairness in machine learning and resource
allocation [140], only a few attempts have been made to take fair-
ness into consideration in decentralized optimization [141]. Per-
rone et al. [142] adopted a constrained acquisition function to
satisfy the fairness constraint in BO. In Ref. [143], both statistical
parity difference and the equality of opportunity difference are
used as fairness metrics, resulting in a multi-objective optimiza-
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tion problem. Interestingly, a fair regret inspired by a cumulative
utility is defined in batch BO, so that fairness is ensured by mini-
mizing the difference between the cumulative utilities of all parties
[139]. While the abovementioned work shed some light on fairness
treatment in decentralized optimization, most of these studies
focus on fairness issues in single-objective optimization problems
and ignore the privacy concerns in federated optimization. Given
the recent development in fairness-aware FL, performance fairness
[140], which encourages uniform performance across devices, and
collaboration fairness [144], which allows participants with a
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higher contribution to gain higher rewards, can be adopted in fed-
erated optimization as well. Moreover, the presence of multi-
objective optimization problems in federated optimization poses
additional fairness issues. For example, training data with sensitive
attributes may lead to each local surrogate model having varying
accuracy. In this case, biased optimization on different objectives
and clients may occur, such as obtaining only a limited region of
the Pareto front that satisfies certain groups of people. Further-
more, as different types of optimization problems occur with dif-
ferent clients (i.e., the number of objectives may vary), it is
challenging to ensure fairness when constructing a global model.
Therefore, the notion of model fairness [145] from FL can be
adopted to address fairness-aware federated optimization prob-
lems, in order to ensure that no discrimination of the model
against specific groups of people will occur. Interestingly, the pref-
erence of each client in federated optimization can be used to mea-
sure the reward when addressing fairness issues. This, in turn,
results in a fairness issue when there is a tradeoff between conflict-
ing preferences.

To conclude, the choice of federated optimization frameworks
in real-world scenarios hinges on the type of sensitive information
to be protected and the permissible performance tradeoffs. Regard-
less of whether the information fusion of clients is achieved
through model weights, predictions, or hyperparameters, a signif-
icant disparity remains between optimization performance and
security enhancement in these federated approaches. Continued
efforts in this domain are essential. Moreover, the design of feder-
ated optimization should not just focus on improving the optimiza-
tion performance; fairness should also be a critical factor in
promoting collaborative optimization among multiple clients.
4.5. Discussion

To better understand the new challenges in federated optimiza-
tion compared with FL, we summarize below the similarities and
differences of privacy preservation in learning and optimization.
4.5.1. Unique challenges in privacy-preserving optimization
Although cryptographic techniques such as HE, MPC, and DP

can be applied to both machine learning and optimization pro-
cesses to ensure privacy preservation, the following mechanisms
can be applied to privacy-preserving optimization but not to learn-
ing, due to the special requirements in optimization.
� Subspace perturbation. Inspired by the fact that dual variables
will not converge in a certain subspace, noise is only added into
the nonconvergent subspace of the dual variables in Ref. [56].

� Function decomposition or state decomposition. The local
objective functions or state variables are decomposed into
two parts—one accounting for passing messages with the neigh-
boring clients and the other remaining local. This mechanism is
specially designed for fully distributed optimization [146,147].

� Transformation of training datasets. Training samples are
transformed in a such a way as to preserve the pairwise dis-
tance between samples, and the optimization of the acquisition
function is based on the transformed datasets on the out-
sourcing party so that the privacy of the original datasets can
be preserved [115].

4.5.2. Common strategies for FL and federated optimization

Federated optimization is still in its very early stage, and many
research questions remain open. Thus, there are numerous
research opportunities in introducing and adapting security and
FL strategies to federated optimization.
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� FL and optimization structure. The general structures of FL
and federated optimization are very similar. It is notable that
most FL structures belong to the horizontal FL framework,
which is also commonly seen in federated optimization.

� Privacy-preserving schemes. The basic FL algorithm is not pri-
vacy preserving, even if it does not share the clients’ raw data.
There are vulnerabilities of data leakage from gradients and
inference attacks, among others, if the server or clients are
semi-honest. Many cryptographic primitives that have been
embedded in FL to achieve privacy preservation and trustwor-
thiness are also applicable to federated optimization. HE, MPC,
DP, and secure aggregation are the most popular schemes in
FL, among which HE can be directly applied to federated opti-
mization. As in secure FL, the clients in federated data-driven
optimization can encrypt sensitive data with private keys. The
server calculates and returns the optimum to all clients. Clients
can then decrypt the message with their private keys and obtain
the plaintext value. Similarly, DP can be adopted by clients to
add noise to the local dataset, the gradients, and the final model
parameters to prevent inference attacks. Finally, secure aggre-
gation as a special protocol of MPC can also be applied to the
federated optimization, as discussed in Ref. [148].

� Personalization. In the classic FL structure, there is a common
output for all clients. As a result, some local features may be
missing from the global model. Moreover, not independent
and identically distributed (non-IID) data distribution may lead
to model divergence and therefore degrade the learning perfor-
mance. To reflect the needs of individual clients, several person-
alized FL schemes have been proposed, including client
clustering, local fine-tuning, meta-learning, multi-task learning,
and the usage of local parameters, to name just a few [149]. In
principle, these techniques can also be applied to federated
optimization.

� Incentive mechanisms. FL loses its appeal to users with suffi-
cient data for training, since local model training is even better
than global training [150]. Many incentive mechanisms have
been proposed to encourage more clients to join in federated
training. However, applying incentive mechanisms directly into
FL is difficult, as there is no standard approach to evaluate user
behaviors. The most popular strategies for incentive mecha-
nisms in FL are game theory, contract theory, and reinforcement
learning, including Shapley value-based contribution evaluation
and Stackelberg game-based contribution evaluation. These
strategies can be applied to federated optimization to encour-
age more clients.

4.5.3. Common challenges in FL
Prior to delving into the newly stipulated requirements for

secure federated optimization, it is helpful to provide a concise
overview of the prevalent challenges that are typically encoun-
tered in the domain of FL. Given that federated optimization bor-
rows many ideas from FL, it is logical to expect a certain degree
of overlap in the context of their structural frameworks and the
challenges they present. These challenges may include perfor-
mance deterioration on non-IID data, increased computational
and communication expenses, the question of client-level fairness,
and the complexities related to federated neural architecture
search.
� Model divergence in the presence of non-IID data. In machine
learning, non-IID data refers to a scenario in which data distri-
butions are not IID. A previous study [151] provided a compre-
hensive summary of five different non-IID forms. To investigate
the impact of this non-IID data on the model, experimental
results [152] present the difference in the model performance
between IID data and non-IID data and show a significant drop
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in performance. It has also been demonstrated that federated
averaging (FedAvg) suffers from a deterioration in accuracy of
up to 9 % in non-IID datasets. As indicated by Zhao et al.
[153], the performance degradation of FL can mainly be attrib-
uted to model divergence. Lian et al. [154] proposed a
blockchain-based secret-sharing method to enhance the mod-
el’s accuracy in non-IID settings without compromising user
privacy. A detailed discussion of techniques for handling non-
IID data in FL can be found in Ref. [149].

� Communication efficiency. FL relies on the transmission of
model parameters from clients to the server and from the server
to the clients. Insufficient FL bandwidth can result in inefficient
communication, latency, and slow learning processes. Further-
more, such communication overhead increases with the num-
ber of participants and the number of iteration rounds. Much
effort has been dedicated to designing communication-
efficient FL. Strategies for reducing communication costs can
be roughly divided into five categories: reducing the number
of clients via client selection and rescheduling [155,156]; reduc-
ing the size of the parameters to be transmitted by means of
model parameter compression [157,158]; parameter reduction
through compression [158,159]; parameter transmission reduc-
tion through heterogeneous updating [160,161]; or model size
reduction via neural architecture search [162,163].

� Fairness. In standard FL, all clients receive the same reward
(e.g., the aggregated model), which may be unfair to clients
who contribute significantly to the model performance
[164,165]. To alleviate possible unfairness in FL, several fairness
metrics have been proposed. For example, in order to protect
weak clients, selection fairness has been proposed to increase
their chances of participation [166]. Model fairness [167,168]
aims to ensure that the federated trained model has no discrim-
ination against specific individuals’ or groups’ data, regardless
of whether the data distribution across clients is IID or hetero-
geneous. On the contrary, performance fairness [169] or accu-
racy parity [140] aims to encourage a uniformly standard
accuracy parity across participants or clients. Collaboration fair-
ness [144] and contribution fairness [170] were developed to
ensure the long-term stability of the FL system, so that clients
or participants with higher contributions to the model perfor-
mance will receive higher rewards or incentives. Although a
great deal of progress has been made in fairness-aware FL, it
is still in its infancy. Different fairness metrics may conflict with
each other [171], and too much emphasis on fairness will harm
the model accuracy [172,173]. As a result, the question of how
to balance the interests of the clients and the performance of
the model remains an issue [174].

� Federated neural architecture search. Incorporating a neural
architecture search into FL to collaboratively search for optimal
models across clients in an automatic and privacy-preserving
way has recently attracted increasing attention [163,175]. How-
ever, few federated neural architecture search approaches have
been proposed. Most existing methods focus on model penal-
ization in FL. For example, in Ref. [176–179], a neural architec-
ture search is utilized to search for a personalized neural
architecture to mitigate data heterogeneity in FL. Pan et al.
[180] proposed a general framework for a federated neural
architecture search to allow both the search and aggregation
at the neural-operator-based micro level and the cell-based
macro level. Multi-device environments—that is, when there
is heterogeneity in the devices per user—are considered in Ref.
[181], in which the server selects devices by utility values in
terms of accuracy, efficiency, and convergence time. As the gra-
dient information exchanged in FedAvg may leak privacy, Singh
et al. [182] utilized DP to further enhance the privacy protection
by adding Gaussian noise to the gradient before it is sent to the
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server for aggregation. Based on an evolutionary optimization-
based neural architecture search, Zhu et al. [183] proposed a
double-sampling method that randomly samples the sub-
model and clients to reduce computational and communication
costs. Interestingly, a federated evolutionary algorithm is
adopted in Ref. [184] to accelerate the automatic design of
graph convolutional network architectures in FL scenarios.

4.5.4. New requirements for secure federated optimization
Here, we present the additional requirements for secure feder-

ated optimization in terms of model management strategies, spe-
cial operators in optimization, improving the performance of
federated acquisition function optimization, and special defense
schemes in optimization.
� Model management strategies. One critical issue in the imple-
mentation of secure federated optimization is the design and
optimization of the model management strategies—that is, the
federated acquisition function. For example, in Ref. [130,132],
the new query points are fully exposed to the server, since the
decision variables to be queried, their approximated objective
values, and the local model parameters are all known to the ser-
ver, making it more likely to disclose sensitive information. As a
result, it is highly desirable to design additional privacy-
preserving measures for surrogate model management strate-
gies in federated data-driven optimization.

� Special operators in optimization. In genetic algorithms [57],
operators such as crossover and mutation involve probability
and division calculations, which are not commonly seen in
secure FL. Hence, special secure protocols for these operators
are required, as indicated in Ref. [103]. Environmental selection
is also an essential component in an evolutionary optimization
process. In single-objective evolutionary algorithms, a compar-
ison of two fitness values can use existing comparison proto-
cols, as in Ref. [103]. However, environmental selection
operators in multi-objective evolutionary optimization algo-
rithms such as Pareto non-dominated relationships are difficult
to encrypt efficiently [102]. Therefore, there is great demand for
the design of efficient and effective encryption schemes for spe-
cial operators in optimization in order to securely conduct the
whole optimization process.

� Optimization of federated acquisition function. In privacy-
preserving BO, noise is added to the predicted objective values
before they are sent to the server for constructing surrogate
models. Consequently, optimizing an acquisition function based
on the perturbed objective values may result in a failure to find
the optimal solution. Hence, it is expected that the optimizer is
able to alleviate the influence of noise on the optimization
results in order to obtain an acceptable new query input.

� Special defense schemes in optimization. Since attackers in
optimization attempt to mislead the optimization process
rather than confuse the model training as in FL, it is expected
that appropriate defense schemes for the optimization process
can be designed for secure optimization.

5. Challenges and opportunities

Despite the encouraging progress that has been made in secure
and privacy-preserving optimization, many challenges remain
open. In this section, we outline challenges in secure optimization,
based on which promising future work is suggested. One major
open question is the definition of privacy and security in optimiza-
tion. First of all, it is essential yet non-trivial to provide a quantita-
tive definition of security and privacy, regardless of whether the
context is FL or federated optimization. In addition, knowledge of
how security and privacy-preservation measures may influence
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the optimization performance remains elusive. Other issues, simi-
lar to those in FL, include how to deal with non-IID, how to balance
between privacy and security and between security and accuracy,
and how to deal with the relationship between preference and fair-
ness. In the following, we enlarge on these points.

5.1. Definition of privacy and security in optimization

It is always tricky to define privacy and security separately, as
they are usually close and related to each other. For example, a
security issue may be connected to privacy leakage. However, the
tendencies of privacy and security always differ. It is challenging
to determine how to define privacy and security in optimization.
Here, we define the terms of security and privacy in optimization.

According to Ref. [18], privacy protection generally refers to
preventing the public exposure of sensitive personal information.
However, since the sensitive information in optimization is quite
different from that in FL, we define privacy in optimization as fol-
lows: In optimization, privacy protection refers to the protection of
sensitive information such as parameters in objective functions
and constraints, individuals that have been evaluated using real
function evaluations, and relative ranking among individuals dur-
ing and after the optimization process. Security refers to defenses
against possible attacks that may mislead the optimization process
and give an inaccurate optimization result.
5.2. What are the limitations of different technical strategies in
optimization?

Different strategies such as DP, HE, and MPC have both limita-
tions and advantages, which we summarize below.
� DP. Although DP-based approaches have a solid theoretical
background, applying them to optimization does not always
result in satisfactory convergence performance. This is because
an optimization process usually has a large number of itera-
tions; thus, DP-based approaches must consider the total pri-
vacy leakage over the iterations. For example, in Ref. [185],
the DP noise over the iterations decays to zero to improve the
opportunity to converge to the global optimum. In DP-assisted
BO, even though a very small e value is adopted, it is not possi-
ble to ensure sufficient protection of the global optimum [113],
since the perturbed solutions in the previous rounds will still
have a direct influence on the surrogate modeling and acquisi-
tion function optimization in later rounds.

� HE.HE has been adopted for GPmodeling, in which the interme-
diate data is encrypted for making privacy-preserving predic-
tions [111]. In this work, GP prediction involves the calculation
of a kernel function composed of pairwise distances between
observed and unobserved data. Considering that the intermedi-
ate distance transmissions between the service provider and the
client can contain sensitive information, adding a small amount
of noise to the distances is suggested to prevent the dishonest
party from knowing the exact distance. Therefore, it is concluded
that HE approaches do not ensure complete privacy protection
in optimization, and it is necessary to designHE schemes accord-
ing to the properties of an optimization process. Moreover, com-
puting on ciphertext requires a huge computation cost for the
server side. The clientsmust encrypt and decrypt the valueswith
their private keys, which also increases the computation cost.
The communication cost also increases sharply, as the ciphertext
is usually much larger than the plaintext.

� Secure MPC.MPC involves more than two subjects in a comput-
ing task without a trusted third party. Ultimately, each party
can complete the computing task securely without knowledge
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of the data held by the other parties. As discussed earlier, the
main techniques used in MPC are secret sharing, oblivious
transfer, and garbled circuits. The popular secure aggregation
protocol in FL is based on secret sharing, which can only protect
the user’s privacy from semi-honest or malicious servers. More-
over, it involves encryption and decryption, which will increase
the communication and computation costs. For other threats,
such as malicious clients and poisoning attacks, MPC is
inadequate.
It can be concluded that privacy-protection techniques such as

DP and HE cannot achieve complete protection for an optimization
task. Thus, it is desirable for hybrid techniques to be adopted,
according to the task and the user-specific privacy-protection
requirements.

5.3. What makes privacy-preserving techniques in federated learning
hard to implement in optimization?

As previously discussed, optimization involves more sensitive
data and has more complex privacy-preservation requirements
than learning. Thus, some of the privacy-preserving techniques
applied to FL cannot be directly implemented in optimization.
Among others, the protection of newly queried data and the influ-
ence of DP noise on the optimization performance are two predom-
inant additional challenges that must be taken into account.
� Protection of newly queried data. As discussed in Ref. [148], it
is necessary to prevent newly infilled solutions from being dis-
closed, in addition to protecting the local training dataset col-
lected before the optimization starts. In other words, it is
necessary for the privacy-preserving techniques in federated
optimization to consider the protection of both raw data and
newly infilled solutions.

� Influence of DP noise on the optimization performance. In FL,
DP noise is added to the weights of the model, which should not
heavily influence the model accuracy while being able to pro-
tect the local training data. In an optimization task, adding noise
to the predicted objective values will influence not only the GP
surrogate accuracy but also the optimization performance of
the acquisition function, which may eventually seriously
degrade the optimization performance.

5.4. Promising directions for federated optimization

Based on our discussions above, we consider the following six
research directions to be promising and important for federated
optimization.

(1) Heterogeneity in local optimization problems. In FL, one
widely investigated heterogeneity between clients is the
non-IID training data on different clients in the horizontal
FL setting. FL becomes more challenging when different cli-
ents have different attributes and some clients do not have
labeled data. By contrast, one important heterogeneity in
federated optimization is that different clients have different
subsets of decision variables, different constraints, or differ-
ent objective functions. It should be noted that heterogene-
ity in decision variables, objectives, and constraints may
need to be handled differently.

� Decision variables. Even if all clients have the same deci-

sion variables, their operation conditions may differ. As a
result, the data on the clients will become increasingly
non-IID as the optimization proceeds, as discussed in
Ref. [130]. It can also be the case that different clients
have different decision variables, making it more chal-
lenging to perform federated optimization.
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� Objective functions. It can be the case that different cli-
ents have different objectives in multi-task optimization
[186–188], multi-scenario optimization [189,190], or
multi-objective optimization [82,191].

� Constraints. In distributed optimization, it is common
for each client to hold a different subset of constraints.
Similarly, in federated optimization, different clients
may have different constraint functions, as studied in
Ref. [100,192].
(2) Privacy preservation. In federated optimization, the sensi-
tive information includes the global optimum, the interme-
diate solutions during the optimization process, or even
the rankings, decision variables, and objective values of
any solutions that have been evaluated using the real local
function evaluations. Thus, appropriate strategies must be
designed according to the specific settings in federated
optimization.

� Protection of the ranking of the solutions in a popula-

tion. For an optimization problem, the ranking of individ-
uals in the population may reveal sensitive information,
since many evolutionary algorithms rely on the rank for
performing optimization. Thus, unlike in FL and dis-
tributed optimization, it is considered that the design of
corresponding encryption approaches for protecting the
ranking of individuals is necessary and critical in feder-
ated optimization, as stated in Ref. [148].

� Hybrid privacy-preserving techniques. An optimization
process usually includes several steps, such as the gener-
ation of offspring and selection, in which many operators
such as multiplication, addition, and comparison are
included. Hence, it is expected that various effective
and efficient encryption approaches can be introduced
into the optimization process without significantly
increasing the communication cost.
(3) Balancing among privacy and security, efficiency, and
accuracy. Although there is always a balance between pri-
vacy and accuracy in FL, the performance in distributed opti-
mization does not have to be compromised, with careful
design. For example, in Refs. [56,193], privacy can only be
preserved while reaching the distributed average consensus
if the dual variables in a primal–dual method of multipliers
(PDMM) optimizer are initialized with random numbers
with sufficiently large variances. In Ref. [194], an adaptive
differential quantization method is proposed to achieve a
low communication cost without compromising privacy,
considering that the inserted noise will increase the commu-
nication costs. In FL, it is possible to strike a balance between
privacy preservation and efficiency. For example, in Ref.
[195], privacy preservation and efficiency are balanced by
ternary gradient quantization and ElGamal encryption, sig-
nificantly reducing the quantities of transmitted ciphertext.
Similarly, it is believed that a balance between privacy and
efficiency can be achieved in optimization, which is a
promising topic.

(4) Fairness. Recently, fairness in BO [139,142] has attracted
considerable attention. As pointed out in Ref. [174], the
study of fairness-aware optimization mainly focuses on the
following three aspects: fairness in decision-making under
a multi-objective scenario, the tradeoff between the fairness
and performance of federated optimization, and the model-
ing of fairness in data-driven optimization.

(5) Designing new test benchmark problems and perfor-
mance indicators. As an emerging topic, there are no speci-
fic test benchmark problems at present that are designed for
federated optimization, especially for the non-IID scenario
mentioned above. Furthermore, the measurement of privacy
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is difficult to quantify, and different users may have different
acceptance levels of privacy leakage. Thus, it is desirable to
design new test benchmark problems and performance indi-
cators for the evaluation of secure, privacy-preserving feder-
ated optimization.

(6) Asynchronous infill sampling. In asynchronous BO, consid-
ering that the function evaluation of each infilled solution in
a batch may not be completed at the same time due to prob-
lems such as communication interruption or simulation
errors, researchers have proposed either penalizing the
ongoing infilled solution [196] or utilizing the randomness
feature of the Thompson sampling acquisition function
[128,197] to explore more regions. Under the federated opti-
mization framework, it is also promising to consider asyn-
chronous batch infill sampling, since the computation
power of each client will vary considerably, resulting in
infilled solutions with different evaluation times.

6. Conclusions

This survey aimed to provide a comprehensive literature review
of privacy-preserving optimization, including fully distributed
optimization, evolutionary optimization, BO, and data-driven evo-
lutionary optimization. In addition to an introduction to the funda-
mentals of privacy-preserving and secure computing methods,
including FL and cryptography techniques, we focused on dis-
cussing the common and differing requirements in privacy-
preserving learning and in optimization, based on which we out-
lined promising future research topics.

We hope that this survey will help scholars recognize the
importance of privacy protection and security protection in opti-
mization, thereby promoting research interest in developing
privacy-preserving and secure optimization algorithms and their
real-world applications.
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