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Encouraging and astonishing developments have recently been achieved in image-based diagnostic tech-
nology. Modern medical care and imaging technology are becoming increasingly inseparable. However,
the current diagnosis pattern of signal to image to knowledge inevitably leads to information distortion
and noise introduction in the procedure of image reconstruction (from signal to image). Artificial intelli-
gence (AI) technologies that can mine knowledge from vast amounts of data offer opportunities to disrupt
established workflows. In this prospective study, for the first time, we develop an AI-based signal-to-
knowledge diagnostic scheme for lung nodule classification directly from the computed tomography
(CT) raw data (the signal). We find that the raw data achieves almost comparable performance with
CT, indicating that it is possible to diagnose diseases without reconstructing images. Moreover, the incor-
poration of raw data through three common convolutional network structures greatly improves the per-
formance of the CT models in all cohorts (with a gain ranging from 0.01 to 0.12), demonstrating that raw
data contains diagnostic information that CT does not possess. Our results break new ground and demon-
strate the potential for direct signal-to-knowledge domain analysis.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The discovery of X-rays in 1895 ushered in a new era in the
use of imaging for medical diagnostic purposes. Since then,
noninvasive medical imaging technology has subverted the tra-
ditional palpation and cut-and-see approaches [1]. Astounding
technological advances have been made in medical imaging
over the past 120 years, and modern medical care is increas-
ingly inseparable from imaging technology. Medical imaging is
essential for clinicians to observe the patient’s body from
images and thereby diagnose diseases. This process can be
defined as a path from image to knowledge. However, it has
recently been found that clinicians’ experience has become a
bottleneck in this path, hindering the accurate diagnosis and
treatment of diseases [2,3].
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The emergence of artificial intelligence (AI) technology has par-
tially solved the problem of humans’ limited ability in the diagno-
sis process [4–7]. AI can be used to automatically mine the
radiographic patterns in imaging data related to the occurrence
and progression of diseases, and it has been shown to match and
even surpass human abilities in many clinical applications [8–
12]. The essential reason why AI can surpass humans may be that
it treats images as data rather than as visual images and extracts
huge quantities of features for analysis [13,14]. In comparison, a
medical image is compressed or its data is filtered to fit the human
eye, which may be insufficient or imperfect for diagnosis. Taking
computed tomography (CT) as an example, the CT system first col-
lects raw data (i.e., the signal) from the patient; then, a reconstruc-
tion method converts the raw data to images (i.e., signal to image)
[15]. Therefore, both AI-based and human-based diagnosis are
signal-to-image-to-knowledge processes. Medical images suffer
from information distortion in both the acquisition and reconstruc-
tion processes. The current high sampling frequency greatly com-
presses the influence of factors such as motion artifacts in the
acquisition process, so the main reason for the loss of resolution
lies in operations such as interpolation and suboptimal statistical
weighting in the reconstruction process [16]. In fact, the unpro-
cessed data size of raw data is about 10–20 times larger than the
size of the final CT images (e.g., 2 GB compared with 180 MB). In
general, we can imagine such processes as following a chain from
signals to images to knowledge (as shown in Fig. 1). In the signal
domain, complete diagnostic knowledge is obtained. However,
during the process from the signal domain to the image domain,
the introduction of reconstruction errors leads to a loss of diagnos-
tic knowledge, which is difficult to recover. Although AI-based
models have been designed to continuously reduce their impact,
losses are inevitable due to the nature of solving inverse problems
[17]. In this way, no additional information is added in this process,
but some information is lost. Hence, the huge amount of informa-
tion present in the raw data is not optimally mined in current
signal-to-image-to-knowledge processes, and there is great scien-
tific interest in the question of how to analyze raw data.

Skipping the image process and going directly from signal to
knowledge will hopefully lead to new breakthroughs in disease
diagnosis [17]. This idea can be traced back to 2016, when Wang
et al. [18] proposed a direct pathway from data acquisition to ther-
apeutic actions. Inspired by this idea, several studies have dis-
cussed the potential value of analyzing raw data [19–23] and
thereby going directly from signal to knowledge. De Man et al.
[21] conducted a simulation experiment to detect and estimate
the vessel centerline from raw data in the signal domain. They
achieved encouraging initial results that demonstrated the feasibil-
ity of raw data analysis for clinical CT analysis tasks. Through the
simulation of raw data with CT images of pulmonary nodules,
Gao et al. [23] found that pulmonary nodules could be detected
in the signal domain in reality and obtained exciting results show-
ing that this method could effectively solve the different-nodule-
size problem encountered in common image-based diagnosis.
Wu et al. [22] also demonstrated that an end-to-end network pre-
diction scheme from the signal domain was superior in terms of
both sensitivity and accuracy to an abnormality detection model
developed with reconstructed images. We have reported our sim-
ulation results on lung cancer at the American Association for Can-
cer Research (AACR) conference [24]. However, most current
studies are based on simulation; thus, there is no published
research on signal-to-knowledge analysis in real clinical tasks
based on patient data, as far as we know.

In this prospective study, for the first time, we developed an AI-
based signal-to-knowledge diagnostic scheme for lung nodule clas-
sification directly from CT raw data (a flowchart of this process is
2

shown in Fig. 1). The value of raw data alone and its added value
to CT are studied for 276 patients. We found that the raw data
achieved almost comparable performance with CT, indicating that
it is possible to diagnose diseases without reconstructed images.
Moreover, the introduction of raw data greatly promoted the per-
formance of CT, demonstrating that raw data contains diagnostic
information that CT does not possess. This research breaks the rou-
tinely used circle of image-based diagnosis and may open up a new
signal-to-knowledge pathway for disease diagnosis.
2. Material and methods

2.1. Patients

In this prospective study, 626 patients who had a chest CT scan
in the First Hospital of Jilin University from November 2019 to May
2021 were recruited. Eligible patients were included according to
the following inclusion criteria: ① patients who had a pulmonary
lesion larger than 2 cm with a contrast-enhanced chest CT scan, ②
raw data obtained from a CT machine after the imaging examina-
tion, and ③ a pathological diagnosis of pulmonary lesion within
a two-week interval from the CT scan. Patients were excluded
based on the following: ① previous systemic antineoplastic treat-
ments or ② CT images with poor image quality or an unreadable
scan. After exclusion, a total of 276 patients were included in the
modeling experiments.

The experiments were performed in accordance with the Stan-
dards for Reporting Diagnostic Accuracy Studies (STARD) and
approved by the Ethics Committee of the First Hospital of Jilin
University (AF-IRB-032-05).
2.2. Collection of CT images and raw data

Both the CT images and the raw data were collected from the
First Hospital of Jilin University and were acquired using a NeuViz
Prime CT system (Neusoft Medical Systems Co., Ltd., China). The
system parameters of the CT scanner included a source-to-
isocenter distance of 570 mm, a source-to-detector distance of
1040 mm, and a scanning field of view (FOV) of 500 mm. The imag-
ing protocol included a contrast-enhanced CT of the chest with
variable imaging parameters. Contrast-enhanced CT scans were
performed in spiral scan mode using a 324 mA tube current, 100
kVp tube voltage, 0.5 s ration time, and 0.9 spiral pitch. CT raw data
were reconstructed using a kernel F20 at a slice thickness of
1.0 mm with an image pixel range from 0.59 mm to 0.98 mm
and an image matrix of 512 by 512. In addition, we acquired the
initial height and initial view angle of the CT detector each time
the patient underwent a scan. Finally, CT images and raw data from
each scanner were randomly stratified into one of three cohorts in
a 6:2:2 ratio: a training cohort, a validation cohort, and a test
cohort. Table S1 in Appendix A provides the CT scanner informa-
tion, system parameters, and imaging parameters.
2.3. Lesion segmentations in CT images

The primary lesion segmentations were manually delineated
across all the sections in the axial view using the annotation tool
in IntelliSpace Discovery (ISD, Philips, Germany). The regions of
interest were annotated and reviewed by four radiologists with
8–25 years’ experience with chest CT. All radiologists were blinded
to any clinical or histopathologic information. The annotation was
labeled into five common categories according to the lesions’
pulmonary lobe.



Fig. 1. Flow chart of a raw data gain experiment.
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2.4. Realization of typical CT models

Many studies have been conducted on benign–malignant lung
nodule classification in chest CT. We selected four typical papers
from the major journals IEEE Transactions on Medical Imaging, Med-
ical Image Analysis, and Nature Medicine to construct a CT model
(CTM) using the multi-scale ensemble method (CTM 1) [25], the
global and local information fusion method (CTM 2) [26], the loss
function-based method (CTM 3) [27], and the multi-view fusion
(CTM 4) method, respectively [28]. We further performed experi-
ments on these four typical models with our dataset. All realization
details are described in Appendix A.
2.5. Extraction of the lesion region from raw data

After acquiring the four CTMs, we proceeded to perform raw
data gain experiments. The first step of the experiment was to
select a projection surface containing the lesions in the raw data.
The raw data of CT scans has three dimensions, which consists of
1D scan index and 2D projection data. Specifically, the scan index
represents the acquisition order, and the projection data repre-
sents the detector receives the X-ray attenuation, for which the
channel and row directions are defined as x and y, respectively.
All lesion segmentation regions of the raw data were derived from
the binarized segmentation of the CT image after being repre-
sented in a unified coordinate system. The complete derivation
3

can be condensed into three steps: orientation, querying, and map-
ping (Fig. S1 in Appendix A).

2.5.1. Orientation
For the derivation of orientation, we took the segmented

regions in the CT image as the research object. The orientation cal-
culation mainly includes cross-sectional orientation and height
orientation. For cross-sectional positioning, we set the center point
between the CT source and detector as the coordinate origin
(which is also the rotation center of the CT gantry), parallel to
the cross-section of the CT image. Next, the motion trajectory
was characterized by the scan index t, the rotation radius r, and
the angle h. In order to obtain these parameters, we first read the
origin coordinates (xorigin, yorigin, and zorigin) and calculated the offset
values (xoffset and yoffset) through voxel spacing and image size (xsize
and ysize).

xoffset ¼ xorigin þ xspacing � 1
2 xsize ð1Þ

yoffset ¼ yorigin þ yspacing � 1
2 ysize ð2Þ

Next, with the help of the offset values and the voxel coordi-
nates xCT and yCT in the CT image, the distance from the coordinate
origin (xlength and ylength) was calculated as follows:

xlength ¼ xspacing � xCT � 1
2 xsize

� �� xoffset ð3Þ

ylength ¼ yspacing � yCT � 1
2 ysize

� �� yoffset ð4Þ
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In the case of obtaining the above variable, the rotation radius r,
and the starting angle h0 were obtained.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlength2 þ ylength2

q
ð5Þ

h0 ¼ arctan ylength
xlength

ð6Þ

By introducing the scanning period of the machine, we obtained
the angle change Dh with the following relationship:

ylength ¼ r � cos Dh� t þ h0ð Þ ð7Þ

xlength ¼ r � sin Dh� t þ h0ð Þ ð8Þ
For height positioning, we directly obtained the initial height

Hstart of the voxel through the coordinate z, the slice thickness,
and the origin of the voxel point in the CT images.

2.5.2. Querying
Our purpose in this step was to determine the interval of the

scan index t in which the tumor voxels appeared in the raw data.
Since there is a cone beam in the projection, we first calculated
the change function Harea of the voxels.

d ¼ 1
2 lþ xlength ð9Þ

where d is the distance from the voxel to the X-ray focal spot on the
x-axis, and l is the distance from the focal spot to the detector.

Harea ¼ 1
l

1
2ny � Dny � d
� � ð10Þ

where ny is the number of detector rows and Dny is the channel
spacing along the y-axis.

Next, we determined the scan index t range of the voxels in the
raw data by means of the following inequality.

H0 � DH � t � Hstart þ Harea ð11Þ
where H0 is the initial height at which the detector starts to scan
and DH is the height change in a scan.

H0 � DH � t � Hstart � Harea ð12Þ
To reduce the computational complexity, we first extracted the

highest and lowest masks in the segmentation images and calcu-
lated the start and end indices of two voxels. Then, we initially
located the range of index dimensions. Within this interval, we
computed the mapping result of the voxels within the layer.

2.5.3. Mapping
Through the above calculation,we obtained the scan index inter-

val corresponding to thevoxels; then, thevoxel appearing in the scan
index was obtained by calculating the projection data of the scan
index layer by layer. The coordinates of each voxel on the projection
surface were defined as xraw and yraw, respectively. Since yraw is
related to the height Ht , Harea at the scan index t, and the number
of detector rows ny in the detector, we determined its height differ-
ence relative to the detector bymeans of the following formula, and
then calculated its coordinates in the projection.

yraw ¼ Ht
Harea

� ny�1ð Þ
2

ð13Þ

Since the x-axis of the projection plane is equiangularly sam-
pled, xraw can be acquired through the angle at the t scan index
ht , the view angle hd of the detector, and the number of channels
in the detector nx.

xraw ¼ 2ht
hd

� nx�1ð Þ
2 ð14Þ

After obtaining the segmentation files of the lesions in the raw
data, we saved the raw data segment through the initial scan index
interval and used this as the training data for this gain experiment.
4

It should be noted that there are different directions in the actual
retrieval of raw data (i.e., from head to foot or from foot to head).
We used the same spatial relationship to modify the inequality for
different directions and then located the lesion.
2.6. Construction of a raw data gain model based on CT images

To explore whether the raw data contained unique informa-
tion, we built residual fusion models through the raw data and
fused it with the CTMs’ output to determine whether the raw
data could improve the output. First, we built three feature
extraction networks using the raw data. Based on the memory
needed for the calculation, we sampled the index dimension
of the raw data fragments containing lesions to one-eighth,
and resampled the same size based on the average value by
means of equal interval sampling. For the channel, we directly
removed the data outside the reconstruction area from both
sides and resampled with the row dimension at half the size.
In the model building, we did not modify Densenet121 (DN)
[29], Resnet18 (RE) [30], or Resnext18 (RX) [31] in three dimen-
sions in order to direct the direct gain of the raw data as much
as possible. The training settings and parameters are detailed in
Appendix A.

The primary aim of the residual fusion model was to achieve
a correction of the CTM output; the origin of this idea was that
the learning residual is easier, which is mentioned in Resnet. The
probabilities of the CTMs predicting the patients as being posi-
tive were fused with the predicted probabilities of the raw data
models (RDM), which was performed during the training pro-
cess. The name raw gain model (RGM) was given to the fusion
model. All models have two output nodes, positive and negative,
which were calculated separately. More specifically, the proba-
bility of predicting one patient as being positive was calculated
as follows:

RGMpositive ¼ RDMpositive þ CTMpositive ð15Þ
The probability of predicting one patient as being negative was

calculated as follows:

RGMnegative ¼ RDMnegative þ 1� CTMpositive
� � ð16Þ

After the output fusion of the CTM and the raw data mode,
the Softmax function was used to keep the above two output
sums equal to 1. In addition, the loss function was used to cal-
culate the loss and optimize the model. The three feature extrac-
tion networks built with raw data were fused with each of the
four representative CTMs described above to obtain four RGMs,
for a total of 12 RGMs: RGB-DN (RGM-DN 1/2/3/4), RGM-RE
(RGM-RE 1/2/3/4), and RGB-RX (RGM-RX 1/2/3/4). Next, the
RGMs were compared with the CTMs to evaluate the benefits
of the raw data.
2.7. Calculation of the average attention score

To calculate the average attention score of each voxel, we first
used the segmentation data of the lesion in the raw data to obtain
the non-lesion area by means of the unary complement. Next, we
dotted and summed the segmentation data of the lesion and
non-lesion areas with the attention matrix. Finally, the average
attention score was obtained by dividing the total amount of atten-
tion in these two areas by the number of voxels in the segmented
regions, respectively. It should be noted that we also normalized
the average attention score of the lesion area and the non-lesion
area in each piece of raw data to obtain a more intuitive compar-
ison result.
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3. Result

3.1. Clinical characteristics

The clinical characteristics are summarized in Table S2 in
Appendix A. A total of 276 patients were included in this study,
with 166 patients in the training cohort, 55 in the validation
cohort, and 55 in the test cohort. Of the patients, 50% (n = 138)
were female, and the mean age in the entire dataset was
58.48 years. Among the included patients, there were 21 (8%) cases
of small cell carcinoma, 35 (13%) squamous cell carcinomas, and
149 (54%) adenocarcinomas. Among all the patients, the lesion
location in most patients was identified as the right upper lobe
(n = 89, 32%), followed by the left lower lobe (n = 67, 24%), and
the left upper lobe (n = 64, 23%). For lung cancer diagnosis, most
Fig. 2. CT model and raw data gain results. (a) ROC curves of each CTM and residual fusi
reaction AUC gain.
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patients (n = 225, 82%) were evaluated as showing malignant
cancer.

3.2. Performance of CT model and raw data gain model

This experiment explores the performance improvement shown
by the residual fusion model based on both raw data and CT
images, in comparison with the model based on CT images only.
To further explore the repeatability and stability of this gain, we
tested four different CT models (abbreviated as CTM 1–CTM 4)
and adopted three backbone network architectures for raw data
feature extraction, as follows: DN [29], RE [30], and RX [31]. For
each CTM, three raw data gain models based on different backbone
feature extraction networks were constructed. The performance of
each RGM was compared with that of the original CTM. The
on model based on different backbone feature extraction networks; (b) bar graph of



Table 1
Detailed result statistics of raw data for CTMs.

Model True positive proportion False negative proportion False positive proportion True negative proportion True positive rate True negative rate

CTM 1 0.616 0.199 0.069 0.116 0.756 0.627
RGM-DN 1 0.699 0.116 0.091 0.094 0.858 0.508
RGM-RE 1 0.543 0.272 0.043 0.141 0.666 0.766
RGM-RX 1 0.761 0.054 0.120 0.065 0.934 0.351
CTM 2 0.678 0.138 0.101 0.083 0.831 0.451
RGM-DN 2 0.656 0.159 0.076 0.109 0.805 0.589
RGM-RE 2 0.594 0.221 0.051 0.134 0.729 0.724
RGM-RX 2 0.605 0.210 0.058 0.127 0.742 0.686
CTM 3 0.460 0.355 0.022 0.163 0.564 0.881
RGM-DN 3 0.529 0.286 0.025 0.159 0.649 0.864
RGM-RE 3 0.656 0.159 0.072 0.112 0.805 0.609
RGM-RX 3 0.685 0.130 0.080 0.105 0.840 0.568
CTM 4 0.634 0.181 0.043 0.141 0.778 0.766
RGM-DN 4 0.652 0.163 0.047 0.138 0.800 0.746
RGM-RE 4 0.681 0.134 0.051 0.134 0.836 0.724
RGM-RX 4 0.696 0.120 0.043 0.141 0.853 0.766
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receiver operating characteristic (ROC) curves and the area under
the curve (AUC) of the four CTMs and the corresponding RGMs
based on different backbone networks are shown in Fig. 2.

For each CTM, the residual fusion models based on different
backbone networks obtained a better classification performance
on the training, validation, and test cohorts. For the CTM 1 model,
the fusion model that produced the maximum performance
improvement for the training cohort was RGM-RX 1, with an
AUC improvement of 0.051 (from 0.757 to 0.808). The fusion mod-
els that produced the maximum performance improvement for the
validation cohort were RGM-RE 1 and RGM-RX 1, with an AUC
improvement of 0.033 (from 0.756 to 0.789). The fusion model that
produced the maximum performance improvement for the test
cohort was RGM-RE 1, with an AUC improvement of 0.046 (from
0.807 to 0.853).

For the CTM 2 model, the fusion model that produced the max-
imum performance improvement for the training cohort was RGM-
RX 2, with an AUC improvement as high as 0.109 (from 0.745 to
0.854). The fusion model that produced the maximum perfor-
mance improvement for the validation cohort was RGM-DM
2, with an AUC improvement as high as 0.124 (from 0.698 to
0.822). The fusion model that produced the maximum perfor-
mance improvement for the test cohort was RGM-DM 2, with an
AUC improvement as high as 0.022 (from 0.760 to 0.782).

For the CTM 3 model, the fusion model that produced the max-
imum performance improvement for the training cohort was RGM-
RX 3, with an AUC improvement as high as 0.083 (from 0.765 to
0.848). The fusion model that produced the maximum perfor-
mance improvement for the validation cohort was RGM-RX 3, with
an AUC improvement as high as 0.093 (from 0.760 to 0.853). The
fusion model that produced the maximum performance improve-
ment for the test cohort was RGM-RE 3, with an AUC improvement
as high as 0.027 (from 0.773 to 0.800).

For the CTM 4 model, the fusion model that produced the max-
imum performance improvement for the training cohort was RGM-
RX 4, with an AUC improvement as high as 0.035 (from 0.832 to
0.867). The fusion model that produced the maximum perfor-
mance improvement for the validation cohort was RGM-DM 4,
with an AUC improvement as high as 0.026 (from 0.756 to
0.782). The fusion model that produced the maximum perfor-
mance improvement for the test cohort was RGM-RE 4, with an
AUC improvement as high as 0.034 (from 0.833 to 0.867). Overall,
using RX as the backbone network for the raw data feature extrac-
tion resulted in the maximum average performance improvement
on the three cohorts.
6

3.3. Image feature distribution of the RGMs and gain stability analysis

We performed a t-distributed stochastic neighbor embedding
(t-SNE) dimensionality reduction on all deep learning features
obtained by the different feature extraction networks and counted
the true positives, false positives, true negatives, and false nega-
tives for each patient (Table 1). In addition, we assigned different
colors and markers to visualize these metrics in the same coordi-
nate system (Fig. 3). As shown in Fig. 3, the results of the various
RGMs within each CTM are relatively similar, even though they
come from different feature extraction networks. Table 1 shows
the same situation. The gain of the RGMs inside each CTM is
approaching the same trend, such as improving the malignant or
benign detectable rates. Moreover, RGM-RE 1, RGM-DN 2, RGM-
RE 2, RGM-DN 3, RGM-DN 4, RGM-RE 4, and RGM-RX 4 achieve a
significant increase in the detectable rate of one category at the
expense of a small number of the other category detectable rates.

Therefore, we calculated the optimization rate and error rate of
each RGM for the CTM; we also calculated the proportion of at least
two model optimizations to all optimization samples, which can
reflect the stability of the raw data’s gain. All results are summa-
rized in Table S3 in Appendix A. The results show that the analysis
method incorporating the raw data has a high optimization rate for
CTMs 1–3 that is greater than the error rate, which is also reflected
in the improvement of the AUC. In addition, although different fea-
ture extraction networks were used to analyze the raw data, the
proportion of at least two networks that can be optimized in each
CTM is about 80%. Finally, we found that seven samples were mis-
predicted within four CTMs. Of these seven samples, the input of
raw data corrected the prediction results of six CTMs, and a cor-
rected model existed in each CTM. In summary, the gain of the
raw data for the CTM is very stable.

3.4. Visual statistics and analysis of the RGMs

To better explain the prediction process of the RGMs, we visu-
alized the region of greatest interest in the RGM using gradient-
weighted class activation mapping (Grad-CAM). The predictive
results of the RGMs were most dependent on the information of
the RGM-discovered suspicious areas. Fig. 4 illustrates the lesion
masks and corresponding attention maps from different views of
the raw data. From Fig. 4, it can be seen that the RGMs can always
focus on the lesion areas for prediction, although the input data
includes some non-lesion areas. We also calculated the average
attention score of each voxel in the lesion and non-lesion areas
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in the raw data; the result showed that the attention score of the
lesion area was 1–2 times greater than that of the non-lesion area.

3.5. Stratified analysis of different malignant subgroups

The results of the subgroup analysis for age, sex, and lesion size
are shown in Table 2 and in Table S4 in Appendix A.
Fig. 3. Feature distribution of the RGMs and a heatmap of prediction results. (a) Fea
authenticity and prediction categories; (b) prediction results of all real categories, CTMs,
The row named ‘‘Label” represents the true category of patients.
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In the subgroup of patients aged 60 or lower, RGM-RX 4 and
CTM 4 achieved a similar highest model performance, with AUCs
of 0.837 (0.746–0.924) and 0.831 (0.749–0.904), respectively. In
the over-60 subgroup, RGM-RX 4 achieved the highest model per-
formance, with an AUC of 0.845 (0.713–0.949), outperforming the
best CTM (CTM 4with an AUC of 0.790). In the male subgroup, CTM
4 and RGM-RX 4 performed best, with similar AUCs of 0.804
ture distribution in the RGM, where different marks and colors reflect different
and RGMs. In this figure, red and blue represent benign and malignant, respectively.



Fig. 4. Lesion trajectory in raw data and the Grad-CAM graphs of the RGMs. Lesion area reflected the segmentation of lesions in the raw data. The blue and red in the class
activation mapping represent low- and high-attention areas of the model, respectively, and all attention values were normalized to 0 to 1 in the same data.
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(0.706–0.882) and 0.810 (0.707–0.897), respectively. In the female
subgroup, RGM-RX 3 achieved the highest performance, with an
AUC of 0.885 (0.818–0.945), far exceeding the best CTM (CTM 4
with an AUC of 0.823 (0.720–0.920)). In the subgroup with a lesion
size less than or equal to 23 mm, RGM-RX 3 achieved the highest
model performance, with an AUC of 0.847 (0.781–0.916), far
exceeding the best CTM (CTM 4 with an AUC of 0.806). In the sub-
group with a lesion size greater than 23 mm, CTM 4 and RGM-RE 4
showed a similar highest model performance, with AUCs of 0.819
(0.719–0.906) and 0.833 (0.703–0.925), respectively. For the lesion
location subgroups, CTM 4 and RGM-RX 4 showed a similar perfor-
mance in the subgroup of superior lobe of left lung, while the
RGMs outperformed the CTMs, with an AUC of 0.840 versus
0.812 in the subgroup of inferior lobe of left lung, 0.849 versus
0.807 in the subgroup of superior lobe of right lung, and 0.872 ver-
sus 0.843 in the subgroup of inferior lobe of right lung.
4. Discussion

In this prospective study, we validated the potential value of
raw data in real clinical practice for the first time. Interestingly,
8

the raw data analysis showed a performance comparable with CT
images, which indicates that leveraging non-image information
holds promise as an alternative to image-based methods. More-
over, this study confirmed the value of adding raw data to CT
images, indicating that the combination of non-image and image
data will further promote the advance of disease diagnosis. This
study proposed and validated a feasible method for diagnosis with-
out image reconstruction, which has the potential to change exist-
ing imaging-based diagnosis and treatment strategies.

The classification of benign and malignant pulmonary nodules
is a matter of great clinical concern [25,32,33]. This study explored
the feasibility of raw data analysis in classifying indeterminate
lung nodules greater than 2 cm in size. The results indicate that
raw data can well discriminate malignant nodules from benign
nodules. The AUCs of the raw data in the training cohort, validation
cohort, and test cohort were 0.768 (95%CI: 0.681–0.851), 0.760
(95%CI: 0.558–0.922), and 0.782 (95%CI: 0.592–0.924), respectively
(Fig. S2 in Appendix A), and there was no statistical difference
between the performance of the raw data and that of CT. These
results indicate that the classification of lung nodules may not
need image reconstruction and clinician participation. However,
it is still uncertain whether a convolutional neural network is the



Table 2
The performance of 12RGMs in the subgroup analysis.

Clinical
characteristics

The AUCs (95%CI) of all RGMs

RGM-DN
1

RGM-RE
1

RGM-RX
1

RGM-DN
2

RGM-RE
2

RGM-RX
2

RGM-DN
3

RGM-RE
3

RGM-RX
3

RGM-DN
4

RGM-RE
4

RGM-RX
4

Age
�60 0.731

(0.647–
0.825)

0.760
(0.667–
0.844)

0.756
(0.667–
0.837)

0.764
(0.668–
0.845)

0.790
(0.709–
0.874)

0.786
(0.705–
0.867)

0.800
(0.719–
0.870)

0.825
(0.743–
0.895)

0.824
(0.750–
0.894)

0.829
(0.749–
0.903)

0.836
(0.746–
0.915)

0.837
(0.746–
0.924)

>60 0.801
(0.680–
0.908)

0.781
(0.664–
0.894)

0.804
(0.700–
0.900)

0.740
(0.610–
0.859)

0.792
(0.678–
0.901)

0.815
(0.699–
0.932)

0.744
(0.636–
0.833)

0.767
(0.648–
0.863)

0.799
(0.673–
0.914)

0.808
(0.661–
0.926)

0.835
(0.690–
0.945)

0.845
(0.713–
0.949)

Sex
Male 0.693

(0.584–
0.794)

0.698
(0.591–
0.793)

0.697
(0.601–
0.792)

0.737
(0.626–
0.826)

0.725
(0.608–
0.837)

0.714
(0.600–
0.824)

0.702
(0.605–
0.791)

0.736
(0.634–
0.834)

0.717
(0.617–
0.822)

0.793
(0.695–
0.877)

0.791
(0.686–
0.889)

0.810
(0.707–
0.897)

Female 0.808
(0.716–
0.898)

0.825
(0.728–
0.901)

0.835
(0.749–
0.901)

0.786
(0.695–
0.871)

0.842
(0.749–
0.916)

0.859
(0.777–
0.927)

0.852
(0.780–
0.921)

0.863
(0.784–
0.920)

0.885
(0.818–
0.945)

0.849
(0.741–
0.944)

0.873
(0.764–
0.958)

0.863
(0.739–
0.954)

Tumor size
�23 mm 0.771

(0.677–
0.849)

0.786
(0.689–
0.869)

0.815
(0.732–
0.893)

0.775
(0.685–
0.863)

0.821
(0.743–
0.894)

0.828
(0.752–
0.901)

0.800
(0.722–
0.869)

0.823
(0.736–
0.888)

0.847
(0.781–
0.916)

0.821
(0.729–
0.906)

0.836
(0.744–
0.925)

0.839
(0.731–
0.926)

>23 mm 0.737
(0.603–
0.847)

0.746
(0.627–
0.854)

0.709
(0.582–
0.815)

0.748
(0.639–
0.847)

0.753
(0.634–
0.864)

0.754
(0.641–
0.859)

0.759
(0.657–
0.850)

0.782
(0.684–
0.874)

0.775
(0.666–
0.868)

0.822
(0.712–
0.924)

0.833
(0.703–
0.925)

0.831
(0.729–
0.928)

Tumor location
Superior
left

0.679
(0.520–
0.836)

0.667
(0.464–
0.836)

0.743
(0.616–
0.881)

0.638
(0.469–
0.812)

0.683
(0.480–
0.847)

0.737
(0.517–
0.899)

0.824
(0.702–
0.925)

0.812
(0.701–
0.916)

0.810
(0.680–
0.914)

0.861
(0.754–
0.953)

0.885
(0.773–
0.964)

0.909
(0.829–
0.979)

Inferior
left

0.796
(0.638–
0.915)

0.789
(0.652–
0.921)

0.769
(0.600–
0.896)

0.741
(0.584–
0.881)

0.759
(0.607–
0.905)

0.771
(0.599–
0.911)

0.775
(0.633–
0.894)

0.793
(0.656–
0.907)

0.812
(0.650–
0.934)

0.813
(0.651–
0.953)

0.840
(0.688–
0.969)

0.833
(0.661–
0.961)

Superior
right

0.739
(0.618–
0.855)

0.814
(0.698–
0.912)

0.785
(0.673–
0.876)

0.810
(0.704–
0.900)

0.843
(0.740–
0.930)

0.811
(0.685–
0.901)

0.756
(0.633–
0.864)

0.802
(0.675–
0.909)

0.815
(0.675–
0.899)

0.843
(0.730–
0.936)

0.848
(0.741–
0.934)

0.849
(0.729–
0.939)

Inferior
right

0.821
(0.638–
0.957)

0.809
(0.655–
0.957)

0.795
(0.617–
0.937)

0.872
(0.744–
0.970)

0.849
(0.701–
0.970)

0.849
(0.700–
0.970)

0.786
(0.617–
0.923)

0.835
(0.705–
0.961)

0.812
(0.616–
0.959)

0.721
(0.430–
0.942)

0.764
(0.470–
0.981)

0.775
(0.524–
0.962)

CI: confidence interval.
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most suitable method for raw data analysis. The scanning mode
and spatial structure of the raw data require a unique network
structure that fits its characteristics, which is the main goal of
our follow-up research. A future RDM could be applied to a wide
range of grassroots hospitals that have mainstream CT systems
but lack technical personnel and clinicians.

Our study shows that the introduction of raw data to CT
resulted in an overall improvement over different CTMs, regardless
of which backbone network was used. This indicates that raw data
contains unique information that may be lost during reconstruc-
tion processing, which aligns with the results of a study by Gao
et al. [23] showing that the fusion of raw data with image data
resulted in an improvement in the model’s result. Moreover, the
stability of the RGMs was increased on the training cohort, valida-
tion cohort, and test cohort compared with the CTMs. The combi-
nation of both non-image and image data made the model
robust, which was reflected in the fact that each convolutional net-
work indicated optimization.

The result statistics showed that RX had a better performance
improvement than the other networks, which may be related to
factors such as the network structure and number of parameters.
By introducing group convolution, RX enables the model to learn
more multiple feature representations [31], which is similar with
the multi-head attention mechanism in Transformer. Nevertheless,
the structural advantages of the network for analyzing raw data
will need to be evaluated on more data in the future.

Our study used Grad-CAM to visualize the model decision; the
results showed that the model could self-adapt to converge to
the lesion and its surrounding area during the judgment. To
9

quantify the assessment of the visualization, we calculated the
average attention score and found that the mean importance of
the voxels in the lesion area was about twice that of the voxels
in the non-lesion area. As a gradient-based visualization method,
Grad-CAM plays a strong role in the explainable field of deep net-
works, although it still has some defects that can be optimized
[34,35]. The question of how to associate the properties of multiple
views with the network visualization algorithm is a very meaning-
ful direction for raw data research.

We also performed intra-CT and inter-CT analyses. For intra-
CTM, fused raw data prediction had a higher optimization rate than
the error rate, which showed a similar gain trend, and about 80% of
the optimized patients appeared in at least two feature extraction
networks. For the inter-CTMs, 85% of the patients that all CTMs
predicted incorrectly had optimizable RGMs within each CTM.
The results demonstrated that the gain of raw data was stable
across different convolutional networks and different CTM
approaches. Therefore, exploring the drawbacks of post-
reconstructed CT image analysis and developing models for direct
diagnosis from raw data are the keys to future research. The results
of the subgroup analysis showed that the RGMs performed better
than the CTMs in most subgroups, especially in the subgroups of
older, female, and smaller lesion size, indicating that the raw data
provided valuable information that brought model gains in these
subgroups, while this information may have been lost in the pro-
cess of CT reconstruction.

This study has some limitations. First, it involved a small number
of patients, and the proportion of positive and negative sampleswas
unbalanced. Further study on large-scale multicenter datasets
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should be performed. Second, only patients with a single nodule
were included in this study, so further validation of our method on
patients with multiple nodules should be performed. Third,
although the rawdata had a comparable performancewithCT, it still
had a certain gapwith the best CT diagnosis. Thus, there is an urgent
need to develop novel AI methods specifically for raw data.

Strong computing power is a problem that cannot be ignored
when calculating raw data. It is not realistic to read the complete
high-frequency scanning data directly to a computing device.
Designing appropriate preprocessing algorithms and building deep
networks that align with the characteristics of raw data will be
potential breakthrough points in the future. Finally, the CT scan
scheme is designed for image reconstruction and may be not suit-
able for raw data analysis. Therefore, novel scan strategies, such as
scanning for specific diagnostic purposes, should be developed to
maximize the gain of raw data.

5. Conclusions

In summary, for the first time, we have validated the poten-
tial value of raw data in real clinical practice. Our raw data
analysis showed comparable performance with CT images, indi-
cating that leveraging non-image information holds promise as
an alternative to image-based methods. Moreover, this study
confirmed the value of adding raw data to CT images, demon-
strating that the combination of non-images and images will
further promote the advance of disease diagnosis. This study
proposed and validated a new feasible direction for diagnosis
without image reconstruction, which may facilitate the
development of fully automated scanning and diagnostic
processes.

Acknowledgments

The authors would like to acknowledge the instrumental and
technical support of the multi-modal biomedical imaging experi-
mental platform at the Institute of Automation, Chinese Academy
of Sciences. This work was supported by the National Key Research
and Development Program of China (2017YFA0205200), National
Natural Science Foundation of China (82022036, 91959130,
81971776, 62027901, 81930053, and 81771924), The Beijing Nat-
ural Science Foundation (Z20J00105), Strategic Priority Research
Program of Chinese Academy of Sciences (XDB38040200), Chinese
Academy of Sciences (GJJSTD20170004 and QYZDJ-SSW-JSC005),
The Project of High-Level Talents Team Introduction in Zhuhai City
(Zhuhai HLHPTP201703), the Youth Innovation Promotion Associ-
ation CAS(Y2021049), and the China Postdoctoral Science Founda-
tion (2021M700341).

Compliance with ethics guidelines

Bingxi He, Yu Guo, Yongbei Zhu, Lixia Tong, Boyu Kong, Kun
Wang, Caixia Sun, Hailin Li, Feng Huang, Liwei Wu, Meng Wang,
Fanyang Meng, Le Dou, Kai Sun, Tong Tong, Zhenyu Liu, Ziqi Wei,
Wei Mu, Shuo Wang, Zhenchao Tang, Shuaitong Zhang, Jingwei
Wei, Lizhi Shao, Mengjie Fang, Juntao Li, Shouping Zhu, Lili Zhou,
Shuo Wang, Di Dong, Huimao Zhang, and Jie Tian declare that they
have no conflict of interest or financial conflicts to disclose.

Author contributions

Bingxi He, Yongbei Zhu, Caixia Sun, Tong Tong, Kai Sun, and Hai-
lin Li developed the network architecture and data/modeling
infrastructure, training and testing setup. Bingxi He, Yongbei Zhu,
Caixia Sun, Tong Tong, Kai Sun, and Hailin Li wrote the methods.
10
Bingxi He, Caixia Sun, and Tong Tong created the figures. Bingxi
He and Mengjie Fang performed statistical analysis. Jie Tian, Di
Dong, Zhenyu Liu, Kun Wang, Ziqi Wei, Wei Mu, Shuo Wang, Zhen-
chao Tang, Shuaitong Zhang, Jingwei Wei, and Lizhi Shao advised
on the modeling techniques. Lixia Tong, Liwei Wu, Shouping Zhu,
and Juntao Li provided raw data structure information. Di Dong,
Bingxi He, Yongbei Zhu, Caixia Sun, Tong Tong, Kai Sun, Hailin Li,
Liwei Wu, and Yu Guo wrote the manuscript. Huimao Zhang, Yu
Guo, Wei Mu, Fanyang Meng, Le Dou, Lili Zhou, and Shuo Wang
provided clinical expertise and guidance on the study design. Hui-
mao Zhang, Yu Guo, Wei Mu, Fanyang Meng, and Le Dou created
the clinical datasets, interpreted the data, and defined the clinical
labels. Lixia Tong, Liwei Wu, and Feng Huang created the raw data-
sets. Jie Tian, Di Dong, Feng Huang, and Huimao Zhang initiated the
project and provided guidance on the concept and design. Jie Tian,
Feng Huang, and Huimao Zhang supervised the project.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.eng.2023.02.013.
References

[1] Ciccarelli EC, Jacobs AJ, Berman P. Looking back on the millennium in medicine.
N Engl J Med 2000;342:1365–2137.

[2] Lauwerends LJ, van Driel PBAA, Baatenburg de Jong RJ, Hardillo JAU, Koljenovic
S, Puppels G, et al. Real-time fluorescence imaging in intraoperative decision
making for cancer surgery. Lancet Oncol 2021;22(5):e186–95.

[3] Lehman CD, Wellman RD, Buist DSM, Kerlikowske K, Tosteson AN, Miglioretti
DL, the Breast Cancer Surveillance Consortium. Diagnostic accuracy of digital
screening mammography with and without computer-aided detection. JAMA.
Intern Med 2015;175(11):1828–37.

[4] Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial
intelligence in cancer imaging: clinical challenges and applications. CA Cancer J
Clin 2019;69(2):127–57.

[5] Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial
intelligence in radiology. Nat Rev Cancer 2018;18(8):500–10.

[6] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey
on deep learning in medical image analysis. Med Image Anal 2017;42:60–88.

[7] Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J,
et al. Radiomics: the bridge between medical imaging and personalized
medicine. Nat Rev Clin Oncol 2017;14(12):749–62.

[8] Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of
deep learning performance against health-care professionals in detecting
diseases from medical imaging: a systematic review and meta-analysis. Lancet
Digit Health 2019;1(6):e271–97.

[9] Killock D. AI outperforms radiologists in mammographic screening. Nat Rev
Clin Oncol 2020;17(3):134.

[10] Cruz Rivera S, Liu X, Chan AW, Denniston AK, Calvert MJ, Ashrafian H, et al.
Guidelines for clinical trial protocols for interventions involving artificial
intelligence: the SPIRIT-AI extension. Lancet Digit Health 2020;2(10):e549–60.

[11] Dong D, Fang MJ, Tang L, Shan XH, Gao JB, Giganti F, et al. Deep learning
radiomic nomogram can predict the number of lymph node metastasis in
locally advanced gastric cancer: an international multicenter study. Ann Oncol
2020;31(7):912–20.

[12] Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development and
validation of a radiomics nomogram for preoperative prediction of lymph node
metastasis in colorectal cancer. J Clin Oncol 2016;34(18):2157–64.

[13] Mu W, Schabath MB, Gillies RJ. Images are data: challenges and opportunities
in the clinical translation of radiomics. Cancer Res 2022;82(11):2066–8.

[14] Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology 2016;278(2):563–77.

[15] Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-
transform manifold learning. Nature 2018;555(7697):487–92.

[16] Wang G, Ye JC, De Man B. Deep learning for tomographic image reconstruction.
Nat Mach Intell 2020;2(12):737–48.

[17] Chung C, Kalpathy-Cramer J, Knopp MV, Jaffray DA. In the era of deep learning,
why reconstruct an image at all? J Am Coll Radiol 2021;18(1):170–3.

[18] Wang G. A perspective on deep imaging. IEEE Access 2016;4:8914–24.
[19] Kalra M, Wang G, Orton CG. Radiomics in lung cancer: its time is here. Med

Phys 2018;45(3):997–1000.
[20] Wang G, Ye JC, Mueller K, Fessler JA. Image reconstruction is a new frontier of

machine learning. IEEE Trans Med Imaging 2018;37(6):1289–96.
[21] De Man Q, Haneda E, Claus B, Fitzgerald P, De Man B, Qian G, et al. A two-

dimensional feasibility study of deep learning-based feature detection and
characterization directly from CT sinograms. Med Phys 2019;46(12):
e790–800.

https://doi.org/10.1016/j.eng.2023.02.013
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0005
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0005
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0010
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0010
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0010
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0015
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0015
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0015
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0015
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0020
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0020
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0020
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0025
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0025
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0030
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0030
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0035
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0035
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0035
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0040
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0040
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0040
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0040
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0045
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0045
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0050
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0050
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0050
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0055
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0055
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0055
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0055
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0060
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0060
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0060
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0065
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0065
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0070
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0070
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0075
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0075
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0080
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0080
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0085
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0085
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0090
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0095
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0095
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0100
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0100
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0105
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0105
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0105
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0105


B. He, Y. Guo, Y. Zhu et al. Engineering xxx (xxxx) xxx
[22] Wu D, Kim K, Dong B, Li Q. End-to-end abnormality detection in medical
imaging. In: Proceedings of the 6th International Conference on Learning
Representations (ICLR 2018); 2018 Apr 30–May 3; Vancouve, BC, Canada. San
Francisco: OpenReview; 2018.

[23] Gao Y, Tan J, Liang Z, Li L, Huo Y. Improved computer-aided detection of
pulmonary nodules via deep learning in the sinogram domain. Vis Comput Ind
Biomed Art 2019;2(1):15.

[24] Dong D, He B, Kong B, Zhang L, Tong L, Huang F, et al. Abstract CT274:
diagnosis based on signal: the first time break the routinely used circle of
signal-to-image-to-diagnose. Cancer Res 2020;80(Suppl 16):CT274.

[25] Xu X, Wang C, Guo J, Gan Y, Wang J, Bai H, et al. MSCS-DeepLN: evaluating lung
nodule malignancy using multi-scale cost-sensitive neural networks. Med
Image Anal 2020;65:101772.

[26] Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end
lung cancer screening with three-dimensional deep learning on low-dose
chest computed tomography. Nat Med 2019;25(6):954–61.

[27] Liu L, DouQ, ChenH, Qin J, Heng PA.Multi-task deepmodelwithmargin ranking
loss for lung nodule analysis. IEEE Trans Med Imaging 2020;39(3):718–28.

[28] Xie Y, Xia Y, Zhang J, Song Y, Feng D, Fulham M, et al. Knowledge-based
collaborative deep learning for benign–malignant lung nodule classification on
chest CT. IEEE Trans Med Imaging 2019;38(4):991–1004.

[29] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected
convolutional networks. In: Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2017); 2017 Jul 21–26;
Honolulu, HI, USA. New York City: IEEE; 2017. p. 4700–8.
11
[30] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:
Proceedings of the 2016 IEEE Conference on Computer Vision Pattern
Recognition; 2016 Jun 26–Jul 1; Las Vegas, NV, USA. New York City: IEEE;
2016. p. 770–8.

[31] Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for
deep neural networks. In: Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2017); 2017 Jul 21–26;
Honolulu, HI, USA. New York City: IEEE; 2017. p. 1492–500.

[32] Shen W, Zhou M, Yang F, Yu D, Dong D, Yang C, et al. Multi-crop convolutional
neural networks for lung nodule malignancy suspiciousness classification.
Pattern Recognit 2017;61:663–73.

[33] Mukherjee P, Zhou M, Lee E, Schicht A, Balagurunathan Y, Napel S, et al. A
shallow convolutional neural network predicts prognosis of lung cancer
patients in multi-institutional computed tomography image datasets. Nat
Mach Intell 2020;2(5):274–82.

[34] Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN. Grad-CAM++:
generalized gradient-based visual explanations for deep convolutional
networks. In: Proceedings of the 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV 2018); 2018 Mar 12–15; Lake
Tahoe, NV, USA. New York City: IEEE; 2018. p. 839–47.

[35] Wang H, Wang Z, Du M, Yang F, Zhang Z, Ding S, et al. Score-CAM: score-
weighted visual explanations for convolutional neural networks. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR 2020); 2020 Jun 14–19; online. New York City: IEEE; 2020.
p. 24–5.

http://refhub.elsevier.com/S2095-8099(23)00156-X/h0115
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0115
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0115
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0120
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0120
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0120
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0125
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0125
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0125
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0130
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0130
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0130
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0135
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0135
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0140
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0140
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0140
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0160
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0160
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0160
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0165
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0165
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0165
http://refhub.elsevier.com/S2095-8099(23)00156-X/h0165

	From Signal to Knowledge: The Diagnostic Value of Raw Data in the Artificial Intelligence Prediction of Human Data for the First Time
	1 Introduction
	2 Material and methods
	2.1 Patients
	2.2 Collection of CT images and raw data
	2.3 Lesion segmentations in CT images
	2.4 Realization of typical CT models
	2.5 Extraction of the lesion region from raw data
	2.5.1 Orientation
	2.5.2 Querying
	2.5.3 Mapping

	2.6 Construction of a raw data gain model based on CT images
	2.7 Calculation of the average attention score

	3 Result
	3.1 Clinical characteristics
	3.2 Performance of CT model and raw data gain model
	3.3 Image feature distribution of the RGMs and gain stability analysis
	3.4 Visual statistics and analysis of the RGMs
	3.5 Stratified analysis of different malignant subgroups

	4 Discussion
	5 Conclusions
	ack22
	Acknowledgments
	Compliance with ethics guidelines
	Author contributions
	Appendix A Supplementary data
	References


