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Anticipating others’ actions is innate and essential in order for humans to navigate and interact well with
others in dense crowds. This ability is urgently required for unmanned systems such as service robots and
self-driving cars. However, existing solutions struggle to predict pedestrian anticipation accurately,
because the influence of group-related social behaviors has not been well considered. While group rela-
tionships and group interactions are ubiquitous and significantly influence pedestrian anticipation, their
influence is diverse and subtle, making it difficult to explicitly quantify. Here, we propose the group inter-
action field (GIF), a novel group-aware representation that quantifies pedestrian anticipation into a prob-
ability field of pedestrians’ future locations and attention orientations. An end-to-end neural network,
GIFNet, is tailored to estimate the GIF from explicit multidimensional observations. GIFNet quantifies
the influence of group behaviors by formulating a group interaction graph with propagation and graph
attention that is adaptive to the group size and dynamic interaction states. The experimental results
show that the GIF effectively represents the change in pedestrians’ anticipation under the prominent
impact of group behaviors and accurately predicts pedestrians’ future states. Moreover, the GIF con-
tributes to explaining various predictions of pedestrians’ behavior in different social states. The proposed
GIF will eventually be able to allow unmanned systems to work in a human-like manner and comply with
social norms, thereby promoting harmonious human–machine relationships.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Understanding pedestrian dynamics is critical in a variety of
real-world tasks, such as autonomous driving [1,2], robot naviga-
tion [3,4], pedestrian flow analysis [5,6], and crowd evacuation
[7,8]. Interestingly, humans have an instinctive ability to anticipate
the future actions of other people while navigating in crowded
spaces and interacting with other pedestrians [9–13], which per-
mits them to avoid head-on collisions and keep pace with peer
partners while maintaining a comfortable distance. As shown in
Fig. 1(a), such an ability would allow unmanned systems to work
in urban environments intelligently by comprehending and antic-
ipating the actions of pedestrians.

In the past decades, pedestrian anticipation has been modeled
using bidirectional flow [13,14], cellular automation [10,15], and
time to collision [12,16,17] to simulate collective behaviors.
Recently, machine learning technology has been utilized for this
purpose, allowing the future states of pedestrians to be forecasted
[17–23]. In essence, the above methods model each individual’s
behavior in collision avoidance without considering group-
related social behaviors. However, humans are naturally social
beings who gather to interact socially and thus form social groups
[24,25]; for example, up to 70% of the observed pedestrians on a
street are in groups [26]. Pedestrians conform to expected social
eering,
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Fig. 1. The group interaction field (GIF). (a) The GIF represents implicit pedestrian anticipation; it consists of a proxemics field and an attention field, estimated from explicit
observations. (b) Explicit observations consist of trajectory, visual orientation, and observable group interaction state. (c) The proxemics field and the attention field are
represented by a sequence of two-dimensional (2D) probabilistic distribution maps and a sequence of angular ranges, respectively. Two representative applications are
demonstrated in part (a); the GIF can help unmanned systems to either avoid disturbing pedestrians or attract pedestrians’ attention. t1, t2,. . ., tn: timestamp from the
predication sequence; n: nth timestamp; v: walking velocity; h: angular range of the attention field.
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norms in groups and act accordingly under the influence of group
neighbors [27], where intra-/inter-group interactions are consid-
ered to be critical influencers of pedestrians’ social cognition
[27,28] and behavior patterns [29,30]. To model group or interac-
tion information, state-of-the-art graph neural network (GNN)
methods have been utilized for an understanding of pedestrian/
agent dynamics [9,27,31–35]. However, for pedestrians, the influ-
ence of group behaviors is not only diverse but also subtle, and dif-
ferent group relationships or interaction states will have very
different impacts on pedestrians’ future states. For example, a fam-
ily group (e.g., mother and daughter) and a tour group usually
show quite different behaviors under similar scenarios, as the
attention of children is less focused than that of adults. These sub-
tle differences cannot be well modeled by simple relationship or
interaction graphs. Because they fail to distinguish between differ-
ent group relationships among pedestrians, existing methods are
insufficient for accurately predicting the differences in pedestrian
anticipation influenced by group behaviors [13,19,23,27,31,34–37].
2

In complex scenes, it is important yet challenging to understand
the influence of group relationships and social interactions on
pedestrian behaviors. For such contexts, we propose the group
interaction field (GIF), a novel group-aware representation, to
quantify implicit pedestrian anticipation. More specifically, the
GIF consists of a proxemics field and an attention field, which
respectively represent pedestrian anticipation using the probabil-
ity fields of pedestrians’ future locations and their attention orien-
tations. Moreover, we tailor GIFNet to estimate the GIF from
explicit multidimensional observations, including the trajectory,
visual orientation, and group interaction state. GIFNet can quantify
the diverse and subtle influence of group behaviors by formulating
a group interaction graph with propagation and group attention
that is adaptive to the group size and dynamic interaction states.
Our main contributions are threefold:
� We propose the GIF, a group-aware representation of pedes-
trian anticipation. It consists of a proxemics field and an atten-
tion field, which represent the variation of pedestrian
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anticipation, and thus delivers a comprehensive understanding
of the social nature of pedestrians.

� We tailor GIFNet to estimate the GIF; taking explicit observa-
tions into consideration, GIFNet uses the advantages of long
short-term memory (LSTM) and graph attention network
(GAT) to learn implicit spatiotemporal representation and esti-
mate the GIF.

� Extensive validation in various real-world scenarios shows that
the GIF can effectively represent changes in pedestrian anticipa-
tion under the prominent impact of group behaviors and accu-
rately predict pedestrians’ future states.

2. The GIF

As an estimation of implicit pedestrian anticipation, the GIF
consists of a proxemics field and an attention field, which respec-
tively represent predictions of pedestrians’ future location and
visual attention. The GIF is estimated by means of GIFNet (Fig. 2)
from explicit observations of pedestrians, including their trajec-
tory, visual orientation, and state of group interaction (Fig. 1(b)).
We generated pedestrian data from the Panda dataset [38], which
consists of large-scale natural outdoor scenes with a diversity of
scenarios, as well as pedestrian density, trajectory distribution,
and group activities. The proxemics field is a sequence of two-
dimensional (2D) probabilistic distribution maps denoting the
future locations of the pedestrian of interest (Fig. 1(c)) with a
timespan T and temporal resolution R. Similarly, the attention field
is a sequence of angular ranges h, representing the pedestrian’s
possible orientation and range of visual attention. More formally,
given a timestamp from the observation sequence
t 2 1; . . . ; Tendf g, with the ending timestamp Tend, of the pedestrian

of interest i, the GIF is defined as GIFTi ¼ PT
i ;A

T
i

h i
, with the prox-

emics field PT
i and attention field AT

i .
As shown in Fig. 1(a), the GIFs of solitary pedestrians (cyan),

grouped pedestrians without interaction (purple), and grouped
pedestrians with interaction (orange) have apparent differences:
The single pedestrian has a long and wide proxemics field, while
the grouped pedestrians without interaction have shorter and nar-
rower fields, and the grouped pedestrians with interaction tend to
approach each other closely. As it can predict pedestrians’ future
location and attention orientation, the GIF has great potential in
unmanned system applications. Fig. 1(a) shows two representative
applications of the GIF. The proxemics field can help an unmanned
system (blue) plan its path to avoid disturbing pedestrians, while
the attention field can guide an unmanned system (red) to
approach a pedestrian from the orientation of attention.

3. GIFNet

To accurately estimate the GIF, we tailor GIFNet, as illustrated in
Fig. 2(a). GIFNet takes three explicit observations as inputs—
namely, the trajectory of the pedestrian of interest Tp, the visual
orientation of the pedestrian of interest Fp, and the neighbor trajec-
tories Tn in an interaction graph It, with timestamp t, and outputs
the GIF of the pedestrian of interest. Given the pedestrian of inter-
est (purple), the remaining pedestrians in the same group (other
colors) are denoted as that pedestrian’s neighbors. More specifi-
cally, the group interaction graph It is a graph sequence for orga-
nizing the group interaction state, whose edges represent
whether the pedestrian of interest is interacting with neighbors
at each timestep.

GIFNet consists of four modules: ① a trajectory encoder that
models the historical trajectory of the pedestrian of interest,
② an visual orientation encoder that models the pedestrian of
interest’s visual orientation information, ③ the GIF-GAT, which
3

models the interaction information between the pedestrian of
interest and that pedestrian’s neighbors, and④ a visual orientation
decoder and proxemics decoder that respectively generate an esti-
mation of the proxemics field and of the attention field of the
pedestrian of interest. In GIFNet, three encoders composed of a
fully connected (FC) layer and an LSTM unit are used to extract fea-
tures from Tp, Fp, and Tn. For the neighbor trajectories Tn, the enco-

der produces two embedding vectors (mj
a and mj

r) for the jth
neighbor, encoding the features of the neighbor’s absolute dis-
placement and the displacement relative to the pedestrian of inter-
est, respectively (Fig. 2(b)). The group interaction graph It and the
features of the neighbor trajectories Tn are further processed by
means of a graph attention module (the GIF-GAT; Fig. 2(c)). For
each timestep t, an FC layer is used to calculate the weights of
the neighbors from the relative displacement feature of the neigh-
bors. The weights are multiplied by the group interaction graph It
to obtain the final weight aj for the jth neighbor. The absolute dis-

placement features of the neighbors (mj
a) are then summed with

weighting, using aj, as the final neighbor embedding vector. In this
way, GIFNet propagates the influence of the neighbors and the
group interactions through the graph to learn an embedding fea-
ture vector. Finally, the embedding feature vectors of the four kinds
of explicit observations are input to the decoders for estimating the
proxemics field and the attention field (Fig. 2(d)). For the prox-
emics decoder, a Gaussian sampling module is added to learn the
uncertainty of the proxemics field and produce a sequence of prob-
ability distribution maps representing the pedestrian of interest’s
future location. In the following, we will elaborate the design of
the trajectory encoder, the visual orientation encoder, GIF-GAT,
and the decoders.

3.1. Trajectory encoder

The purpose of the trajectory encoder is to encode the historical
trajectory information and generate a trajectory embedding. The
trajectory encoder consists of LSTMX. The past trajectory informa-
tion Xi of pedestrian of interest i is represented by the ordered set
of the pedestrian’s relative displacement to the previous timestep
(Fig. 2(b)) and is formed as follows:

Xi ¼ Dx1i ; . . . ;Dx
Tend
i

n o
ð1Þ

Dxti ¼ xti � xt�1
i ð2Þ

where xti is the spatial location of person of interest at timestamp t.
For the timesteps t ¼ 1; . . . ; Tendf g, we perform the following

update operation to embed the relative displacement into a
fixed-length vector eti corresponding to the FC layer in Fig. 2(a):

eti ¼ / Dxti ;Wee
� � ð3Þ

Then, the embedding vector is used as input to the LSTM cell, as
follows:

mt
X ið Þ ¼ LSTMX mt�1

x ið Þ; eti ;WX
� � ð4Þ

where the function / is the FC layer to embed the past trajectory
information of pedestrian i, Wee is the embedding weight, mt

X ið Þ is
the hidden state of the LSTMX at timestep t, and WX is the weight
of the LSTMX cell. These parameters are shared among all the pedes-
trians in the scene.

3.2. Visual orientation encoder

The purpose of the visual orientation encoder is to encode the
historical visual orientation information and generate a visual ori-
entation embedding. The past visual orientation information Ai of



Fig. 2. GIFNet. (a) Network structure of GIFNet, including three encoders (trajectory, visual orientation, and neighbor), GIF-GAT (components in the grey area), and two
decoders (proxemics and attention). (b) Illustration of the relative displacement (i.e., the relative neighbor location to the pedestrian of interest) and the absolute
displacement (i.e., the neighbors’ self-displacement). (c) Network structure of GIF-GAT, where GIF-GAT takes the neighbors’ relative embeddings (filled rectangles, mi

r), the
neighbors’ absolute embeddings (hollow rectangles, mi

a), and the dynamic group interaction graph as input and outputs a fixed-length embedding representing the influence
of all group neighbors on the pedestrian of interest. (d) Loop structure in the proxemics decoder and attention decoder for predicting the sequence of future states. POI:
pedestrian of interest; FC: fully connected; Tp: observed POI trajectory; Fp: observed POI visual orientation; Tn: observed neighbor trajectories; It: observed group interaction
graph; z: Gaussian noise vector; N: normal distribution; lz: mean value of z; Rz: variance of z; Conv: convolution; a0j: weight for the jth neighbor; mj

a and mj
r: two

embedding vectors for the jth neighbor; h: hidden states of LSTM; Tobs: any one observed timestamp; ETobs
i : embeddings of the observed timestamp of person of interest; Dxti :

pedestrian’s predicted relative displacement to the previous timestep.
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pedestrian of interest i is represented by the ordered set of the
pedestrian’s orientation at

i in a unit vector and is formed as
follows:

Ai ¼ a1i ; . . . ; a
Tend
i

n o
ð5Þ

ati ¼ cosht1; sinh
t
1

� � ð6Þ
where h1 is the inner angle of visual orientation concerning the for-
ward orientation. Similar to the trajectory encoder module, the
visual attention sequence Ai with the hidden state mt

o ið Þ is fed into
the visual orientation encoder LSTMo. The operation is as follows:

eti ¼ / Dati ;Wee
� � ð7Þ

mt
o ið Þ ¼ LSTMo mt�1

o ið Þ; eti ;Wo
� � ð8Þ

where Wo is the weight of the LSTMo cell. For simplicity, we reuse
the notations of / andWee to represent the embedding function and
4

the embedding weight and hidden state, respectively. The final vec-

tormTend
o ið Þ is the ensemble of the information from the visual orien-

tation of pedestrian of interest i.

3.3. GIF-GAT

For efficiency and simplicity, we adopt a mechanism similar to
the trajectory encoder to encode the neighbor trajectories. For the
pedestrian of interest i, as shown in Fig. 2(b), in addition to the dis-
placement of each neighbor j to the previous timestep as
Dxtj ¼ xtj � xt�1

j , we calculate the relative location of each neighbor
j in relation to the pedestrian of interest i at each timestep; that
is, Dxtij ¼ xti � xtj . We encode the neighbor location in both Dxtj and
Dxtij, which represent the absolute displacement and relative dis-
placement, respectively. The operations are as follows:

eti ¼ / Dxtj ;Wee

� �
ð9Þ
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etij ¼ / Dxtij;Wee

� �
ð10Þ

Then, by feeding the corresponding vectors to the neighbor
encoder, we obtain two distance-sensitive context embeddings:
the neighbor’s relative embedding mt

r jð Þ and the neighbor’s abso-
lute embedding mt

a jð Þ. The operations are as follows:

mt
a ið Þ ¼ LSTME mt�1

a ið Þ; eti ;Wa
� � ð11Þ

mt
r ið Þ ¼ LSTME mt�1

r ið Þ; etij;Wa

� �
ð12Þ

We use a GAT as a sharing mechanism to aggregate the infor-
mation on interactions between the pedestrian of interest and that
pedestrian’s neighbors. As shown in Fig. 2, we consider the pedes-
trians in a scene as nodes and use edges on the graph to represent
information on human–human interaction. The GAT is constructed
by stacking graph attention layers. The group interaction graph of
the pedestrian of interest i is represented by a sequence of dummy
variables, as follows:

It
i ¼ bt

ijjj 2 1; . . . ;Dif g; t 2 1; . . . ; Tendf g
n o

ð13Þ

where bt
ij is the dummy variable indicating the existence of interac-

tion between the pedestrian of interest i and group neighbor j, and
Di is the number of group neighbors of the pedestrian of interest i.
We adopt temporal pooling for bt

ij to generate a pooled context vec-
tor C ij, which is composed of the interaction information across the

observation period; that is, C ij ¼ 1
T

PT
i b

t
ij.

Let mTend
r jð Þ denote the final relative embedding and mTend

a jð Þ
denote the final absolute embedding of neighbor j. In the observa-

tion period, mTend
a jð Þ is fed to the graph attention layer. The coeffi-

cients in the attention mechanism of the node pair i; jð Þ can be

computed by multiplying mTend
r jð Þ and C ij as follows:

aij ¼ mTend
r ið Þ � C ij ð14Þ

The output of one graph attention layer for node i (pedestrian of
interest i) is given by the following:

cmTend
a ið Þ ¼ r

X
j2Ni

aijWmTend
a jð Þ

� �
ð15Þ

where r is a nonlinear function and Ni represents the neighbors of

node i. W 2 RF0�F is the parameter matrix of a shared linear projec-
tion that is applied to each neighbor separately (F is the dimension
of the input, and F 0 is the dimension of the output). In addition,

cmTend
a is a fixed-length embedding for the pedestrian of interest i

for the observed time, representing the influence of all neighbors
on the pedestrian of interest.

3.4. Proxemics and attention decoder

We use the decoders to generate the proxemics field and atten-
tion field conditioned on Et ið Þ ¼ Ep;Ev;En

� �
, where Ep, Ev, and En

are the embeddings of the trajectory, visual orientation, and neigh-
bors’ influences, respectively:

Ep ¼ / mTend
x ið Þ;Wee

� � ð16Þ

Ev ¼ / mTend
o ið Þ;Wee

� � ð17Þ

En ¼ / cmTend
a ið Þ;Wee

� �
ð18Þ

Then, we directly concatenate a noise vector z sampled from a
Gaussian distribution and the context embeddings Et ið Þ as the
input for the proxemics decoder LSTMp

dec:
5

hTendþ1
p ið Þ ¼ LSTMp

dec hTend
p ið Þ; Et ið Þ; z½ �;Wp

dec

� �
ð19Þ

DxTendþ1
i ¼ / hTendþ1

p ið Þ;Wee

� �
ð20Þ

Moreover, the attention field of the pedestrian of interest i is
updated using the attention decoder LSTMa

dec:

hTendþ1
a ið Þ ¼ LSTMa

dec hTend
a ið Þ; Et ið Þ; z½ �;Wa

dec

� �
ð21Þ

aTendþ1
i ¼ / hTendþ1

a ið Þ;Wee

� �
ð22Þ

where DxTendþ1
i and aTendþ1

i are respectively the location and the
visual orientation of the pedestrian of interest i at Tend þ 1. We
use the notations ht

a ið Þ and ht
p ið Þ to represent the hidden state of

the proxemics decoder and of the attention decoder, respectively,
and use Wp

dec and Wa
dec to represent the embedding weight of the

proxemics decoder and of the attention decoder, respectively.

4. Experiments

4.1. Experimental settings

4.1.1. Dataset
The performance of our models was evaluated on the Panda

dataset [38]. The videos in the Panda dataset are captured by giga-
pixel cameras, and each video frame contains hundreds to thou-
sands of pedestrians, with rich group interaction information. As
our method only requires the trajectories, visual orientations,
and group interaction information, we extracted this information
from the Panda labels and formed a new dataset with 21 704 tra-
jectories. We divided the trajectories into training, testing, and val-
idation sets, with 15 511, 3052, and 3141 trajectories, respectively.
Next, we computed a homography matrix to map images to the top
view in order to obtain the locations of the pedestrians in world
coordinates.

Unlike the existing group-based trajectory-prediction datasets
[22], each group was assigned several category labels, denoting
the kinds of group relationships (i.e., acquaintance and family)
and interaction states (i.e., no interaction, non-physical interaction,
and physical interaction). For example, eye contact, body language
such as hand waving, and talking are non-physical interactions,
while holding hands is a type of physical interaction. Group rela-
tionship information is identified through the interactions and
characteristics of the members, such as appearance, gender, age,
and exchanges.

4.1.2. Evaluation metrics
During the test time, we made k predictions of the future posi-

tion of the pedestrian of interest i; we set k ¼ 20. Then, we applied
a Gaussian model to fit the predicted locations for all k predictions
and then sampled the point with the highest probability as the

optimal predicted location bY p

i tð Þ, which was calculated as follows:

bY p

i tð Þ ¼ maxDxt
i
P Dxti
� � ð23Þ

where P Dxti
� �

is the fitted Gaussian model for all predicted locations
of pedestrian i at time t. We used the average displacement error
(ADE) [19] and the final displacement error (FDE) [38] to evaluate
the predicted trajectory as follows:

ADE ¼ 1
N

XN

t¼1
Yp

i tð Þ � bY p

i tð Þ
��� ��� ð24Þ

FDE ¼ jYp
i Tendð Þ � bY p

i Tendð Þj ð25Þ
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where N is the number of predicted timesteps, and Yp
i tð Þ is the

ground-truth value of location of pedestrian of interest i at time t.
Similarly, we used the average angular error (AAE) and the final

angular error (FAE) to evaluate the predicted visual orientation:

AAE ¼ 1
N

XN

t¼1
Ya

i tð Þ � bY a

i tð Þ
��� ��� ð26Þ

FAE ¼ Ya
i Tendð Þ � bY a

i Tendð Þ
��� ��� ð27Þ

where Ya
i tð Þ is the ground-truth value of visual orientation of pedes-

trian of interest i at time t, and bY p

i tð Þ is the optimal predicted visual
orientation.

4.1.3. Training details
In our experiments, we observed the trajectories and visual ori-

entations of nine timesteps (3 s) and tried to predict the next N ¼ 9
timesteps (3 s). The pedestrians’ visual orientation ati has the same
form as the pedestrians’ relative location, Dxti . Thus, a sequence-
to-sequence model can be used to predict both the pedestrians’
locations and their visual orientations. We replaced the input of
state-of-the-art trajectory-prediction methods with Ai for visual
orientation training and prediction. All experiments were per-
formed on the same personal computer (PC) with a NVIDIA RTX
3090 graphics processing unit (GPU).

For training the proxemics field decoder, the variety loss Lp was
used:

Lp ¼ mink j Yp
i tð Þ � bY p

i tð Þqj2 ð28Þ

where bY p

i tð Þq is the qth predicted location of pedestrian of interest i.
We also applied the l2 loss La in order to measure the difference

between the prediction and the ground truth of the attention field:

La ¼j Ya
i tð Þ � bY a

i tð Þj22 ð29Þ
4.2. Experimental discussion

4.2.1. Predicting the proxemics field
As the proxemics field represents the future location distribu-

tion of the pedestrian of interest, we evaluated our GIFNet using
the accuracy of the predicted locations on the dataset. Recent stud-
ies on crowd forecasting have indicated that the short-termmotion
of pedestrians is highly predictable [39,40]. Here, we adopt a sim-
ilar setting with a timespan T ¼ 3 s and temporal resolution
R ¼ 1=3 s. As shown in Fig. 3(a), the ADE and FDE (i.e., the displace-
ment error at the endpoint, shown as stars in Fig. 3(a)) of the pre-
dicted locations are used as the evaluation metrics. For each
timestep, the predicted location with the highest probability is
used to calculate the ADE and FDE. As illustrated in Table 1
[19,21,34,35,41–49], GIFNet outperforms the state-of-the-art
learning-based trajectory-prediction methods (SoPhie [21], spa-
tial–temporal graph attention network (STGAT) [34], social gener-
ative adversarial networks (SGAN) [35], social-spatial–temporal
graph convolutional neural network (STGCNN) [19], sparse graph
convolution network (SGCN) [41], etc.). Among these methods,
only our GIFNet encodes all four kinds of features—that is, trajec-
tory, visual orientation, neighbor trajectory, and group interaction
state. SoPhie, STGAT, SGAN, social-STGCNN, and SGCN encode only
the trajectory and integrate the information of all the surrounding
neighbors with a relative-distance-dependent method. The base-
line method ‘‘Linear” is a linear regressor that takes only the past
trajectory as input. A more detailed ablative analysis is provided
in Section 3.2.3.

For a more in-depth analysis of the neighbor and group interac-
tion information, we divide the pedestrians into several categories
6

(i.e., solitary pedestrians, members of an acquaintance group,
members of a family group, group members without interaction,
group members with non-physical interaction, and group mem-
bers with physical interaction) and plot the statistical analysis
results in Figs. 3(b)–(f). We use a nonparametric single-side
Mann–Whitney U test to prove the statistical significance of the
mean difference between the two groups of data. Figs. 3(b) and
(c) illustrate the distribution of the ground truth versus the esti-
mated forward (i.e., movement direction of the current timestep)
and lateral (i.e., orthogonal to the forward direction) speeds. The
prediction of GIFNet (red) shows a high consistency with the
ground truth (black). The solitary pedestrians move faster than
the grouped pedestrians in both directions
(p < 0:001;N ¼ 12245), and the pedestrians in the acquaintance
group move faster than those in the family group in both directions
(p < 0:001;N ¼ 12245). However, grouped pedestrians with and
without interactions show no significant difference, meaning that
group interactions do not affect pedestrians’ walking speed. In
addition, the proxemics fields of solitary pedestrians are more dis-
persed than those of grouped pedestrians; that is, the walking
direction of solitary pedestrians has higher uncertainty. These
results indicate that being in a group directly affects a pedestrian’s
speed and walking direction.

The spatial organization of a walking pedestrian group can be
measured by the angle (i.e., the inner angle between the neighbor
and the forward orientation, hp in Fig. 3(d)) and the distance
between the pedestrians in the group [26]. Figs. 3(e) and (f) illus-
trate the influence of interactions on the pair-wise distance and
angle of pedestrian pairs within groups. The distances between
pedestrian pairs with physical, non-physical, and no interaction
increase significantly (both p < 0:001andN ¼ 3668). The angles
of pedestrian pairs with physical and non-physical interactions
are clustered at about 90

�
, while the angles of pedestrian pairs

without interactions are smaller (p < 0:001;N ¼ 3668) and dis-
persed with higher uncertainty. The distributions of pair-wise dis-
tance and angle are presented in Fig. 3(g). A total of 559 pairs of
pedestrians with no interaction, 137 with non-physical interaction,
and 199 with physical interaction are plotted on three 2D his-
tograms: The pedestrian of interest is located in the center, with
a 90� forward direction, and the neighbors are plotted based on
distance and inner angle. Pedestrian pairs with interaction are
more concentrated than those without interaction and tend to
walk in parallel (i.e., angles clustered at 90

�
).

Fig. 3(h) illustrates the changes in the proxemics field and the
pair-wise distance at the initiating time, during, and at the ending
time of physical and non-physical interaction. We randomly sam-
ple 400 pairs for each state to plot the time–distance curve (bottom
part of Fig. 3(h)), and the proxemics field of a representative pair is
plotted in the top part of Fig. 3(h) for each stage. Pedestrian pairs
with both physical and non-physical interaction show similar
changes: When the pedestrians initiate interaction, they move
close to each other; during the interaction, the distance between
them remains stable; and, when ceasing interaction, they tend to
separate. Compared with non-physical interaction, pedestrian
pairs with physical interaction have smaller pair-wise distances.
The high correlation between the predicted curves and the ground
truth shows that GIFNet can effectively capture the changes in the
group interaction state and predict accurate future locations under
all states.
4.2.2. Predicting the attention field
As depicted in Fig. 1(c), the attention field is an angular range

denoting the visual attention of the pedestrian of interest. Here,
we fix the angular range at 30

�
, corresponding to the aperture of

the cone of visual attention [41], and predict its central orientation.
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Table 1
Performance comparison of GIFNet and other state-of-the-art methods on the Panda
dataset.

Method ADE FDE Ref.

SGAN 0.372 0.773 [35]
STGAT 0.392 0.840 [34]
SoPhie 0.351 0.751 [21]
Social-STGCNN 0.449 0.830 [19]
STAR 0.564 1.354 [42]
SGCN 0.353 0.718 [41]
AgentFormer 0.680 1.455 [43]
Social-Implicit 0.432 0.850 [44]
GPGraph 0.467 0.992 [45]
SocialVAE 0.408 0.908 [46]
MID 0.613 1.339 [47]
NPSN 0.485 1.039 [45]
ScePT 0.330 0.687 [48]
GIFNet 0.308 0.642 —

STGAT: spatial–temporal graph attention network; SGAN: social generative
adversarial network); STGCNN: social-spatial–temporal graph convolutional neural
network; SGCN: sparse graph convolution network. STAR: sparse trained articu-
lated human body regressor; MID: motion indeterminacy diffusion; NPSN: Non-
Probability Sampling Network.

Table 2
Performance comparison of GIFNet and other state-of-the-art methods on the PANDA
dataset.

Method AAE FAE Ref.

SGAN 25.523 35.982 [35]
STGAT 23.591 33.144 [34]
Sophie 22.694 31.758 [21]
Social-STGCNN 29.091 43.793 [19]
STAR 61.603 63.569 [42]
SGCN 26.399 41.162 [41]
AgentFormer 72.788 96.895 [43]
Social-Implicit 27.901 38.795 [44]
GPGraph 26.261 43.271 [45]
SocialVAE 23.225 41.409 [46]
MID 36.724 64.442 [47]
NPSN 27.574 50.514 [48]
ScePT 18.683 32.075 [49]
GIFNet 17.447 29.735 —

3
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The ground-truth attention fields are calculated from the anno-
tated visual orientations in the dataset. Similarly, we set the times-
pan T ¼ 3 s and the temporal resolution R ¼ 1=3 s, and evaluate
GIFNet using the AAE and FAE. Since there is no visual orientation
prediction method, we modify state-of-the-art trajectory-
prediction methods for visual orientation prediction, denoted as
SoPhie, STGAT, SGAN, social-STGCNN, SGCN, and so forth. ‘‘Linear”
denotes the linear regression method. Table 2 [19,21,34,35,41–49]
shows that our GIFNet achieves the best AAE and FAE among all the
methods. As in the proxemics field prediction, the group neighbor
and interaction information have a notable impact on the attention
field prediction.

For a more in-depth analysis of the influence of such informa-
tion on pedestrian anticipation, we evaluated the forward-
attention angle (h1 in Fig. 4(a)), cross-attention angle (h2 in Fig. 4
(a)), and neighbor-attention angle (h3 in Fig. 4(a)). The forward-
attention angle measures the consistency of the pedestrians’ atten-
tion orientation and forward direction, the cross-attention angle
measures the consistency of the attention orientation of pedestrian
pairs, and the neighbor-attention angle reflects whether pedestri-
ans’ attention is attracted by their neighbors. We used a nonpara-
metric single-side Mann-Whitney U test to demonstrate the
statistical significance of the mean difference between the two
groups of data. As illustrated in Figs. 4(b)–(f), all three angles pre-
dicted by our GIFNet (red) show good consistency with the ground
truth (black).

As shown in Figs. 4(b), (d), and (f), the forward-attention
angles of pedestrians with physical interaction, without interac-
tion, and with non-physical interaction increase significantly
(both p < 0:001;N ¼ 893), the cross-attention angle of pedes-
trian pairs with non-physical interaction is significantly smaller
than that of pedestrian pairs without interaction
(p < 0:001;N ¼ 2986), and the neighbor-attention angle of
Fig. 3. Evaluation of the proxemics field prediction. (a) Illustration of ADE and FDE. (
pedestrians in various groups (i.e., family and acquaintance). (d) Illustration of the angle
distance between pedestrians. (e, f) Boxplots of the (e) pair-wise distance and (f) angle
with physical interaction. (g) Top-view distribution maps of neighbors’ location. From le
with physical interaction. (h) Change in the proxemics field of pedestrian pairs when
proxemics fields with non-physical or physical interaction; blue points are input observa
bottom row shows the changes in the pair-wise distance. A grey background indicates no
bars represent the standard error of the mean (SEM). Red boxplots in parts (b–f): predictio
side Mann–Whitney U test. Sol: solitary; Fam: family; Acq: acquaintance; Inte: interact
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pedestrian pairs with physical interaction, no interaction, and
non-physical interaction decreases significantly (both
p < 0:001;N ¼ 2986). These results indicate that grouped pedes-
trians in physical interaction tend to focus on the direction for-
ward (forward-attention angles close to 0�, cross-attention
angles close to 0

�
, and neighbor-attention angles close to 90

�
),

while pedestrians with non-physical interaction are more likely
to look at each other. This may be because non-physical interac-
tions mainly include verbal communication and eye-to-eye
behaviors that require visual attention, while pedestrians in phys-
ical interaction can be more focused on walking because they can
effectively perceive the location of the partner through touch
instead of sight. As shown in Figs. 4(c) and (e), the forward-
attention angles of the pedestrians in a family group, solitary
pedestrians, and those in an acquaintance group increase signifi-
cantly (both p < 0:001 and N ¼ 4641), and the cross-attention
angle of pedestrian pairs in an acquaintance group is significantly
smaller than that of pedestrian pairs in the family group (p <
0.001, N = 12 946). This may be because family members are
more likely to interact with each other physically, while acquain-
tances are almost equally likely to interact with each other phys-
ically and non-physically. Hence, group interactions have a
significant and diverse effect on pedestrians’ visual attention.

We further demonstrate the changes in the attention field at the
initiating time, during, and at the ending time of physical and non-
physical interactions. Similar to Fig. 3(h), the top row of Fig. 4(g)
shows the representative predicted attention fields for pedestrian
pairs, and the bottom row shows the changes in the neighbor-
attention angle. When the pairs start to interact, the pedestrians
tend to look at each other; during the interaction, both pedestrians
look forward, while sometimes looking at each other (more often
during non-physical interactions); when interaction ceases, the
pedestrians look at each other again, and then turn to forward ori-
entations. Similar to Fig. 3(h), the curve in Fig. 4(g) shows the high
correlation between the predicted results and the ground truth,
demonstrating GIFNet’s ability to capture the influence of group
interactions on the attention field.
b, c) Boxplots of the (b) forward and (c) lateral speed of solitary pedestrians and
(i.e., inner angle between the pedestrian’s neighbor and forward orientation, hp) and
(hp) of grouped pedestrians without interaction, with non-physical interaction, and
ft to right: pedestrian pairs without interaction, with non-physical interaction, and
the group interaction state changes. The top row shows representative estimated
tions, and orange probability distribution maps are predicted proxemics fields. The
interaction, and a white background indicates that interaction is in progress. Error
n of GIFNet; black boxplots: ground truth. ***p < 0:001; n.s.: no significance, single-
ion; Phy: physical; W/O: without; G: ground truth; P: prediction.



Fig. 4. Evaluation of the attention field prediction. (a) Illustration of the forward-attention angle (h1; the absolute value of the inner angle of visual orientation concerning the
forward orientation), the cross-attention angle (h2; the inner angle between visual orientations of the pedestrian of interest f p and the neighbor f n; the angle is positive when
the two orientations converge outward and negative when the two orientations converge inward), and the neighbor-attention angle (h3; the absolute value of the inner angle
of visual orientation concerning the orientation of the neighbor). (b, c) Distributions of the ground truth (black) and predicted (red) forward-attention angle (h1 in part (a)) for
different (b) group interaction and (c) neighbor states. (d, e) Distribution of the ground truth (black) and predicted (red) cross-attention angle (h2 in part (a)) for different (d)
group interaction and (e) neighbor states. (f) Distribution of the ground truth and predicted neighbor-attention angles (h3 in part (a)). (g) Change in the attention field of
pedestrian pairs when the group interaction state changes. The top row shows representative estimated attention fields with non-physical or physical interaction. Blue fans
are input observations, whose center is the location of the pedestrians and whose direction is toward the attention orientation, and orange fans are predictions for future
timesteps. The bottom row shows the changes in the neighbor-attention angles. A grey background indicates no interaction, and a white background indicates that
interaction is in progress.
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4.2.3. Ablation study
We conducted a careful ablation study to demonstrate the

capacity of GIFNet. As shown in Fig. 5, for the proxemics field pre-
diction, the visual orientation information input and the group
interaction information input improve the performance at every
timestep. For the attention field prediction, the trajectory informa-
9

tion input and the group interaction information input improve the
performance in the first six timesteps.

From a technical perspective, the effective encoding of the
group and group interactions contributes to the superior accuracy
of our method. Although pooling-like operations [50] and GNNs
[22,34,51–53] have been used in existing machine learning



Fig. 5. An ablation analysis of the network. (a) Top: comparison of the GIFNet with full inputs including trajectories, visual orientation information, and group interaction
information (red) with the inputs without visual orientation information (orange), without group interaction information (green), and without both (turquoise) when
predicting the proxemics field. Two baseline methods with the best performance, SoPhie and SGCN, are also compared. Bottom: comparison of the GIFNet with full inputs
including visual orientation information, group interaction information, and trajectories (red) with the inputs without trajectories (orange), without group interaction
information (green), and without both (turquoise) when predicting the attention field. Two baseline methods with the best performance, SoPhie and STGAT, are also
compared. (b) Comparison of the errors of GIFNet and other baseline methods on each prediction timestep (timespan T ¼ 3 s and temporal resolution R ¼ 1=3 s; nine
timesteps in total). For proxemics field prediction, GIFNet performs best at every timestep. For attention field prediction, GIFNet performs best in the first six timesteps, but is
slightly worse than SoPhie in the last three timesteps. (c) An ablative comparison of GIFNet on each prediction timestep (time span T ¼ 3 s and temporal resolution
R ¼ 1=3 s, nine timesteps in total). Top: comparison of the GIFNet with full inputs including trajectories, visual orientation information, and group interaction information
(blue) with the inputs without visual orientation information (orange), without group interaction information (green), and without both (red) when predicting the proxemics
field. Bottom: comparison of the GIFNet with full inputs including visual orientation information, group interaction information, and trajectories (blue) with the inputs
without trajectories (orange), without group interaction information (green), and without both (red) when predicting the attention field. Traj: trajectory; VO: visual
orientation.
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methods to encode influences among pedestrians, only the relative
spatial distance between pedestrians is used in such studies, while
the group and group interactions are not well considered. In addi-
Table 3
GIFNet’s performance using different group inputs.

Condition ADE

GIFNet without group annotation 0.323
GIFNet with group annotation 0.308
GIFNet with SHGD [61] 0.310
GIFNet with correlation clustering [62] 0.318

Table 4
Performance comparison of GIFNet and other state-of-the-art methods on the ETH + UCY

Method ETH Hotel Univ

SGAN 0.81/1.52 0.72/1.61 0.60
STGAT 0.65/1.12 0.35/0.66 0.52
SoPhie 0.70/1.43 0.76/1.67 0.54
Social-STGCNN 0.64/1.11 0.49/0.85 0.44
STAR 0.36/0.65 0.17/0.36 0.31
SGCN 0.57/1.00 0.31/0.53 0.37
AgentFormer 0.26/0.39 0.11/0.14 0.26
Social-implicit 0.66/1.44 0.20/0.36 0.31
GPGraph 0.43/0.63 0.18/0.30 0.24
SocialVAE 0.41/0.58 0.13/0.19 0.21
MID 0.39/0.66 0.13/0.22 0.22
NPSN 0.36/0.68 0.11/0.18 0.18
ScePT 0.10/0.65 0.13/0.77 0.12
GIFNet 0.36/0.74 0.38/0.74 0.30

10
tion to encoding physical features such as spatial distance, GIFNet
introduces a group interaction graph with a graph attention
module to propagate the group neighbor information. In this
FDE AAE FAE

0.668 18.334 30.530
0.642 17.447 29.735
0.648 17.473 30.317
0.662 18.173 30.466

datasets (ADE/FDE; unit: m).

Zara1 Zara2 Average

/1.26 0.34/0.69 0.42/0.84 0.58/1.18
/1.10 0.34/0.69 0.29/0.60 0.43/0.83
/1.24 0.30/0.63 0.38/0.78 0.54/1.15
/0.79 0.34/0.53 0.30/0.48 0.44/0.75
/0.62 0.29/0.52 0.22/0.46 0.26/0.53
/0.67 0.29/0.51 0.22/0.42 0.35/0.63
/0.46 0.15/0.23 0.14/0.24 0.18/0.29
/0.60 0.25/0.50 0.22/0.43 0.33/0.67
/0.42 0.17/0.31 0.15/0.29 0.23/0.39
/0.36 0.17/0.29 0.13/0.22 0.21/0.33
/0.45 0.17/0.30 0.13/0.27 0.21/0.38
/0.39 0.14/0.29 0.11/0.23 0.18/0.35
/0.65 0.13/0.77 0.14/0.81 0.12/0.73
/0.61 0.40/0.87 0.34/0.76 0.36/0.74
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way, GIFNet explicitly reasons the importance of each group neigh-
bor from the relative displacement and dynamic interaction states
to enable better quantification of the influence of group behavior.
Anthropologists recognize that visual orientation is strongly
related to pedestrians’ walking paths [54], and visual perception
is conducive to forming group cohesion [55,56]. However, most
of the existing methods analyze the pedestrian trajectory and
visual orientation separately. In contrast, GIFNet simultaneously
Fig. 6. The GIF for crowd-aware robot navigation. (a) Illustration of the pipeline of GIF-
Illustration of three different path-planning methods in our experiments. The Direct-
pedestrians as simple circular obstacles [60]. The Direct-S method treats pedestrians as
method treats pedestrians as large circular obstacles, resulting in sacrifices in navigati
proxemics field as an obstacle. To ensure a fair comparison, we adopt the classic A-star
metrics are used for evaluation. The robot path efficiency is the ratio between the robot’s
the robot navigation efficiency. The attention irregularity is the sum of the pedestria
disturbance to pedestrians. The probability of the robot passing through the group P0

Illustration of the layout of our experiments. We evaluate three methods under three di
robot with multiple persons. (e) The probability of the robot passing through a two-perso
Our group-aware method can accurately identify groups (whose inner distance is usually
of the (f) path efficiency and (g) attention irregularity. Our GIF-based method has the hi
method effectively prevents robots from disturbing pedestrians while maintaining the ro
angle of the direction of the destination; dg : and the direction of the current speed v t .
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encodes both types of information, which mutually improves the
prediction accuracy of the proxemics field and the attention field.

4.2.4. GIFNet with group detection algorithm
With the development of computer-vision-based pedestrian

motion perception technology (e.g., pedestrian detection and
tracking), pedestrians can be accurately positioned in video and
used as input for trajectory prediction. We consider that it is also
based robot navigation. Our method uses the GIF to guide robot path planning. (b)
S and Direct-L methods are widely used robot navigation approaches that treat
small circular obstacles and often causes robots to disturb pedestrians. The Direct-L
on efficiency and a longer path. The GIF method treats the range of the predicted
path-planning method to evaluate the performance of the three methods. (c) Three
Euclidean distance d to the goal and the actual traveled distance L, which measures
ns’ unnecessary rotation angle caused by the robot, which measures the robot’s
is used to measure the disturbance the robot causes to the pedestrian group. (d)
fferent scenarios: one robot with one person, one robot with two persons, and one
n group versus the inner distance between the two people in the two-person group.
less than 1:5 m) and prevent robots from passing through them. (f, g) A comparison
ghest path efficiency and the lowest attention irregularity, which suggests that our
bot’s driving efficiency. The error bars represent the standard deviation. ht: the inner
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possible to realize group perception/inference; in fact, there are
numerous studies on this topic, including Refs. [57,58]. Instead of
taking group annotations as inputs, we supplemented a series of
experiments that used the result of the group perception algorithm
as input, in order to test the usability of GIFNet. We tested two
methods to detect pedestrian groups: self-supervised human
group detection (SHGD) and correlation clustering. As shown in
Table 3, compared with the baseline method that does not use
group information, the application of both algorithms effectively
improves GIFNet’s prediction accuracy. In particular, when using
the SHGD algorithm results as input, the performance is very close
to that of using group annotations as input. Based on these results,
we believe that many computer vision algorithms for detecting
group states, tracking pedestrians, and recognizing visual orienta-
tion can be easily combined with our algorithms, which implies the
usability of our algorithms in the real world. In Sections 3.2.1 and
3.2.2, given the rigor of the evaluation, we use annotations from
datasets (which can be seen as ‘‘ideal” perception data) as input
to our algorithms. In this way, noise from other models and several
unknown uncertainties can be eliminated, allowing a more accu-
rate assessment of our algorithm’s true performance.

4.2.5. GIFNet for understanding pedestrian anticipation in a small-
scale scene

Although GIFNet is designed for understanding pedestrian
anticipation in large-scale scenes (in the Panda dataset), we also
evaluated how GIFNet performs in small-scale scenes (in the
ETH + UCY datasets). Since the ETH + UCY datasets contain only
pedestrian trajectory information, we remove the pedestrian face
orientation encoder in GIFNet and use the group states detected
by the SHGD algorithm as input. The ETH and UCY dataset group
consists of five different scenes: ETH and Hotel (from ETH), and
Univ, Zara1, and Zara2 (from UCY). Table 4 shows the ADE + FDE
comparison of GIFNet and other state-of-the-art methods on the
ETH + UCY datasets. The performance of GIFNet is comparable with
those of SGCN and social-implicit in terms of the average error.
Due to a lack of facial orientation information and the use of algo-
rithmic inferred groups, GIFNet does not take full advantage of the
benefits provided by its innovative structural design. However, the
above results are sufficient to demonstrate that GIFNet is an
advanced pedestrian trajectory-prediction algorithm that is appli-
cable to different datasets.

4.2.6. The GIF for crowd-aware robot navigation
With the booming development of unmanned systems (e.g.,

autonomous driving, service robots, etc.), such systems’ environ-
ments are envisioned to expand from isolated areas to social
spaces shared with humans. People expect unmanned systems to
not only have powerful functions but also provide smart interac-
tions with comfort, naturalness, and sociability [59]. Our proposed
group-aware understanding of pedestrian anticipation may enable
unmanned systems to work in a human-like manner and comply
with social norms, which is shown in Fig.6. As a validation, we pro-
pose a new robot navigation method based on the GIF (Fig. 6(a)).
Existing robot navigation approaches usually regard pedestrians
as simple circular obstacles and avoid pedestrians based on their
current locations [60], which makes it difficult to strike a balance
between not disturbing pedestrians and maintaining navigation
efficiency. In contrast, by imparting the robot with the human-
like capability of anticipation, our method can adaptively plan
the robot’s path according to the pedestrians’ proxemics field and
attention field, which reflect the pedestrians’ behavioral intention
in a fine-grained way, thus effectively preventing the robot from
disturbing pedestrians while maintaining the robot’s driving effi-
ciency (Figs. 6(e)–(g)). We believe that the GIF can promote a har-
monious human–machine relationship in broader applications.
12
5. Conclusions

Understanding pedestrian anticipation is a long-standing prob-
lem with significant application value. In this paper, we studied
how different group relationships influence pedestrian anticipa-
tion. More specifically, we proposed the GIF, a novel group-aware
representation of pedestrian anticipation, which can quantitatively
explain how people’s anticipation of others’ speed, others’ atten-
tion, and the spatial organization of groups is dynamically affected
by group interactions. Furthermore, we tailored GIFNet to estimate
the GIF based on the explicit observations of pedestrians. By encod-
ing multidimensional data, including pedestrian trajectory, visual
attention, and state of group interaction, GIFNet succeeds in repre-
senting changes in pedestrian anticipation under the prominent
impact of group behaviors and in accurately predicting the future
states of pedestrians.

In practice, the GIF will contribute to a group-aware-based
understanding of pedestrian anticipation and pedestrian group
behavior. The GIF can enable unmanned systems to accurately
anticipate pedestrians’ actions and safely and comfortably interact
with them, thereby promoting a harmonious human–machine
relationship. We believe that the GIF has enormous potential for
application in interdisciplinary areas, such as intelligent
unmanned systems, the social-aware modeling of pedestrian
dynamics, and emergency evacuation.
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