
Engineering 31 (2023) 127–138
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Cyber Technology—Article
Incentive-Aware Blockchain-Assisted Intelligent Edge Caching and
Computation Offloading for IoT
https://doi.org/10.1016/j.eng.2022.10.014
2095-8099/� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: sgchen@njupt.edu.cn (S. Chen).
Qian Wang a,b, Siguang Chen a,b,⇑, Meng Wu a

a Jiangsu Key Laborotary of Broadband Wireless Communication and Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
b School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

a r t i c l e i n f o
Article history:
Received 28 March 2022
Revised 26 August 2022
Accepted 31 October 2022
Available online 4 January 2023

Keywords:
Computation offloading
Caching
Incentive
Blockchain
Federated deep reinforcement learning
a b s t r a c t

The rapid development of artificial intelligence has pushed the Internet of Things (IoT) into a new stage.
Facing with the explosive growth of data and the higher quality of service required by users, edge com-
puting and caching are regarded as promising solutions. However, the resources in edge nodes (ENs) are
not inexhaustible. In this paper, we propose an incentive-aware blockchain-assisted intelligent edge
caching and computation offloading scheme for IoT, which is dedicated to providing a secure and intel-
ligent solution for collaborative ENs in resource optimization and controls. Specifically, we jointly opti-
mize offloading and caching decisions as well as computing and communication resources allocation
to minimize the total cost for tasks completion in the EN. Furthermore, a blockchain incentive and con-
tribution co-aware federated deep reinforcement learning algorithm is designed to solve this optimiza-
tion problem. In this algorithm, we construct an incentive-aware blockchain-assisted collaboration
mechanism which operates during local training, with the aim to strengthen the willingness of ENs to
participate in collaboration with security guarantee. Meanwhile, a contribution-based federated aggrega-
tion method is developed, in which the aggregation weights of EN gradients are based on their contribu-
tions, thereby improving the training effect. Finally, compared with other baseline schemes, the
numerical results prove that our scheme has an efficient optimization utility of resources with significant
advantages in total cost reduction and caching performance.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the widespread popularity of the Internet of Things (IoT),
our lives are undergoing a tremendous change, especially since the
emergence of artificial intelligence (AI), which makes intelligence
applications in an endless stream, such as smart transportation
and smart healthcare. For instance, we can grasp all traffic condi-
tions before trip and then choose a route with less traffic to the
destination; we can also detect our physical states via smart wear-
able devices to achieve real-time monitoring of our health. These
novel applications are being used by an increasing number of users
and generate an enormous amount of data every day. According to
Cisco statistics, approximately 2.5 exabytes (EB) of data is gener-
ated in one day [1]. Generally, the caching and computing
resources of these devices are extremely limited, and they transfer
the data (executing code, etc.) to the resource-rich but remote
cloud center for completing tasks, but this method cannot meet
the users’ requirements for low delay and energy consumption.
Edge computing effectively alleviates the above problems because
the edge node (EN) is closer to users and equipped with much
more resources than terminals.

Edge computing has become a promising computing paradigm
in recent years, and how to efficiently utilize resources in the entire
edge network is a hot topic [2]. For example, by optimizing offload-
ing decisions, Wu et al. [3] minimized the cost of energy and delay,
which sufficiently enhances the service experience of users. In addi-
tion to computing resource, the EN is equippedwith certain caching
resources. Zhang et al. [4] considered caching some contents
required for task computing in the EN to reduce the transmission
time, which minimizes the delay of all computation tasks by jointly
optimizing offloading decision, caching decision, and resources
allocation. In fact, there is usually more than one EN in the whole
network, the resource usage and workload of each EN are different,
these ENs can further improve resource utilization by collaborating

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2022.10.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2022.10.014
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sgchen@njupt.edu.cn
https://doi.org/10.1016/j.eng.2022.10.014
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng


Q. Wang, S. Chen and M. Wu Engineering 31 (2023) 127–138
with each other. For example, Zhang et al. [5] proposed a new idea
from the perspective of edge-to-edge collaborative offloading,
which utilizes edge-to-edge and cloud-edge collaborative compu-
tation offloading to complete AI-based computation tasks and
achieves delay minimization and efficient utilization of resources.
However, in realistic scenarios, each EN is selfish, and ENs with suf-
ficient resources usually do not voluntarily provide their own
resources for free. Zhao et al. [6] and Zeng et al. [7] designed
incentive-based collaboration mechanisms for vehicle tasks
offloading, which gives rental fees to adjacent vehicles or edge ser-
vers to encourage them to assist the requester in completing tasks.
Finally, the optimal task allocation strategy is obtained to minimize
the system cost.

In the above studies, the solving methods they designed are
based on the principles of traditional mathematical programming,
Lyapunov or genetic algorithms, which are either not suitable for
dynamic and complex network environments or the solving pro-
cess relies on complex and costly conditions. Deep reinforcement
learning (DRL) is very popular due to its flexible autonomic learn-
ing ability, and it breaks through the limitation of traditional mathe-
matical programming algorithms for problem solving. However,
centralized training requires a strong computing capability that
usually occurs in the cloud center, and it will also lead to frequent
data transmissions [8]. In addition, the node will inevitably be curi-
ous during collaboration, which brings about a risk of privacy leak-
age, especially for privacy-sensitive data such as diagnostic
information of patients. As an emerging distributed learning
method, federated learning (FL) provides a new perspective to
overcome these problems. Instead of sharing the local original
data, it only shares the gradient information to train the global
model. Each agent (i.e., device or EN) utilizes local data for their
own training, and then, they upload their gradients to the aggrega-
tion node, which is responsible for performing federated aggrega-
tion to update the global model. For example, Huang et al. [9]
proposed a collaborative computation offloading scheme between
small cell base stations based on federated DRL. By optimizing the
offloading decision and interaction coordination, the minimum
total energy consumption was obtained, which not only reduces
the communication overhead in the training process but also pro-
tects the security of local training data in each small cell base sta-
tion. In the research on edge computing for IoT, many good
solutions for resource optimization are investigated, but the devel-
opment of an intelligent, efficient, and secure resource optimiza-
tion scheme still faces the following three challenges:

(1) Some of the current existing schemes have a simple opti-
mization of resources and control factors. For example, they opti-
mize offloading decision or caching decision with limited
consideration of resources allocation; others have a more compre-
hensive consideration, but they are based on ideal scenarios. For
example, the selected offloading nodes are always idle with no
competitive relationship between them. Moreover, most of them
assume that neighbor nodes voluntarily contribute their resources
for free.

(2) Some schemes with collaboration considerations employ
incentive mechanisms to strengthen the motivation of nodes to
participate in collaboration. However, not all neighboring nodes
are suitable as collaboration candidate nodes, that is, the collabora-
tive nodes are not reasonably screened, thus reducing the quality
of collaboration. In addition, the security of the collaboration is
not guaranteed.

(3) Federated DRL-based algorithms in existing works are effec-
tive, but most of them employ simple average aggregation without
accurately expressing the contribution of each agent to the system,
and the training effect urgently needs to be improved.

Inspired by the above challenges, we propose a novel scheme,
that is, an incentive-aware blockchain-assisted intelligent edge
128
caching and computation offloading scheme for IoT, the specific
contributions of which are as follows:

(1) With the aim of minimizing the total cost for completing all
tasks in the EN, we jointly optimize the offloading decision, caching
decision, computing resource allocation, and bandwidth allocation,
in which the total cost includes delay, energy consumption, and
collaboration costs. This approach achieves a comprehensive opti-
mization of resources and control factors in the whole network and
makes full use of collaboration between ENs to further improve
resources utilization. Moreover, the pricing rule of collaboration
cost based on task preference is more practical.

(2) Furthermore, we propose a blockchain incentive and contri-
bution co-aware federated deep reinforcement learning (BICC-
FDRL) algorithm, with an incentive-aware blockchain-assisted col-
laboration mechanism developed for local training. This mecha-
nism can encourage all ENs to actively participate in
collaboration with security guarantee. In this mechanism, we
design a novel incentive method with low communication cost,
and all qualified candidate ENs compete to become the final
collaborator to obtain benefits.

(3) Particularly, to express the contribution of each agent in an
accurate and direct way during the federated aggregation of BICC-
FDRL, we present a contribution-based federated aggregation
method. Through this method, the outstanding agents receive
more attention. As a result, the training effect of the global model
can be improved.

Finally, the experimental results verify that our proposed
scheme has sufficient advantages in terms of caching performance,
total cost reduction, and optimization utility.

The remainder of this article is organized as follows. Section 2
describes related works. The system model is constructed in Sec-
tion 3, and the problem formulation is presented in Section 4. In
Section 5, we design a BICC-FDRL algorithm. Subsequently, we pre-
sent the performance evaluation in Section 6. Finally, conclusions
are drawn in Section 7.
2. Related work

In recent years, edge computing for IoT has surged in popular-
ity, and extensive works about its performance improvement via
resource optimization have emerged. From the perspective of opti-
mization variables (control and allocation of network resources),
Refs. [10–15] minimized the cost of task completion. With joint
optimization of offloading, computing, and communication
resources, Chen et al. [10] minimized the energy consumption of
completing tasks by using a dynamic voltage scaling technique
and alternating minimization algorithm. Similarly, Malik and Vu
[11] integrated wireless charging and computation offloading to
minimize the energy consumption of the system. In view of the
limited caching resource in EN, Liu et al. [12] developed a popular
data caching scheme in edge computing that can find the approx-
imate maximum caching revenue of a service provider by optimiz-
ing the caching decision. From a more comprehensive perspective,
Refs. [13–15] took full advantage of computation offloading and
caching to improve system performance. To minimize the average
energy consumption of all users, Chen and Zhou [13] proposed a
scheme with optimal offloading and caching decisions by employ-
ing a dynamic programming-based algorithm. Bi et al. [14] and
Zhang et al. [15] jointly optimized offloading, service caching,
and allocation of computing and communication resources. To
minimize the weighted sum of delay and energy consumption, Bi
et al. [14] solved the optimization problem in two steps: First, they
derived a closed expression with optimal resource allocation and
then optimized offloading and caching decisions with an alternate
minimization algorithm. For multiusers with a multitask mobile



Q. Wang, S. Chen and M. Wu Engineering 31 (2023) 127–138
edge computing system, Zhang et al. [15] investigated an algorithm
based on semidefinite relaxation and alternating optimization to
minimize system cost. The above studies improve the efficiency
of task completion by utilizing the computing and caching capabil-
ities of the EN, but the capability of a single EN is limited. In addi-
tion, if each EN only provides services for its local users, it will lead
to an imbalanced workload and waste of resources.

To fill the above gap, Refs. [16–19] leveraged collaboration
between ENs to further improve the utilization rate of resources
and balance the workload. Ma et al. [16] and Zhong et al. [17]
aimed to minimize the completion time of tasks. Ma et al. [16]
investigated collaborative service caching and computation
offloading among ENs, which optimizes the caching decision and
offloading ratio of the task by a Gibbs sampling-based iteration
algorithm. This scheme can adapt well to the heterogeneity of
ENs. The collaboration scheme proposed in Ref. [17] is similar to
that in Ref. [16], with additional consideration of resource alloca-
tion, and a modified generalized Benders decomposition algorithm
was proposed to solve the optimization problem. To minimize the
total delay and energy consumption of all users, Feng et al. [18]
studied the collaborative data caching and offloading of neighbor-
ing ENs that can share caching data and computing resource, thus
improving quality of service for users. Unlike the previous conven-
tional collaboration caching between ENs, Yuan et al. [19] focused
on the optimal number of collaborative ENs and forwarding
groups, and an improved alternating direction multiplier method
was proposed that can obtain the maximum cache hit rate with
the constraint of low collaboration cost. These studies improve
the utilization rate of network resources, but they assume that
the service providers volunteer to provide computing or caching
services to the requester. In fact, they are less motivated to partic-
ipate in the collaboration process without an incentive.

In light of the shortcomings in the above studies, incentive
mechanisms were designed in Refs. [20–24] to improve the
collaborative motivation of users, ENs or clouds, which allows
participants to benefit from it. An incentive mechanism between
the cloud service operator and edge server was developed in Ref.
[20]; furthermore, the authors designed a computation offloading
scheme by jointly optimizing the offloading decision of the cloud
operator and the payment of the edge server, so that it can maxi-
mize their utilities and achieve Nash equilibrium. Hou et al. [21]
presented an edge-end incentive-driven task allocation scheme
to maximize the system utility. In terms of the profiles and impor-
tance of the task in the device, it could be offloaded to its local edge
server, a neighboring edge server, or a device cluster within the
coverage of the same local edge server. In Ref. [22], the authors
made full use of the computing resources of idle edge gateways
and mobile devices, which formed edge clouds. Specifically, a
resource trading model between edge clouds and mobile devices
was built, which aims to maximize the profits of edge clouds and
meet the computing requirements of mobile devices by leveraging
market-based pricing and auction theory. Luo et al. [23] designed
an efficient incentive mechanism in a device-to-device (D2D) net-
work. According to the coalitional game, it established multiple
micro-computing clusters among devices to achieve collaborative
task computing, which enables each device to benefit from assist-
ing in computing or relay and effectively reduces the global cost of
the system. Additionally, for a D2D network, Zhang et al. [24]
investigated a collaborative cache based on a multi-winner auc-
tion, which can obtain the maximal content caching revenue of
all users with the optimal offloading and payment strategies and
guarantee the profit fairness of auction winners. These schemes
arouse network motility by designing an incentive mechanism
(i.e., the nodes in the network can actively interact and make full
use of the resources). However, the solving methods they proposed
are all based on traditional iterative mathematical programming or
129
game theory, the prerequisite of which is strict to obtain the opti-
mal solution, making it unsuitable for dynamic and complex net-
work environments. In addition, collaboration between nodes is
neglected.

To construct a security- and intelligence-enabled network for
adapting to dynamic and complex network, a machine learning-
based approach was introduced. In Refs. [25–29], they combined
the autonomous learning ability of DRL and the secure distributed
computing of FL, which can overcome the drawbacks of the above
schemes. For example, Refs. [25–27] proposed a double deep Q-
network based FL algorithm. Zarandi and Tabassum [25] regarded
a device as the agent and performed federated aggregation at the
EN, it achieves task completion cost minimization on the terminal
side by jointly optimizing offloading decision and the allocation of
computing and communication resources. Study in Ref. [26] is sim-
ilar to Ref. [25], and it had more detailed research and analysis on
DRL and FL. Moreover, it gave additional consideration to caching
optimization. Ren et al. [27] designed a reward and penalty mech-
anism between ENs and devices (i.e., devices will pay rewards to
the EN that provides computing service, but the EN will be pun-
ished for task computing failure). This mechanism achieves the
minimization of device payment by optimizing offloading decision
and the allocation of energy units. Although FL can protect data
privacy by keeping data locally, agents are vulnerable to malicious
attacks in the process of uploading gradients. To further enhance
data privacy protection, Cui et al. [28] introduced blockchain tech-
nology into FL and designed four smart contracts for each agent to
ensure the security of their data. In addition, they compressed the
gradient information uploaded by agents to reduce the communi-
cation overhead of aggregation and finally obtain excellent perfor-
mance on the cache hit rate and security by optimizing the caching
decision. The incentive idea also exists in blockchain technology,
and Yu et al. [29] mentioned in their future work that the utiliza-
tion of incentive idea in blockchain for resource borrowing not only
strengthens the security of participant interactions but also plays a
role in efficient resource utilization.

Based on the analysis of the aforementioned studies, we can see
that they have their own advantages and provide us with great
inspiration. However, these schemes still have room for improve-
ment in the efficient utilization of resources and solution effects.
It is not only necessary to comprehensively optimize the resources
and control in the entire edge network but also very important to
provide a secure and intelligent collaboration scheme with coexis-
tence of competition and collaboration, which will bring about a
significant improvement to system performance.
3. Network model

With the rapid development of IoT and AI techniques, various
intelligent applications have been developed extensively, such as
vehicle routing optimization in smart transportation and health
monitoring in smart healthcare. These applications have led to
the explosive growth of data generated by sensors, and users
appear to have more stringent requirements for service delay
and privacy protection [30]. Inspired by this, we design an
incentive-aware blockchain-assisted intelligent edge computation
offloading and caching model. As illustrated in Fig. 1, this model
includes three layers: the user layer, edge layer, and cloud layer.
The coverage area of the entire network is divided intoM subareas,
and each subarea includes N users and one EN, therefore, there are
M � N users in the user layer andM ENs with certain capabilities of
caching and computing in the edge layer.

When each user sends task requests to its local EN over the
wireless link, the EN can either directly provide services to its local
users or send requests for result sharing/computation offloading to



Fig. 1. Incentive-aware blockchain-assisted intelligent edge computational offloading and caching model. M: the number of subareas.

Q. Wang, S. Chen and M. Wu Engineering 31 (2023) 127–138
the neighboring EN, because neighbors can collaborate with each
other. Moreover, to improve their motivation to participate in a
beneficial and secure manner, incentive-aware blockchain-
assisted collaboration is formed between ENs. In the process of
their collaboration, the cloud center in the cloud layer will deploy
the corresponding smart contract, which sets the trading rules for
result sharing and computation offloading. The specific functions
of each layer are defined as follows.

(1) User layer. Each user can generate one computation task at
time slot t, and the same category task can be generated by multi-
ple users. We denote that the task set generated by the whole user
layer at a time slot t is C ¼ 1;2; ::: ; Ff g, that is, there are F cate-
gories of tasks. Due to the limited capabilities of users themselves,
these tasks may be sent to their local ENs for efficient processing,
so we define that the task set received by the EN m is
Cm,m 2 M ¼ 1;2; ::: ;Mf g, M is the set of ENs.

(2) Edge layer. The edge layer is composed of M ENs, which are
equipped with servers that have certain caching and computing
capabilities. Here, ENs are regarded as agents, and they can use
information collected from local users for model training. As the
capability of a single EN is limited, neighbors can assist each other
in improving the efficiencies of task processing and resource uti-
lization, and it is beneficial for ENs that apply an incentive-aware
blockchain-assisted collaboration model to this process. Specifi-
cally, when the EN receives the service request from the local user
layer, if the result has been cached, then it will be returned directly
to the user (i.e., a cache hit). Otherwise, the EN will send the
request to the cloud center to seek result sharing from neighboring
ENs, as a result, it will obtain an address of a tradable EN. Accord-
ing to the smart contract, it will pay the corresponding result shar-
ing payment to the neighbor EN after receiving the result. If the
result of the task is not cached anywhere, then the EN will decide
whether to process it locally or offload to a neighboring EN. If the
task needs to be offloaded, then it is similar to the process of cache
sharing (i.e., sending a request to the cloud center for offloading
task to a neighboring EN). Eventually, the EN will obtain the result
and return it to the user. After each EN trains its model with local
data, it uploads its model parameters to the cloud center for
aggregation.
130
(3) Cloud layer. The cloud center of the cloud layer has two
main functions: ① It assists collaborations between ENs and
deploys smart contracts for them, which can be executed automat-
ically, and ② it aggregates the model parameters of each EN.
Specifically, when an EN sends a request of result sharing or com-
putation offloading, the cloud center will broadcast its request to
the entire blockchain network after its identity is verified to be
legitimate and return the address of a tradable neighbor to the
requesting EN. At the same time, the corresponding smart contract
(trading rules) is deployed for the transaction between them. In
addition, the cloud center is responsible for aggregating the train-
ing model parameters collected from ENs and then forwarding the
aggregated parameters to each EN, which aims to update the local
models in ENs.

3.1. Caching model

To return results to users as soon as possible and relieve the
computing pressure of the EN, caching some results in the EN is
a good approach. Furthermore, caching the computation result
rather than the task itself not only saves the caching space but also
improves the privacy protection of the users’ original data. How-
ever, due to the limited caching space of the EN, it is impossible
to cache all the computation results. Therefore, we consider results
sharing between ENs to alleviate the above problem. Moreover, to
improve the cache hit rate of results, they will be replaced regu-
larly in ENs according to their popularities and preferences. The

caching decision of task f is defined as af
m, if af

m ¼ 1, then it indi-

cates caching the result of task f in EN m; otherwise, af
m ¼ 0. The

detailed model of global popularity and EN preference for tasks
are presented as follows.

In the beginning, the EN will cache computation results with
high popularity in its cache pool in advance. The global popularity
of tasks across the network follows the Mandelbrot Zipf distribu-
tion [31], which is defined as

Pf ¼
Of þ s
� ��rP
i2C Oi þ sð Þ�r ; 8f 2 C ð1Þ



Q. Wang, S. Chen and M. Wu Engineering 31 (2023) 127–138
where Pf is the global popularity of task f. Of and Oi represent the
ranking of the results for tasks f and i in descending order of global
popularity, respectively. s is denoted as the plateau factor, r is the
skewness factor, and i is the ith category task in C.

For EN m, we assume that the probability of receiving the ser-
vice request of task f is dfm (

P
m2Mdfm ¼ 1), and the preference of

task f is Pm
f ¼ Nf

m=N, which satisfies
P

f2Cm
Pm
f ¼ 1 and Pm

f ¼ Pf d
f
m,

and Nf
m is the number of task f received by EN m. We denote the

quantity set of all tasks received by EN m as Nm ¼ Nf
m

� �1�F
.

When the result is not cached locally but in neighbors, with the
aim of obtaining the result, the local EN pays the tradable neighbor
EN n for the corresponding payment of result sharing, which we
term the result sharing cost. The specific definition about the result

sharing cost of task f (Rcache
f ) is as follows:

Rcache
f ¼ kcachef e�Pnf kf ; n 2 Mn mf g ð2Þ

where kcachef represents the weight coefficient of the result sharing

payment. Specifically, e�Pnf is viewed as a unit result sharing cost,
which is inversely proportional to the preference of task f in EN n.
kf is the result size of task f.

3.2. Local model

When none of the ENs caches the result of task f , it is necessary
to make an offloading decision xnm;f for task f. If 8n 2 Mnfmg,
xnm;f ¼ 0, then task f will be computed at local EN m. We define
the size of task f as sf (bits), the central processing unit (CPU)
cycles requested to complete the computation of task f as df

(cycles), and the size of the computation result as kf (bits). The
completion time of task f at local EN m can be written as

tmf ¼ df

bf
mum

ð3Þ

where um (cycles per second) is the computing capability of EN m,
and bf

m is denoted as the ratio of computing resource allocated to
task f .

Consequently, the computing energy consumption emf
� �

of task

f is as follows:

emf ¼ pc
mt

m
f ð4Þ

where pc
m is the computing power of EN m. Therefore, the cost of

completing task f locally (Rlocal
f ) can be represented as

Rlocal
f ¼ 1�

X
n2Mnfmg

xnm;f

 !
ktf t

m
f þ kef e

m
f

� �
;n 2 Mnfmg ð5Þ

where ktf and kef are the weight coefficients of time and energy costs,
respectively.

3.3. Offloading model

When xnm;f ¼ 1, task f is offloaded from EN m to neighbor EN n.
Particularly, there is no need for EN m to transmit task f to EN n
when both EN m and n receive the service request of task f from
their own local users at the same time slot t. In this way, ENm only
needs to give a certain service payment Rcom

f to the neighbor EN n
for providing computing service, the payment of which is defined
as

Rcom
f ¼ kcomf e�Pnf df ð6Þ
131
where kcomf represents the weight coefficient of the computation
service sharing cost.

Otherwise, task f needs to be transferred to neighbor EN n, and
its transmission time and the corresponding energy consumption
are given as follows:

tnf ¼ sf
vn

m;f

; f R Cm \ Cn ð7Þ

enf ¼ pt
m

sf
vn
m;f

; f R Cm \ Cn ð8Þ

where pt
m is the transmission power of ENm, and vn

m;f represents the
transmission rate of task f between EN m and n, which is defined as

vn
m;f ¼ cfmB

n
mlog2 1þ pt

mhm
2

wml
n
mc

f
mB

n
m

 !
ð9Þ

where cfm is the bandwidth ratio allocated to task f ; Bn
m is the

bandwidth size between EN m and n; hm and wm are the channel
gain and noise of EN m, respectively; and lnm is the distance
between m and n.

Therefore, the offloading cost of task f is represented as

Rn
m;f ¼

X
n2Mnfmg

xnm;f �
ktf t

m
f þ kef e

m
f þ Rcom

f ; f R Cm \ Cn

Rcom
f ; f 2 Cm \ Cn

(
ð10Þ
4. Problem formulation

According to the above model constructions and related defini-
tions, in this incentive-aware blockchain-assisted edge computing
network, as an important metric for system performance, the cost

C af
m; xnm;f ; b

f
m; c

f
m

� �
of completing task f 2 Cm includes the costs of

delay, energy consumption, and collaboration, which is defined as

C af
m; x

n
m;f ;b

f
m; c

f
m

� �
¼ 1� afm
� �

1� afn
� �

Rlocal
f þ Rn

m;f

� �
þ afnR

cache
f ð11Þ

where af
m and af

n denote the caching states of task f ’s result in EN m

and the neighbor EN n, respectively. af
m is represented as

afm ¼ 1;af
m t � 1ð Þ ¼ 1

0;af
m t � 1ð Þ ¼ 0

(
ð12Þ

where af
m t � 1ð Þ is the caching decision of task f at the previous time

slot, and we define am ¼ afm
� �1�F

.

Consequently, the formulated optimization objective is shown
in Eq. (13), which aims to minimize the total cost for completing
all tasks received by EN m. By jointly optimizing caching decision

af
m, offloading decision xnm;f , and the allocated ratios of computing

and communication resources (i.e., bf
m and cfm), the optimization

problem is formulated as follows:

min
afm ;xn

m;f
;bfm ;cfm

X
f2Cm

C af
m; x

n
m;f ; b

f
m; c

f
m

� �
ð13Þ

s:t: tfm � tmax
m ð13aÞ

efm � emax
m ð13bÞ

X
f2Cm

af
mkf � Cm ð13cÞ



Q. Wang, S. Chen and M. Wu Engineering 31 (2023) 127–138
X
f2Cm

1� xnm;f

� �
bf
m � 1 ð13dÞ

X
f2Cm

xnm;fc
f
m � 1 ð13eÞ

X
n2M

xnm;f � 1 ð13fÞ

afmx
n
m;f–1 ð13gÞ

af
m; x

n
m;f 2 0;1f g ð13hÞ

where Cm represents the maximum caching size of EN m.
To ensure the quality and efficiency of service, the delay and

energy consumption for completing task f should be constrained
(i.e., constraints Eq. (13a) and Eq. (13b)). Because the limited
resources (caching, computing, and bandwidth) of the EN are
shared by multiple tasks, we give constraints Eqs. (13c)–(13e) that
the total network resources allocated to all tasks do not exceed the
maximum value. From a practical view, constraint Eq. (13f)
demonstrates that task f can only be offloaded to at most one
neighbor EN, and constraint Eq. (13g) means that the caching state
and offloading decision of task f cannot be 1 simultaneously. The

constraint Eq. (13h) indicates that caching decision af
m and offload-

ing decision xnm;f are both restricted to either 0 or 1.
Obviously, the above optimization problem is a mixed integer

nonlinear optimization problem, and the variable dimension will
be high when the network environment changes dynamically,
and the number of users increases over time. As a result, it is diffi-
cult to solve directly by conventional methods, such as the gradient
descent mathematical programming method and alternating direc-
tion method of multipliers. Recently, machine learning became a
popular and vital artifice to solve this kind of resources allocation
and decisions optimization problem in dynamic and time-varying
networks, and it is viewed as an effective intelligent solving
method. In view of the benefits of DRL and FL, which combines
their characteristics of autonomic learning in complex and
dynamic network environment, and the secure distributed com-
puting, respectively, we will integrate these two machine learning
ideas to solve the optimization problem Eq. (13).

5. BICC-FDRL

In this section, we propose a novel solving algorithm (i.e., BICC-
FDRL algorithm, to achieve intelligent edge caching and computa-
tion offloading in the IoT). Inspired by the ideas of blockchain
incentives, advantage actor–critic (A2C), and FL, the proposed algo-
rithm mainly includes two parts: incentive-aware blockchain-
assisted local training and contribution-based federated aggrega-
tion, the detailed framework of which is depicted in Fig. 2.

First, as an independent agent, each EN uses local information
to train the local model by integrating the A2C concept. During
the local training, an incentive-aware blockchain-assisted collabo-
ration mechanism is developed to select appropriate collaborative
neighbor EN, which will improve EN’s motivation for participation
in a beneficial and secure manner. We assume that the total rounds
of local training in EN m is Tm, after EN m completes Tm training
rounds, all ENs will send their local model parameters and corre-
sponding average cumulative rewards to the cloud center simulta-
neously, which are utilized for aggregation operation and global
model update. The cloud center calculates the contribution ratio
of each EN as the aggregation weight of their model parameters
and then aggregates the parameters to obtain new global model
parameters. Finally, global model parameters are forwarded to all
132
ENs to update their respective models. The detailed design and
explanation of the above scheme are given in the following parts.

5.1. Incentive-aware blockchain-assisted local training

In general, we regard the joint optimization problem in the EN
as a Markov decision process. It simulates an agent (i.e., EN) per-
forming an action in the environment according to the current
state so that it can change the environment state and obtain a
reward. The process includes three key elements, which are
defined as follows:

(1) State. The state space of EN m at time slot t is defined as
Sm tð Þ ¼ Nm tð Þ; am tð Þ;wm tð Þ;Im tð Þf g, where Nm tð Þ represents the
number of tasks received by EN m, and am tð Þ is the cache state of
EN m. wm tð Þ and Im tð Þ denote the remaining caching and comput-
ing resources in EN m, respectively, which are defined as

wm tð Þ ¼ Cm �
X
f2Cm

af
mkf ð14Þ

Im tð Þ ¼ 1�
X
f2Cm

1� xnm;f

� �
bf
m ð15Þ

(2) Action. We describe the action space of EN m at time slot t
as Am tð Þ ¼ am tð Þ; xm tð Þ; bm tð Þ; cm tð Þf g, which consists of caching
decision set am tð Þ, offloading decision set xm tð Þ, and the allocated
computing and bandwidth resource sets bm tð Þ and cm tð Þ. They are
correspondingly defined as

am tð Þ ¼ a1
m tð Þ;a2

m tð Þ; ::: ;aF
m tð Þ� � ð16Þ

xm tð Þ ¼ xmm;1 tð Þ; xmm;2 tð Þ; ::: ; xmm;F tð Þ
n o

ð17Þ

bm tð Þ ¼ b1
m tð Þ;b2

m tð Þ; ::: ; bF
m tð Þ� � ð18Þ

cm tð Þ ¼ c1m tð Þ; c2m tð Þ; ::: ; cFm tð Þ� � ð19Þ
(3) Reward. The learning objective of EN is to maximize the

cumulative reward, while the objective of our optimization prob-
lem is to minimize the total cost. Therefore, we set the immediate
reward as a negative exponential of the total cost:

rm tð Þ ¼ e�
P

f2Cm
costf ; if Eq: 13að Þ � Eq: 13hð Þ

e; else

(
ð20Þ

where costf ¼ C af
m; xnm;f ;b

f
m; c

f
m

� �
, and e e < 0ð Þ is a penalty value

given by the specific environment. Therefore, the cumulative
reward is Rm ¼PTm

t¼1rm tð Þ.
In our scheme, each EN acts as a DRL agent and trains its model

based on local information. Inspired by the A2C concept, the
designed network architecture of the local model in Fig. 2 consists
of two subnetworks (i.e., the actor network and the critic network).
The actor network will select action according to the current state
and then interact with the environment. Then, the environment
will give reward rm tð Þ and transfer to the next state. Particularly,
reward rm tð Þ is obtained according to action Am tð Þ and A2C
blockchain-assisted collaboration mechanism. The critic network
is responsible for the action evaluation of actor network based
on the current and next states. Unlike the traditional A2C design,
our critic network uses the advantage function to evaluate actor
performance instead of a simple value function. Because the eval-
uation of the action is not just based on how well it is but also
depends on the environment improvement with the action.



Fig. 2. The framework of the BICC-FDRL. Rm: the average cumulative reward of completing tasks in ENm; �R: the sum of the average cumulative rewards of all edge nodes; hm:
the parameter of actor network in EN m; wm: the parameter of critic network in EN m; h: the parameter of actor network in the global model; w: the parameter of critic
network in the global model; Sm tð Þ: the state space of EN m at time slot t; Sm t þ 1ð Þ: the state space of EN m at time slot t þ 1; Am tð Þ: action space of EN m at time slot t;
phm Sm tð Þð Þ: the policy generated by actor network; Rm tð Þ: the cumulative reward of EN m at time slot t; V Sm tð Þð Þ : the value function of the current state; V Sm t þ 1ð Þð Þ: the
value function of the next state; K: the advantage function.

Q. Wang, S. Chen and M. Wu Engineering 31 (2023) 127–138
At time slot t, the actor network generates policy phm Sm tð Þð Þ
based on the current state Sm tð Þ of local EN m. Because the outputs
of the actor network are continuous values, the decisions of cach-
ing and offloading in Am tð Þ are discrete variables. Therefore, we
need to approximate the policy phm Sm tð Þð Þ so that the caching
and offloading decisions in it are converted into discrete values,
which are defined as

am tð Þ ¼ xm tð Þ ¼ 0;am tð Þ; xm tð Þ < 0:5
1;am tð Þ; xm tð Þ � 0:5

�
ð21Þ

With the aim of inspiring each EN to participate in result sharing
and computation offloading processes in a beneficial and secure
manner, we develop an incentive-aware blockchain-assisted collabo-
ration mechanism as described in Fig. 3. This mechanism will select
one neighbor EN that can provide service to local EN, and the value
of xnm;f will be determined.

According to current state Sm tð Þ and the action Am tð Þ, when the

result is not cached in local EN (afm ¼ 0) or local computing cannot
meet user requirements (xmm;f ¼ 0) , the tradable neighbor EN will
be selected for obtaining the task result, and then local EN will give
corresponding payment to the neighbor who provides the service.
Therefore, the reward rm tð Þ is calculated based on Am tð Þ and cost of
this collaboration mechanism. Different from other blockchain-
based incentive methods, our method is suitable for the scenario
in this paper. The implementation of this method is closely related
to edge caching and computing offloading, and they promote each
other. There are two collaboration cases between ENs, which are
explained as follows:

(1) Result sharing. By encouraging each EN to cache its pre-
ferred task results, this incentive-aware blockchain-assisted col-
laboration can not only meet the local demand but also help
other neighbors, thus improving cache utilization.

When the result is not cached in the local EN, the local EN will
send a request of result sharing to the cloud center. The cloud cen-
ter will broadcast its request across the whole blockchain network
after verifying that its identity is legitimate so that it can know
133
which neighboring ENs cache this result, that is,

afn tð Þ ¼ 1;n 2 Mnfmg. These neighboring nodes will become candi-
dates, which are sorted according to the preference of task f from
low to high.

Next, the cloud center deploys the smart contract for the trans-
action. That is, to save as much costs as possible, neighbor n with

the lowest result sharing cost Rcache
f will be chosen. According to

Eq. (2), Rcache
f is a negative exponential function of Pn

f . In other
words, EN m will choose the neighboring EN n with a higher pref-

erence for task f . Now, the costf in rm tð Þ is defined as costf ¼ Rcache
f .

Subsequently, ENs complete the legitimate transaction of shar-
ing results based on smart contracts. Then, the neighbor EN n
records the transaction process as a block. Finally, it will broadcast
this block to all candidates to reach a consensus. Compared with
broadcasting to all ENs, this method will reduce the communica-
tion overhead.

(2) Computation offloading. By encouraging the local EN to
select the tradable neighboring EN with a similar preference or
more sufficient computing resources for computation offloading,
this incentive-aware blockchain-assisted collaboration will
improve the task completion efficiency.

Similar to the process of result sharing, when task f in the local
EN m is offloaded to the neighboring EN for computing (i.e.,P
n2Mnfmg

xnm;f ¼ 1), the neighboring EN providing computation service

will be given a certain payment, but candidates are chosen in dif-
ferent ways. The neighboring ENs are arranged in descending order
according to the amount of available computing resources, and the
neighbors that exceed the average computing resource are
regarded as candidates. Then, the neighbor EN n with the lowest
offloading cost Rn

m;f is selected. From Eq. (10), we know that the
neighboring EN that receives the same request and has a higher
preference of task f is more likely to be selected. Now, the costf
in rm tð Þ is defined as costf ¼ Rn

m;f .
After the above process, reward rm tð Þ is given by the environ-

ment, and the environment state transfers to the next state
Sm t þ 1ð Þ. Next, we input the current state and the next state into



Fig. 3. Incentive-aware blockchain-assisted collaboration mechanism.

Q. Wang, S. Chen and M. Wu Engineering 31 (2023) 127–138
the critic network, and their value functions V Sm tð Þð Þ and
V Sm t þ 1ð Þð Þ are the outputs. Based on these, we can calculate
advantage function K as

K ¼ Q tð Þ � V Sm tð Þð Þ ð22Þ

Q tð Þ � Rm tð Þ þ qV Sm t þ 1ð Þð Þ ð23Þ
where Q tð Þ represents the expected value function after performing
action Am tð Þ at the current state Sm tð Þ, and q is a discount factor. If
K > 0, then it means that performing action Am tð Þ will bring a pos-
itive incentive to the system state. Moreover, the larger the K value
is, the greater the improvement in the network. In addition, the uti-
lization of the advantage function can reduce the variance in evalu-
ation and accelerate the convergence rate.

During the training, we use the Adam optimizer to update the
model parameters. The gradient of the policy loss function in the
actor network is expressed as Krhm logphm Sm tð Þð Þ, and the gradient
of the value loss function in the critic network is expressed as
KrwmV Sm tð Þð . Finally, the update processes of these two networks
are described as

hm ! hm þ gKrhm logphm Sm tð Þð Þ ð24Þ

wm ! wm þ lKrwmV Sm tð Þð Þ ð25Þ
where g and l are the learning rates of the actor network and critic
network, respectively.

5.2. Contribution-based federated aggregation

An important step in FL is the aggregation of model parameters.
That is, when each EN has been trained for several rounds, the ENs
that participated in FL will upload their trained model parameters
to the cloud center for aggregation simultaneously.

The most classic aggregation method is federated averaging
(FedAvg) aggregation [32], proposed by Google, which adopts a
simple average aggregation based on the training sample size of
the EN. The model parameter aggregation operation of FedAvg is
shown as follows:

h ¼
XM
m¼1

Km

M
hm ð26Þ
134
w ¼
XM
m¼1

Km

M
wm ð27Þ

where h and w are parameters of the actor network and critic net-
work in the global model, respectively. We assume that there are M
ENs participating in FL and the sample size of agent m is Km.

Generally, sample size is used as the basis for aggregation
because more training samples will introduce a better model
training effect. However, it is not inevitable. To depict the
model training effect of ENs more accurately, we consider uti-
lizing a more direct method (i.e., cumulative reward RmÞ. A
higher cumulative reward indicates that the network model
parameters of EN are better, and a greater contribution will
be made to the performance improvement of the future global
model.

Motivated by this, we design a contribution-based federated
aggregation method, which refers to the average cumulative
reward ratio Rm=R of EN. During federated aggregation, each
EN needs to upload their contribution and model parameters
to the cloud center, and the cloud center aggregates these
parameters to obtain the parameters of the global model, which
are defined as
h ¼
XM
m¼1

Rm

R
hm ð28Þ
w ¼
XM
m¼1

Rm

R
wm ð29Þ

where Rm ¼ Rm= Cmj j is the average cumulative reward of complet-

ing tasks, and R ¼PM
m¼1Rm . Moreover, the definition of contribution

avoids the unfair evaluation caused by the different number of tasks
in different ENs.

After the process of aggregation, the cloud center will forward
the aggregation parameters of the global model to each EN for
updating their local model. Each EN keeps learning until the model
converges to the optimal strategy.

To provide a clearer understanding of the solution processing
for the objective, we summarize it as Algorithm 1.



Q. Wang, S. Chen and M. Wu Engineering 31 (2023) 127–138
Algorithm 1. BICC-FDRL algorithm for edge caching and computa-
tion offloading.

Input: the total rounds of local training Tm

the total episodes of global training T
the global popularity of tasks Pf

the probability dfm of service request for task f
Output: Minimum total cost with optimal Am

�

Initialization: hm ¼ h, wm ¼ w
For episode l ¼ 1 to T do
For each EN m 2 M do
For t ¼ 1 to Tm do
Based on Sm tð Þ, perform Am tð Þ
Select collaborate neighbor EN n based on Am tð Þ and
costf of incentive-aware blockchain-assisted
collaboration mechanism
Obtain rm tð Þ and transfer to next state Sm t þ 1ð Þ
Perform Sm tð Þ ¼ Sm t þ 1ð Þ
Calculate K, the gradient of policy loss function
Krhm logphm Sm tð Þð Þ and the gradient of value loss
function KrwmV Sm tð Þð
Update hm and wm with Eqs. (24) and (25), respectively

End for
End for
Perform contribution-based federated aggregation based on
Eqs. (28) and (29)
Forward global model parameters to each EN, that is,
hm ¼ h, wm ¼ w

End for
Obtain the minimum total cost with optimal Am

�

Fig. 4. The reward convergence of the actor network with different learning rates.
6. Performance evaluation

In this section, we will evaluate the performance of the pro-
posed scheme by conducting simulation experiments, which
mainly consist of two parts: convergence analysis of the BICC-
FDRL algorithm in Section 6.1 and advantage analysis of the pro-
posed scheme in Section 6.2.

To construct simulations, we set M ¼ 7 ENs and N ¼ 25 users
within the communication coverage of each EN. For convenience,
each EN has the same computing capability and caching size (i.e.,
2:5 � 109 cycles�s�1 and 6 Mbit, respectively), and the bandwidth
between ENs is uniformly set to 100 MHz. There are F ¼ 50 tasks
generated by the whole user layer at time slot t, the range of the
task size is 30;50½ 	 Mbit, and the range of its result size is
300;500½ 	 Kbit. Moreover, the plateau factor and the skewness fac-
tor of task popularity are set to s ¼ �0:95 and r ¼ 0:50, respec-
tively. Particularly, we configure that the ENs have different
preferences and demands, this differentiated consideration can
reflect the heterogeneity of ENs.

For each EN, its actor network and critic network are both three-
layer fully connected neural networks, and the hidden layer with 64
units have a rectified linear unit (ReLU) activation function. In the
output layer of the actor network, the offloading and caching deci-
sions use softmax as their activation function,while others use a sig-
moid activation function. In addition, we add a two-layer fully
connected neural network as the shared input layer for the actor
andcritic networks,which is used to abstract complex systemstates.
The computational complexity of DRLmainly depends on the struc-
ture and theparameternumberof theneural network,which ismea-
sured by the requirement of floating-point operations (FLOPs). In
this paper, all the neural networks in our algorithm requires 0:20
million FLOPs (MFLOPs) to process a state input.
135
6.1. Convergence analysis of BICC-FDRL algorithm

In Fig. 4, we study the convergence of cumulative reward for
different learning rates of the actor network. It can be seen from
the figure that the convergence speed of the curve with g ¼ 10�5

is obviously lower than that of the other two curves with a higher
learning rate. Although the cumulative reward with g ¼ 10�4 con-
verges slower than that when g ¼ 10�3, the former is slightly more
stable, and their final convergence values are extremely close.
Actually, after many experiments, we find that the rapid learning
rate will become trapped in the local optimal solution and the slow
learning rate will not converge to the optimal solution in a finite
time. Therefore, in the following experiments, we set the learning
rate of the actor network to 10�4.

The influence of different network learning rates on the conver-
gence of loss is shown in Fig. 5. The loss function value can reflect
the training effect and stability of the model. As the model is
trained increasingly better, the loss decreases and eventually stabi-
lizes to a small value (the ideal loss is 0). When l ¼ 0:050 and
l ¼ 0:010, their loss convergence performance is obviously better
than that when l ¼ 0:001. Similar to the above analysis, a higher
learning rate has better convergence performance in a certain
range. Finally, we set l ¼ 0:050 after many experiments.

The convergence of loss for different aggregation methods is
depicted in Fig. 6. From the curves of the two aggregation methods,
the loss of our proposed contribution-based federated aggregation
is lower than that of FedAvg, which proves that our aggregation
method has a better model training effect. Because in our aggrega-
tion method, the EN with a good learning effect has great reference
value, it contributes more to the system and therefore has a greater
aggregation weight, which improves the global training effect in
the future and makes the policy more accurate.

The training effect with different numbers of aggregated ENs is
depicted in Fig. 7, that is, the number of ENs participating in feder-
ated aggregation is 3, 5, and 7. The model with seven participating
ENs has the highest cumulative reward. Furthermore, the oscilla-
tion amplitude of the three curves proves that more ENs participat-
ing in FL will make the model training more stable. As the number
of ENs increases, the global model learns more information in the
whole network (i.e., when more training samples are available,
the training works better). However, if too many ENs participate
in federated aggregation and upload their model parameters to
the cloud center, then a communication burden will occur.
Through more experiments, we find that the model convergence
performance does not change significantly when the number of



Fig. 5. The loss convergence of the critic network with different learning rates.

Fig. 6. The loss convergence of different aggregation methods.

Fig. 7. The training effect with different numbers of aggregated ENs.

Fig. 8. Hit rate of different caching schemes.

Q. Wang, S. Chen and M. Wu Engineering 31 (2023) 127–138
ENs reaches a certain value. In our network scenario, we set
M ¼ 7 ENs.

6.2. Advantage analysis of the proposed scheme

We will analyze the cache performance advantage of our pro-
posed scheme by comparing it with the other three caching
schemes, that is, least recently used (LRU), LRU-2, and least fre-
quently used (LFU).

As the hit rate and the total cost are the key evaluation metrics
to show the performance of caching schemes, the following simu-
lations will analyze the cache performance of the four schemes
from these two aspects. The definition of hit rate H is as follows:

H ¼
P

f2Cm
uf

Cmj j ð30Þ

where

uf ¼
0;
P

m2Mafm ¼ 0
1; else

(
ð31Þ

Fig. 8 shows the hit rate of different caching schemes with vary-
ing EN cache sizes. As the cache size increases, EN can cache more
results, so the hit rate of the four schemes increases gradually. The
hit rates ranked from high to low are our proposed scheme, LRU-2,
136
LFU, and LRU. The hit rate of LRU is the lowest, which is mainly due
to the popular results being replaced by the accidental unpopular
results. The third-ranked LFU caches the result with high request
frequency, which indicates a high preference, but it takes a long
time to learn well. The second-ranked LRU-2 combines the advan-
tages of LRU and first in first out, but it still cannot cache popular
results accurately. Our proposed scheme has the highest hit rate
because of its ability to cache results based on result popularity
and the preferences of different EN regions. Moreover, the
incentive-aware blockchain-assisted collaboration mechanism is
designed in our scheme, which motivates the willingness of ENs
to share results and then improves the hit rate.

Fig. 9 describes the total cost of different caching schemes with
the cache size of EN varying from 1 to 6 Mbit. Corresponding to
Fig. 8, the larger the cache size of the EN is, the higher the hit rate,
which saves the cost of completing the task. Therefore, the total
cost of the four schemes shows a decreasing trend, and our pro-
posed scheme is the lowest compared with others. In addition,
when the cache size reaches a certain value, the hit rate reaches
convergence, so the total cost will be stabilized.

According to the above simulations, we know that our proposed
scheme has a better caching performance, which brings about a
significant advantage to the total cost reduction.

To analyze the advantage of our proposed scheme from a
broader perspective, we compare it with three baseline schemes



Fig. 9. Total cost of different caching schemes.

Q. Wang, S. Chen and M. Wu Engineering 31 (2023) 127–138
(i.e., federated deep reinforcement learning-based cooperative
edge caching (FADE) [33], efficient and flexible management: a fed-
erated deep Q network approach (EFMFDQN) [34], and centralized
A2C). In FADE, it adopts a popularity-based caching method similar
to ours, but does not consider offloading decisions and other
resource optimizations. EFMFDQN jointly optimizes the offloading
decisions, bandwidth allocation ratio and transmit power by a
deep Q-network based FL algorithm. It should be noted that cen-
tralized A2C is the optimal baseline scheme with minimum total
cost under the ideal condition. Specifically, it regards the cloud
center as an agent, which collects the information of the whole
network to train the model centrally, and deploys the A2C algo-
rithm to optimize the total reward.

For the above four schemes, their total costsunder differentnum-
bers of tasks are compared in Fig. 10. The performance of our scheme
is close to that of centralized A2C and outperforms the other two
schemes. Specifically, when there are few tasks, the caching
resources of all ENs are sufficient to cache the results of these tasks
without local or offloading computation. Therefore, the total cost of
the other three schemes is lower than EFMFDQN, which does not
consider cache optimization. With the increasing number of tasks,
the advantages of our scheme become increasingly obvious. Since
the caching space of EN is finite, the total cost of FADE is the highest,
whichonly considers the cachingdecisionoptimization. This finding
occurs because our proposed scheme gives a more comprehensive
consideration of optimization factors (i.e., joint optimization of
Fig. 10. Total cost of different schemes under different numbers of tasks.

137
offloading decision, caching decision, computing and communica-
tion resources allocation). Moreover, we design an incentive-
aware blockchain-assisted mechanism that promotes collaboration
between ENs and reduces collaboration costs.

From a more intuitive perspective, we will use the optimization
utility to analyze the advantage of our proposed scheme, and the
optimization utilities of the four schemes are defined as follows:

UBICC-FDRL ¼ Clocal � C�
BICC-FDRL

Clocal
ð32Þ

UFADE ¼ Clocal � C�
FADE

Clocal
ð33Þ

UEFMFDQN ¼ Clocal � C�
EFMFDQN

Clocal
ð34Þ

Ucentralized A2C ¼ Clocal � C�
centralized A2C

Clocal
ð35Þ

where C�
BICC-FDRL, C

�
FADE, C

�
EFMFDQN; and C�

centralized A2C represent the opti-
mal total cost obtained by BICC-FDRL, FADE, EFMFDQN, and central-
ized A2C, respectively; and Clocal is the total cost of local computing.
UBICC-FDRL; UFADE; UEFMFDQN; andUcentralized A2C are the optimization util-
ities of the BICC-FDRL, FADE, EFMFDQN, and centralized A2C,
respectively.

From Fig. 11, we can observe that when the number of ENs
increases, the optimization utility will increase. Obviously, the
number of ENs increases implies that there are more caching and
computing resources in the network, which enhances collaboration
between ENs and then improves resource utilization. Moreover, as
the number of ENs increases, the number of ENs participating in
federated aggregation also increases, similar to Fig. 7, the training
effect will be improved. When there are nine ENs in the network,
the utility of our scheme is almost equal to centralized A2C and
significantly better than that of the other two schemes. This simu-
lation reveals that our scheme efficiently utilizes caching, commu-
nication and computing resources.

It is worth noting that, despite the centralize A2C has optimal
result in Figs. 10 and 11, our scheme is still meaningful. Specifi-
cally, in our scheme, A2C algorithm is combined with FL, it can sink
the training to the ENs, which alleviates the computing pressure of
the cloud center and communication pressure. Meanwhile, owing
to the training mode of FL, the model update only transmits the
model parameters instead of the training data, which has the effect
of privacy protection.
Fig. 11. The optimization utility of different schemes under different sizes of the
network.



Q. Wang, S. Chen and M. Wu Engineering 31 (2023) 127–138
7. Conclusions

In this paper, we propose an incentive-aware blockchain-
assisted intelligent edge caching and computation offloading
scheme for IoT. To minimize the total cost of completing tasks in
EN,weprovide a comprehensiveoptimizationof offloading, caching,
and resources allocation. Particularly, task preference-based pricing
rules are conducive for cost saving. Furthermore, to obtain the opti-
mal solution, we develop a BICC-FDRL algorithm. In this algorithm,
incentive-aware blockchain-assisted local training provides a
secure incentivemechanismfor encouragingENs to collaborate, that
is, incentive-aware blockchain-assisted collaboration mechanism,
all ENs participate in result sharing and computation offloading
actively for benefit. Moreover, for improving the training effect,
we design a contribution-based federated aggregation method by
paying more attention to ENs with large contributions. The numer-
ical results indicate that our proposed schemehas significant perfor-
mance advantages in terms of hit rate, total cost and optimization
utility compared with other baseline schemes, such as FADE and
EFMFDQN. The BICC-FDRL algorithm developed in our work is suit-
able for the scenario that all ENs have homogeneous learning mod-
els. However, this FL method has limitations when ENs have
heterogeneous learning models. In future work, we will investigate
a more efficient personalized FL with heterogeneous models.

Acknowledgments

This work was partially supported by the National Natural Science
Foundation of China (61971235), the China Postdoctoral Science
Foundation (2018M630590), the Jiangsu Planned Projects for Post-
doctoral Research Funds (2021K501C), the 333 High-level Talents
Training Project of Jiangsu Province, the 1311 Talents Plan of Nanjing
University of Posts and Telecommunications, and the Jiangsu Planned
for Postgraduate Research Innovation (KYCX22_1017).

Compliance with ethics guidelines

Qian Wang, Siguang Chen, and Meng Wu declare that they have
no conflict of interest or financial conflicts to disclose.

References

[1] Evans D. The Internet of Things: how the next evolution of the Internet is
changing everything. Report. San Jose: CISCO; 2011.

[2] Chen S, Zhu X, Zhang H, Zhao C, Yang G, Wang K. Efficient privacy preserving
data collection and computation offloading for fog-assisted IoT. IEEE Trans
Sustain Comput 2020;5(4):526–40.

[3] Wu F, Liu X, Li H, Fan Q, Zhu L, Wang X, et al. Energy–time efficient task
offloading for mobile edge computing in hot-spot scenarios. In: Proceedings of
the IEEE International Conference on Communications; 2021 Jun 14–23;
Montreal, QC, Canada; 2021.

[4] Zhang J, Hu X, Ning Z, Ngai ECH, Zhou L, Wei J, et al. Joint resource allocation
for latency-sensitive services over mobile edge computing networks with
caching. IEEE Internet Things J 2019;6(3):4283–94.

[5] Zhang L, Wu J, Mumtaz S, Li J, Gacanin H, Rodrigues JJPC. Edge-to-edge
cooperative artificial intelligence in smart cities with on-demand learning
offloading. In: Proceedings of the IEEE Global Communications Conference
(GLOBECOM); 2019 Dec 9–13; Waikoloa, HI, USA; 2019.

[6] Zhao L, Yang K, Tan Z, Song H, Al-Dubai A, Zomaya AY, et al. Vehicular
computation offloading for industrial mobile edge computing. IEEE Trans Ind
Inform 2021;17(11):7871–81.

[7] Zeng F, Chen Q, Meng L, Wu J. Volunteer assisted collaborative offloading and
resource allocation in vehicular edge computing. IEEE Trans Intell Transp Syst
2021;22(6):3247–357.

[8] Zhao Z, Feng C, Yang HH, Luo X. Federated-learning-enabled intelligent fog
radio access networks: fundamental theory, key techniques, and future trends.
IEEE Wirel Commun 2020;27(2):22–8.
138
[9] Huang X, Leng S, Maharjan S, Yan Z. Multi-agent deep reinforcement learning
for computation offloading and interference coordination in small cell
networks. IEEE Trans Veh Technol 2021;70(9):9282–93.

[10] Chen S, Zheng Y, Lu W, Varadarajan V, Wang K. Energy-optimal dynamic
computation offloading for industrial IoT in fog computing. IEEE Trans Green
Commun Netw 2020;4(2):566–76.

[11] Malik R, Vu M. On-request wireless charging and partial computation
offloading in multi-access edge computing systems. IEEE Trans Wirel
Commun 2021;20(10):6665–79.

[12] Liu Y, He Q, Zheng D, ZhangM, Chen F, Zhang B. Data caching optimization in the
edge computing environment. In: Proceedings of the IEEE International
Conference onWebServices (ICWS); 2019 Jul 8–13;Milan, Italy; 2019. p. 99–106.

[13] Chen Z, Zhou Z. Dynamic task caching and computation offloading for mobile
edge computing. In: Proceedings of the IEEE Global Communications
Conference; 2020 Dec 7–11; Taipei, China; 2020.

[14] Bi S, Huang L, Zhang YJA. Joint optimization of service caching placement and
computation offloading in mobile edge computing systems. IEEE Trans Wirel
Commun 2020;19(7):4947–63.

[15] Zhang G, Zhang S, ZhangW, Shen Z, Wang L. Joint service caching, computation
offloading and resource allocation in mobile edge computing systems. IEEE
Trans Wirel Commun 2021;20(8):5288–300.

[16] Ma X, Zhou A, Zhang S, Wang S. Cooperative service caching and workload
scheduling in mobile edge computing. In: Proceedings of the IEEE Conference
on Computer Communications; 2020 Jul 6–9; Toronto, ON, Canada; 2020. p.
2076–85.

[17] Zhong S, Guo S, Yu H, Wang Q. Cooperative service caching and computation
offloading in multi-access edge computing. Comput Netw 2021;189:107916.

[18] Feng H, Guo S, Yang L, Yang Y. Collaborative data caching and computation
offloading for multi-service mobile edge computing. IEEE Trans Veh Technol
2021;70(9):9408–22.

[19] Yuan P, Shao S, Geng L, Zhao X. Caching hit ratio maximization in mobile edge
computing with node cooperation. Comput Netw 2021;200:108507.

[20] Liu Y, Xu C, Zhan Y, Liu Z, Guan J, Zhang H. Incentive mechanism for
computation offloading using edge computing: a stackelberg game approach.
Comput Netw 2017;129:399–409.

[21] Hou W, Wen H, Zhang N, Wu J, Lei W, Zhao R. Incentive-driven task allocation
for collaborative edge computing in industrial Internet of Things. IEEE Internet
Things J 2022;9(1):706–18.

[22] Wang Q, Guo S, Wang Y, Yang Y. Incentive mechanism for edge cloud profit
maximization in mobile edge computing. In: Proceedings of the IEEE
International Conference on Communications (ICC); 2019 May 20–24;
Shanghai, China; 2019.

[23] Luo S, Chen X, Zhou Z, Chen X, Wu W. Incentive-aware micro computing
cluster formation for cooperative fog computing. IEEE Trans Wirel Commun
2020;19(4):2643–57.

[24] Zhang T, Fang X, Liu Y, Li GY, Xu W. D2D-enabled mobile user edge caching: a
multi-winner auction approach. IEEE Trans Veh Technol 2019;68
(12):12314–28.

[25] Zarandi S, Tabassum H. Federated double deep Q-learning for joint delay and
energy minimization in IoT networks. In: Proceedings of the IEEE International
Conference on Communications Workshops (ICC Workshops); 2021 Jun 14–
23; Montreal, QC, Canada; 2021.

[26] Wang X, Han Y, Wang C, Zhao Q, Chen X, Chen M. In-edge AI: intelligentizing
mobile edge computing, caching and communication by federated learning.
IEEE Netw 2019;33(5):156–65.

[27] Ren J, Wang H, Hou T, Zheng S, Tang C. Federated learning-based computation
offloading optimization in edge computing-supported Internet of Things. IEEE
Access 2019;7:69194–201.

[28] Cui L, Su X, Ming Z, Chen Z, Yang S, Zhou Y, et al. CREAT: blockchain-assisted
compression algorithm of federated learning for content caching in edge
computing. IEEE Internet Things J 2022;9(16):14151–61.

[29] Yu S, Chen X, Zhou Z, Gong X, Wu D. When deep reinforcement learning meets
federated learning: intelligent multitimescale resource management for
multiaccess edge computing in 5G ultradense network. IEEE Internet Things
J 2021;8(4):2238–51.

[30] Chen S, Yang L, Zhao C, Varadarajan V, Wang K. Double-blockchain assisted
secure and anonymous data aggregation for fog-enabled smart grid.
Engineering 2022;8:159–69.

[31] Hefeeda M, Saleh O. Traffic modeling and proportional partial caching for peer-
to-peer systems. IEEE/ACM Trans Netw 2008;16(6):1447–60.

[32] McMahan HB, Moore E, Ramage D, Hampson S, Arcas BA. Communication-
efficient learning of deep networks from decentralized data. In: Proceedings of
the International Conference on Artificial Intelligence and Statistics; 2017 Apr
20–22; Fort Lauderdale, FL, USA; 2017. p. 1273–82.

[33] Wang X, Wang C, Li X, Leung VCM, Taleb T. Federated deep reinforcement
learning for Internet of Things with decentralized cooperative edge caching.
IEEE Internet Things J 2020;7(10):9441–55.

[34] Guo YH, Zhao ZC, He K, Lai SW, Xia JJ, Fan LS. Efficient and flexible
management for Industrial Internet of Things: a federated learning
approach. Comput Netw 2021;192(4):108122.

http://refhub.elsevier.com/S2095-8099(22)00814-1/h0010
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0010
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0010
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0020
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0020
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0020
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0030
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0030
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0030
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0035
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0035
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0035
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0040
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0040
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0040
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0045
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0045
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0045
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0050
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0050
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0050
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0055
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0055
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0055
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0070
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0070
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0070
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0075
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0075
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0075
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0085
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0085
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0090
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0090
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0090
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0095
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0095
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0100
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0100
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0100
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0105
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0105
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0105
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0115
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0115
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0115
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0120
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0120
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0120
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0130
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0130
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0130
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0135
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0135
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0135
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0140
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0140
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0140
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0145
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0145
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0145
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0145
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0150
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0150
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0150
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0155
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0155
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0165
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0165
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0165
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0170
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0170
http://refhub.elsevier.com/S2095-8099(22)00814-1/h0170

	Incentive-Aware Blockchain-Assisted Intelligent Edge Caching and Computation Offloading for IoT
	1 Introduction
	2 Related work
	3 Network model
	3.1 Caching model
	3.2 Local model
	3.3 Offloading model

	4 Problem formulation
	5 BICC-FDRL
	5.1 Incentive-aware blockchain-assisted local training
	5.2 Contribution-based federated aggregation

	6 Performance evaluation
	6.1 Convergence analysis of BICC-FDRL algorithm
	6.2 Advantage analysis of the proposed scheme

	7 Conclusions
	ack16
	Acknowledgments
	Compliance with ethics guidelines
	References


