Engineering 33 (2024) 47-62

journal homepage: www.elsevier.com/locate/eng

Contents lists available at ScienceDirect

Engineering

Research

Safety for Intelligent and Connected Vehicles—Article

Semantic Consistency and Correctness Verification of Digital Traffic n

Rules

Check for
updates

Lei Wan?, Changjun Wang >*, Daxin Luo?, Hang Liu?, Sha Ma?, Weichao Hu"

2 Policy, Standard, and Patent Department, Intelligent Automotive Solution BU, Huawei Technologies Co., Ltd., Beijing 100094, China
b Research Institute for Road Safety of the Ministry of Public Security, Beijing 100062, China

ARTICLE INFO

Article history:

Received 27 August 2022
Revised 28 November 2022
Accepted 6 April 2023

Available online 14 August 2023

Keywords:
Autonomous driving
Traffic rules
Digitization
Formalization
Verification

ABSTRACT

The consensus of the automotive industry and traffic management authorities is that autonomous vehicles
must follow the same traffic laws as human drivers. Using formal or digital methods, natural language traf-
fic rules can be translated into machine language and used by autonomous vehicles. In this paper, a trans-
lation flow is designed. Beyond the translation, a deeper examination is required, because the semantics of
natural languages are rich and complex, and frequently contain hidden assumptions. The issue of how to
ensure that digital rules are accurate and consistent with the original intent of the traffic rules they rep-
resent is both significant and unresolved. In response, we propose a method of formal verification that
combines equivalence verification with model checking. Reasonable and reassuring digital traffic rules
can be obtained by utilizing the proposed traffic rule digitization flow and verification method. In addition,
we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.
The experimental findings indicate that our digital rules utilizing metric temporal logic (MTL) can be easily

incorporated into simulation platforms and autonomous driving systems (ADS).
© 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In recent years, there has been increasing interest in autono-
mous vehicles, particularly in regard to the traffic compliance of
autonomous driving systems (ADS). This interest stems from the
fact that autonomous vehicles are operated on public roads along-
side conventional vehicles. Traffic regulations, which serve as invis-
ible administrators in human society to ensure the safety and
efficiency of traffic flow, are absolutely essential. Thus, it is neces-
sary for relevant authorities to mandate that autonomous vehicles
adhere to human driver traffic laws. In addition, ADS should be gov-
erned by well-established regulations to ensure public safety [1-3].
However, the traffic rules described in natural languages for human
drivers are sometimes subjective and nondeterministic, making it
difficult for autonomous vehicles to adhere to them, as robots
always require objective and concrete digital rules.

Rule digitization is the process of converting regulations writ-
ten in natural language for human drivers into computer-
understandable digital equations. With digital traffic rules, traffic

* Corresponding author.
E-mail address: wcj121@sina.com (C. Wang).

https://doi.org/10.1016/j.eng.2023.04.016

management systems will be able to conduct automated compli-
ance reviews of motor vehicle driving behaviors, vastly improving
traffic management efficiency. At the same time, relevant govern-
ment departments will be able to conduct regulatory tests and
evaluations on autonomous vehicles to determine whether the
vehicles meet the requirements for driving on the road, and auton-
omous driving system development departments for car manufac-
turers will be able to use digital traffic rules.

It is notable that ensuring the consistency and correctness of
traffic rules expressed in machine language is an extremely impor-
tant and difficult topic. In this context, “consistency” indicates that
the digital traffic rules and natural language traffic rules are
semantically equivalent and describe the same vehicle behavior
and road environment, while “correctness” indicates that digital
rules can be accurately understood by machines while avoiding
the imprecise and difficult quantification of natural language rules
due to factors such as speaking skills, human experience, and hid-
den consensus. The consistency and correctness of digital traffic
rules must be ensured before such rules can be used to determine
illegal driving behavior and make decisions for ADS.

Nevertheless, natural languages and computer languages are
extremely distinct, and it is difficult to translate between them.

2095-8099/© 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2023.04.016&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2023.04.016
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wcj121@sina.com
https://doi.org/10.1016/j.eng.2023.04.016
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng

L. Wan, C. Wang, D. Luo et al.

Natural language processing (NLP) technology has been developed
for several decades [4,5]. Moreover, computational linguistics con-
siders the statistical or rule-based modeling of natural language
[6]. However, these technologies still fall short of expectations
when handling rigorous text such as traffic regulations [7]. Utiliz-
ing a formal verification method to validate digital rules during
the process of traffic rule digitization is therefore an important
and necessary step.

2. Related works
2.1. Digitization and the implementation of rules

Temporal logic (TL) is an excellent choice for achieving a suit-
able digital description of rules, due to its safety and expressive-
ness. TL consists of a collection of logical formalisms that can
describe the specific behavior of a system with finite states [8]. Tra-
ditional TLs include linear TL (LTL), computational tree logic (CTL),
CTL*, metric TL (MTL), and timed propositional TL (TPTL). LTL,
which is also known as propositional TL, can encode formulas with
temporal modal operators [9]. CTL uses a tree-like structure to rep-
resent the time model; it is always employed by certain model
checkers [10]. As a superset of CTL and LTL, CTL* is an advanced
form of branching-time logic [11]. TPTL is a type of propositional
TL that can be used for both natural language specification and for-
mal verification [12]. As an extension of TL, MTL [13,14] is fre-
quently used to describe the behavior and situation of an object
[15]. MTL is a flexible formal representation that can be used in
real-time systems [16] by utilizing a time-constrained version of
temporal operators. Real-time logic contains explicit references
to time. It can express behaviors based on quantitative timing
requirements [13,16,17], which is useful when describing the
behavior of a particular period.

In the higher order logic (HOL) proof assistant Isabelle, Rizaldi
and Althoff [18] specified certain highway traffic rules from the
Vienna Convention on Road Traffic in order to formalize traffic reg-
ulations. Using LTL, Esterle et al. [19] formalized traffic rules for
machine interpretability. Based on the German Road Traffic Regu-
lation, Maierhofer et al. [20] formalized interstate traffic regula-
tions. All of these examples are exceptional applications of TL.
However, they lack verification information to ensure that their
methods are beneficial to natural ADS.

Karimi and Duggirala [21] formalized certain traffic rules in the
California Department of Motor Vehicles (DMV) driver’s manual
and simulated the behavior of autonomous vehicles using the Carla
simulation tool. Although this work is an excellent implementation
of traffic regulations, it does not check the rule provisions for cor-
rectness. Using answer-set programming, Beck et al. [22] presented
an implementation of multiple tasks, including consistency testing,
diagnosis, and repair. However, this study did not evaluate traffic
regulations regarding the movement of the vehicle. Krasowski
and Althoff [23] also formalized marine traffic rules from the Con-
vention on the International Regulations for Preventing Collisions
at Sea (COLREGS) by employing TL and evaluating the digitized
rules with real data. Although this work is an admirable effort, it
lacks formal verification.

Esterle et al. [24] used formalized traffic rules represented in
LTL to verify the high-level behavior of an autonomous vehicle in
a semantic state space but skipped the formal verification phase
of the rules. Hannah et al. [25] proposed the use of predicate logic
to implement digital traffic rules in the field of industry standards.
In order to facilitate the methodical design of propositions and
logic, they categorized the descriptors in natural language as
behavior, operational design domain (ODD), and assumptions. This
method can precisely convert natural language text into predicate

48

Engineering 33 (2024) 47-62

logic; however, without systematically describing the scenarios,
the implicit meaning of the traffic rules is easily missed. In addi-
tion, there is no mention of a verification method for digital traffic
rules.

As stated previously, there are a variety of methods and logical
languages that can be used to describe traffic regulations, each
with distinct expressive capacities and forms of expression. How-
ever, the majority of methods lack a design flow that can be used
to digitally implement all traffic rules based on the characteristics
of traffic scenarios.

2.2. Formalized rules verification

This paper describes rules formalization as a mathematical
technique for implementing traffic rule models for ADS. It is abso-
lutely necessary to ensure the correctness of these models. Formal
verification is always used to ensure that a design conforms to a
precisely stated concept of functional correctness in the fields of
software engineering and integrated circuit design [26]. Formal
verification is advantageous for demonstrating the correctness of
a design, such as a software or hardware system, program, or
model. It is primarily accomplished through theorem proving,
model checking, and equivalent checking.

Theorem proving—also known as automated theorem proving—
is a method for proving mathematical theorems using computer
programs [27]. In the formal verification of digital traffic rule mod-
els, it is possible to formalize the models as mathematical equa-
tions, and then deduce the correctness of those equations using
an appropriate definition and theorem. Another method is model
checking, which is also known as property checking [28]. Before
a system or model is verified, it must be formalized as a finite-
state machine (FSM). By defining and programming a few proper-
ties, the machine can automatically check the FSM and identify any
issues [29,30]. To automatically verify the model and solve the ver-
ification problem algorithmically, both the system model and its
properties must be expressed in precise mathematical language.
The third method, equivalent checking, is primarily used in the
field of hardware verification, particularly in the development of
integrated circuit design [31]. Literally, an equivalence model with
the same function as the system model is created. In theory, these
two models should perform identically when both are accurate.

We have not discovered any methods or resources for validating
the correctness of a digital traffic rule. Thus, the methodology for
verification is the most innovative aspect of this paper. We refer
to formal verification techniques used in the design of integrated
circuits and propose a new semantic consistency and correctness
verification technique that is applicable to digital traffic rules.

2.3. Contributions

To ensure the consistency and correctness of digital traffic rules
and to fill a technical void in rule verification methodology, we
propose a formal verification method for digital traffic rules. In this
paper, we develop a closed-loop methodology that includes traffic
rule digitization, formal verification, and simulation testing. This
methodology can improve the authority, accuracy, and accessibil-
ity of digital traffic rules.

First, we propose a method for digitizing traffic rules that uses
MTL to easily convert existing traffic rules into digital rules. To
allow scenarios and violation conditions to be described hierarchi-
cally, we formulate multiple propositions at different levels and
define a comprehensive procedure for designing digital rules. This
methodology is applicable to numerous types of regulations and
reduces the bugs that may result from inadequate consideration.

The second objective of this paper is to determine how to
ensure the consistency and correctness of digital traffic rules.

L. Wan, C. Wang, D. Luo et al.

Combining equivalence verification with model checking, we pro-
pose a formal verification method to ensure that the digitized MTL
traffic rules are reasonable and reassuring. In a final application
example, we develop a simulation platform to test and validate
the proposed digital traffic rules.

We have developed a formal verification method for digital
traffic rules for the first time in the automative industry and have
successfully completed the formal implementation, verification,
and application of traffic rules in an autonomous driving
simulator.

3. Overview of the digitization, verification, and application
procedure

Fig. 1 provides a flowchart for the proposed digitization, valida-
tion, and implementation of traffic rules. The entire process can be
broken down into the following segments: (D digitize and formalize
traffic rules to obtain digital rules; @ formally verify the digital
rules to ensure their semantic consistency and correctness; and
@ apply digital rules to scenarios such as simulation, field testing,
and ADS on vehicles. First, MTL is used to formalize the traffic rules
and obtain MTL models, which are also known as digital traffic
rules. Digital traffic rules are translations of human drivers’ traffic
rules into a format that computers can understand. They typically
describe behaviors that are expressly permitted or prohibited,
regardless of how vehicles or pedestrians perceive or evaluate the
current environment. Indeed, vehicle behavior is frequently unpre-
dictable. When a vehicle is on the line of a road, for example, it can
be unclear which lane it belongs to. Sometimes this is because the
state description is too broad, and at other times it is because the
vehicle state must be artificially specified. In practice, we require
reasonable definitions in order to obtain specific states. In the field
of autonomous driving, formalized digital traffic rules will be used
as behavior standards or codes. This MTL model, for example, will
be utilized in ADS and will impact the driving decisions and behav-
ior of vehicles. Therefore, it is necessary to ensure the model’s cor-
rectness, which requires formal validation of the digital rules.
Formal verification of the digital rules is thus essential.

We combine model checking with equivalence checking in the
formal verification to ensure that the MTL model is consistent
and accurate. A state machine provides a powerful method for
modeling dynamic driving behavior. For each traffic rule, an FSM
is designed to describe its specification in order to ensure that
the behaviors are precisely expressed and understood. Because
the states of an environment and traffic participants are specified
in traffic rules, the transition between states can be expressed pre-
cisely using a state machine. The state machine is used in two

Engineering 33 (2024) 47-62

ways: First, the state machine and the MTL model are placed in
an equivalence checker to validate their behavioral consistency;
and, second, some properties that the MTL model should possess
are extracted from the state machine and then used for model
checking. The equivalence checker and model checker collaborate
to ensure the correctness of the MTL model. If any issues with a
digital rule are discovered during formal verification, the MTL
model must be modified. This procedure will continue until the
digital traffic rule is proven to be accurate.

The digital traffic rules are then implemented in various scenar-
ios where traffic rules must be checked, including but not limited
to D automatic driving simulation, which is used to determine
whether the driving trajectory of the tested vehicle or the planning
algorithm will result in illegal behavior; @ self-driving vehicle
testing, which uses instruments or algorithms at the test site to
determine whether the vehicle being tested violates the rules;
and @ autonomous vehicle operation, during which the planning
algorithm can use digital rules to determine the legality of its
planned routes, thereby preventing illegal driving.

Fig. 2 depicts a method for applying traffic rule digitization. To
determine whether a vehicle violates traffic laws, it is necessary to
implement not only digital traffic rules but also checker software
to parse the MTL model and perform calculations. A checker’s
inputs consist of environmental data (e.g., weather, road structure,
etc.), vehicle trajectory data, and vehicle status data (e.g., speed
and lighting data). The checker parses digital traffic rules in MTL,
determines whether the test subject violates the digital traffic rules
based on the input data, and outputs the traffic rule compliance
result.

The checker’s input information, including the environment,
trajectories, and status, can come from a variety of sources,
including perception algorithms, sensors, and simulation plat-
forms, depending on the application. In the simulation test, if
the only concern is whether the vehicle violates traffic rules,
the input data can be obtained directly from the simulation soft-
ware, as opposed to the output of the perception result of a vehi-
cle under testing, as we do in this paper. When a checker is
implemented in an autonomous driving system, the majority of
input data can only be gathered from sensors and perception
algorithms. In such cases, the precision of the perception algo-
rithms could diminish the precision of the compliance result.
This paper focuses primarily on the methodology of digitizing
traffic rules—that is, the process of designing digital traffic rules
and ensuring semantic consistency with laws and regulations
expressed in natural language.

It is notable that traffic behaviors occur in continuous space;
consequently, the calculation of traffic compliance should also be

Traffic rule digitization

Laws and
regulations

Digitize

No

Formal verification Application
_______________) @O
| | |
| |
| |
| | > |
| |
| |
| |
| |
1| |
T\ { : :
% o :
| |
Verify { : :
)] | |
Yes | | :
Pass? T :]
| |
| |
1 |
4 - 4

Fig. 1. The flow of the proposed traffic rule digitization.

49

L. Wan, C. Wang, D. Luo et al.

Engineering 33 (2024) 47-62

Environmental information

Laws and Digitization Digital traffic Apply
regulations rules Traffic rule
- Checker | compliance
result

Trajectories of vehicles
Status of vehicles

Fig. 2. The proposed digitalization of traffic regulations.

continuous. In practice, however, we adopt a discretization method
to facilitate calculation: We sample data at specific time intervals
and calculate the MTL digital rules at each sampling point. This
method significantly improves performance and simplifies soft-
ware development. Nevertheless, an excessively large sampling
interval may result in an error. For example, if the speeds at two
adjacent sampling points are normal, a potential over-speeding
behavior between the two sampling points would not be identified.
The interval’s value is a compromise between precision and
performance.

4. The methodology for digitizing traffic rule

A digital traffic rule consists of various propositions and opera-
tors. It can be viewed as a mathematical formula or model that
restricts the behavior of a vehicle in a particular environment.
Computers can parse and calculate the formula to determine
whether the tested vehicle’s behavior conforms to applicable regu-
lations. The propositions are the fundamental building blocks of
digital rules. In this paper, we propose a method for proposition
design that can accurately and completely describe the road envi-
ronment and the behavior of traffic participants.

TL in the metric system is used here to describe digital traffic
rules. The advantage of MTL is that it extends TL by employing
time-constrained versions of temporal operators, such as “until”
and “next” operators [32]. As a prominent specification formalism
for real-time systems [33], MTL is ideally suited for formalizing a
vehicle’s behavior-describing set of trajectory points. The principal
MTL operators are listed in Table 1.

The traffic rule specifications used in this paper come from the
Road Traffic Safety Law of the People’s Republic of China [34], Reg-
ulations on the Implementation of the Road Traffic Safety Law of
the People’s Republic of China [35], and Operating Specifications
for Safe and Civilized Motor Vehicle Drivers [36]. This paper’s pro-
posed digitization and verification methods can also be applied to
the traffic regulations of other nations and to a variety of other
types of regulations.

Table 1
The MTL operators.

Type Operator Description

Logical operators

- Not, negation
\ Or, disjunction

A And, conjunction

- Material implication, if.. .then. ..
u

Temporal modal Until, where Ujrgr1) means “from TO until

operators T1”
X Next
G Always, where Gtor1} means “always
happens in [TO, T1]”
F Future, where Firor1) means “will happen in

[TO, T1]”

TO: the start time of the operator’s scope; T1: the end time of the operator’s scope.

50

4.1. Grading and classification of propositions

A proposition represents a behavior that is declarative. Each
proposition p, where p € P and P is a set of propositions, represents
a Boolean statement. In other words, “a proposition is the non-
linguistic carrier of truth or falsity, rendering any sentence
expressing it either true or false” [37]. We formulate various
propositions based on the requirements for describing traffic sce-
narios. Using the six-layer scenario model of Pegasus [38], we clas-
sify propositions into the following six categories: road model,
infrastructure, temporary modification, status description, behav-
ior description, and environmental condition. Thus, we can create
propositions that describe the testing environment and scenario
in great detail. As shown in Table 2, we also creatively rank and
classify the propositions to make the digital approach more
hierarchical.

The nesting and calling of hierarchical or graded propositions
are facilitated by their hierarchical or graded nature. Low-level
propositions are used to compose high-level propositions, while
programming languages implement the lowest-level propositions.
Table 3 provides a comparison example describing the same rule
using two distinct methods. Using hierarchical propositions can
obviously make the rule simpler, more direct, and more easily
understood. Low-level propositions can be simultaneously reused
in multiple different high-level propositions, resulting in efficient
implementation.

4.2. The digitization of a traffic rule

Given the set P of propositions defined above, any traffic rule ¢
can be formulated using MTL. Each digital traffic rule comprises
propositions and operators. The result of digitizing traffic

Table 2
Proposition hierarchy and examples.

Category Level Proposition example Description
Environmental 0 envWeather Environmental and
condition weather information

Status description 0 stProperDist Moving targets and

traffic participant

status
stProperSpeed -
stPosition -
stLampStatus -
Behavior 0 actTurn Moving targets and
description traffic participant
behavior
1 actCross -
actSurpass —
2 actOvertake -
Temporary 0 tmpRoadMaintenance Facilities and events
modification over time
Infrastructure 0 underSign Road facilities and
traffic signs
Road model 0 onRoadType Road geometry

information

L. Wan, C. Wang, D. Luo et al.

Table 3
Comparison of various digitization techniques.

Rule No speeding when overtaking

(—stObjPosition(Ego, Obj, Ahead)

No hierarchical
propositions

A X(stObjPosition(Ego, Obj, Ahead)))

A F(stObjPosition(Ego, Obj, SameLane))

AFi_1 0/ (stObjPosition(Ego, Obj, SameLane))

— stProperSpeed

actOvertake — stProperSpeed

actOvertake £ actSurpass(Ego, Obj)

A F(stObjPosition(Ego, Obj, SameLane))

AF(_r,0(stObjPosition(Ego, Obj, SameLane))

actSurpass(Ego, Obj) £ - stObjPosition(Ego, Obj, Ahead)

A X(stObjPosition(Ego, Obj, Ahead))

With hierarchical
propositions

T: the length of time; [T, 0]: a period of time of length T that has just passed.

rules—which we refer to as digital traffic rules—is a formula (called
the MTL model) that describes permissible or prohibited behavior.
Fig. 3 depicts a step-by-step process for digitizing a traffic rule. This
methodology can simplify and expedite the digitization process
while preventing the omission of conditions that lead to errors in
digital rules.

First, as in step 1 in Fig. 3, normalize the traffic rule described in
natural language to obtain a quantitative description that is easy
for computers to parse. Second, as in steps 2 and 3, our method
adheres strictly to the six-layer scenario model when describing
the traffic scenario. Using static and dynamic propositions to
describe the scenario, it is possible to obtain the environment sta-
tus and behavior status of each traffic participant. Third, as in steps
4 and 5, use propositions to describe the judgment conditions cor-
responding to the traffic rules, thereby obtaining the final digital
traffic rules. Following step 5, the output is the digital traffic rule,
which is an MTL statement that can also be viewed as a formula
or program code.

Engineering 33 (2024) 47-62

Fig. 3 depicts a method for easily and quickly digitizing a traffic
rule and ensuring that the digitized rule is logically clear and
semantically complete. Table 4 [34,36] contains two examples of
results from digitization. The contents of Table 4 correspond to
each step’s output in Fig. 3, and the output of step 5 is the final dig-
ital traffic rule. These two digital traffic rules will also be utilized in
the formal verification and simulation tests that will follow.

Table 4 displays normalized rules, which are quantitative repre-
sentations of rules in natural language. This allows us to utilize con-
venient temporal and procedural expressions when describing
traffic regulations. Example 1 describes a traffic rule regarding
maintaining a safe distance between vehicles. Due to the difficulty
of describing subjective things in programming languages, we
transform them into objective representations, which necessitates
the introduction of distance measures. In this instance, we define
safe distance using time headway (THW) [39,40]. The traffic rule
in example 2 restricts lane-changing behavior. Similar to example
1, we evaluate the rationality of continuous lane-changing behavior
using time intervals. When evaluating digital traffic rules in MTL
format, the results of the propositions must first be calculated using
the trajectory information of each participant in the scenario; only
then can the MTL result be obtained.

5. Formal verification of traffic rules

As stated previously, digital traffic rules must be correct and
semantically consistent with human driver traffic rules. As a result,
we propose the formal verification method shown in Fig. 4. This
paper improves the traditional methods of theorem proving and
model checking for traffic rule verification. Theorem derivation
and verification are more suited to theorem proofs. Rizaldi et al.
[41] used Isabelle/HOL to formalize and verify digital traffic rules.
However, this method requires numerous definitions of fundamen-
tal concepts, and it is only useful for certain types of traffic

(
: Step 2:
: static description

(
: Step 3:
: dynamic description

(
| Step 4:
: checking condition

(
: Step 5:
: rule design

Fig. 3. The traffic rule digitization flowchart.

51

L. Wan, C. Wang, D. Luo et al.

Table 4
Examples of traffic rule digitization.

Engineering 33 (2024) 47-62

Example Step Content or result
Example 1: maintain a safe distance Input For any two motor vehicles operating in the same driveway,
the vehicle in the rear must maintain a safe distance sufficient
for emergency braking (source: Refs. [34], No. 43)
NLP When two motor vehicles are operating in the same driveway,

Static description
Dynamic description

Checking condition
Rule design

Example 2: no continuous lane change Input

NLP

Static description
Dynamic description

Checking condition

Rule design

the vehicle in the rear must maintain a distance of at least [T]
seconds from the vehicle in front
onRoadType(Highway)

stObjPosition(Obj, Ego, Ahead)
stObjPosition(Ego, Obj, SameLane)
stProperDistance

onRoadType(Highway)

A stObjPosition(Obj, Ego, Ahead)

A stObjPosition(Ego, Obj, SameLane)

— stProperDistance

The vehicle shall not change two or more lanes
consecutively when changing lanes (source: Ref. [36]
No. GA/T 1773.2-2021 8.3.2)

The vehicle cannot perform the same lane
change action within [T] seconds twice or more
actCross(Left)

actCross(Right)

G(_1,0)(—actCross(Left)

v —X(—actCross(Right) U actCross(Left)))
G(_r,0)(—actCross(Right)

v —X(—actCross(Left) U actCross(Right)))
actCross(Left)— G_r o) (—actCross(Left)

v —X(—-actCross(Right) U actCross(Left)))
actCross(Right)— G(_r)(—actCross(Right)

v —X(—actCross(Left) U actCross(Right)))

Laws and
regulations

(—P
/—)

P

and scenario with FSM

Digitize

y

Rule calculation result
Digitize traffic rule cajculate

L

Describe vehicle behavior | Fs @ Extract the properties

FSM calculation result

@ Property 1

3> ‘ Property 2
‘ Property 3

Calculate

Not equivalent

Not pass

Equivalent

Equivalence verification

Model checking
pass

pass

Fig. 4. Flowchart of the proposed formal verification method.

regulations. Using the method of theorem proving for complex
traffic behaviors would make this task exponentially more difficult.
In addition, a traditional model checker uses an FSM to simply
express a system [42]. This is not an acceptable practice for digital
traffic rules, as MTL formulas are intuitive and not excessively
complex. Instead of their FSM, the digital traffic rules themselves
should be used to ensure correctness.

52

As shown in the right half of Fig. 4, the proposed method primarily
consists of two branches—namely, equivalence verification and
model checking—to perform formal verification from multiple per-
spectives. Initially, the digital rule can be obtained in the form of a for-
mula or a piece of MTL code using the digitization method described
in the previous section. Using software tools and scenario-specific
data, it is possible to calculate the outcome of this digital rule.

L. Wan, C. Wang, D. Luo et al.

The scenario related to the traffic rule in question and the
behavior of traffic participants are described using a state machine.
By comparing the output of the state machine and the rule calcu-
lation result for equivalence verification, it is possible to determine
whether the digital traffic rule is correct or, if it is not correct,
where the error lies. When conducting equivalence comparisons,
the formal verification tool traverses all possible states and state
transitions, thereby covering the entire state space. Even though
equivalence verification is computationally intensive and fre-
quently takes hours to run, it is necessary in order to ensure the
correctness of the digital traffic rules. Due to the adaptability and
thoroughness of the state machine, it is simple to fix the bugs in
a digital traffic rule by comparing it with the FSM. In addition, with
this state machine, it is possible to abstract and design a series of
traffic rule properties. Taking advantage of these properties, model
checking can be used to verify digital traffic rules.

The state machine has excellent abstracting and describing
capabilities. It can precisely and completely describe traffic situa-
tions and vehicle conditions. Although its accuracy cannot be abso-
lutely ensured, it is very simple to use the state diagram to
determine whether it adheres to the original traffic regulations.
Implementing a complex state machine requires hundreds of lines
of code, which makes maintenance and debugging extremely diffi-
cult; therefore, an FSM is unsuitable as a digital traffic rule and is
better suited as a verification instrument. MTL and state machines
are two distinct methods for expressing traffic rules. By comparing
MTL with a state machine, it is feasible and simple to identify
problems.

AT

Engineering 33 (2024) 47-62

The following is a formal verification example for example 2 in
Table 4.

5.1. State machine design

The traffic regulation described in Table 4 example 2 is used as
an instance in this section. The propositions are the model’s inputs.
The [T] parameter quantifies the time intervals between two lane
change actions in this example. By modifying this parameter, the
author of the traffic rule can adjust its severity. In experiments,
time T= 10 s is typically employed. Without this criterion, the traf-
fic rule is subjective and indeterminable.

As illustrated in Fig. 5, AT indicates the interval between two
lane changes, when AT > T, the vehicle violates this traffic regula-
tion by making two left-lane changes in succession. Typically,
when a vehicle makes a second left-lane change, a violation will
be issued.

Using the traffic rule description from Table 4, we design the
FSM depicted in Fig. 6.

Here, STn (n is a natural number) is used to represent the vari-
ous states in this FSM. The parameter t represents the length of
time the vehicle stays in the current lane. A threshold (TH) is man-
ually set to indicate how long the vehicle must remain in the lane
before it is considered to have returned. When t exceeds the TH,
this lane-change behavior is deemed to be unrelated to the previ-
ous lane-change behavior, indicating that it is not continuous lane
changing.

Interval between two lane changes

Violation when the
second lane change

Fig. 5. Example of a traffic regulation.

Crossing
right

t2TH

In the left t<TH
% lane

Turn right

Violation

Turn left

In the right
lane

t<TH

Fig. 6. The state machine for the traffic rule restricting lane-changing behavior. t: the length of time the vehicle stays in the current lane; TH: threshold; STO: the state in the
middle lane; ST1: the state in a left-hand crossing lane; ST2: the state in the left lane; ST3: the state in a right-hand crossing lane; ST4: the state in the right lane.

53

L. Wan, C. Wang, D. Luo et al.

When the lane-changing scenario begins, the vehicle may be in
one of three states: in a lane, in a left-hand crossing lane, or in a
right-hand crossing lane. The three states respectively correspond
to STO, ST1, and ST3. In order to simplify the state machine, the
relationship between the vehicle and the lane is primarily repre-
sented by three states: in the middle lane (STO), which indicates
that the vehicle can change lanes to the left or right; in the left lane
(ST2), which indicates that the vehicle has made a left turn in the
last T seconds; and in the right lane (ST4), which is the opposite sit-
uation of ST2. In accordance with the traffic rule, when the state is
ST2 or ST4 and the vehicle’s dwell time in the left/right lane
exceeds T seconds, the vehicle is permitted to change lanes to
the left and right; its state changes to STO, and the lane it stays
in the middle lane. Consequently, a rule violation can occur in
one of two ways: either the vehicle stays in ST2 and crosses to
the left again (ST2—ST1), or it stays in ST4 and crosses to the right
again (ST4—-ST3).

For example, if a vehicle remains in ST2, it has just made at least
one lane change to the left. If it turns left a second time, it will cross
the left lane line and be in the ST1 state of changing lanes to the
left. This is a traffic violation, so when the signal changes from
ST2 to ST1, the “breaking” parameter becomes true. After the com-
pletion of the action of crossing the lane line, the vehicle returns to
ST2. Theoretically, when a vehicle crosses a lane line, it can change
lanes to either the left or the right, so the state machine includes all
lane-change-related cases. This rule does not apply to situations in
which a vehicle drives straight ahead without changing lanes; we
consider this to be driving in the lane, which falls under the STO/
ST2/ST4 conditions.

5.2. Properties definition

In the proposed verification procedure, the MTL model must be
accompanied by a list of properties representing the requirements
of the original natural language traffic rules. MTL is also utilized to
express these properties of linear state sequences [17,29,42]. After
they have been formally defined, the MTL models are presented for
automated verification [29]. This section focuses on linear-time
behavior and design properties using the state machine shown in
Fig. 6.

Eq. (1) is the definition of the traffic rule according to Table 4. In
addition, three properties are defined based on the state machine’s
description of the vehicle’s behavior to ensure compliance with
traffic regulations. These properties’ implementations are respec-
tively depicted in Egs. (2)-(4).

TrafficRule = actCross(Left) v actCross(Right)
— (actCross(Left) A G(_r,9)(—actCross(Left)
v =X(—actCross(Right) U actCross(Left)))
Vv (actCross(Right) A G(_r,0)(—actCross(Right)
v —X(—-actCross(Left) U actCross(Right)))

(1)

5.2.1. Property 1: The right to switch lanes

Due to road structures and driving demands, a vehicle should
have the opportunity to change lanes to the left or right, unless it
is on the road’s edge or is constrained by other traffic laws. Fig. 7
depicts a common driving need that is encountered in daily life.

Therefore, the MTL model should limit lane-change intervals
rather than prohibiting continuous lane changes entirely. Accord-
ing to the FSM depicted in Fig. 6, it is permissible for the vehicle
to return to the left or right lane after entering the ST2/ST4 state.
The only restriction is that, when the vehicle makes a lane change,
it must wait until the state changes from ST2/ST4 to STO before it is
permitted to make the same lane change again.

54

Engineering 33 (2024) 47-62

~_

Fig. 7. The necessity for multiple lane changes.

Property 1. The traffic rule is violated if the time between lane
changes is less than [T] seconds.

Property 1 £ TrafficRule == (t1 — t0 > DeltaTime) (2)

Here, Eq. (1) defines TrafficRule. In Eq. (2), t0 and t1 are the
times at which the vehicle crosses lanes in the same direction,
and DeltaTime is the minimum interval between two lane-
change behaviors, which is equal to T in Eq. (1). Due to the similar-
ity between the left and right lane-change situations, only the left
lane-change example is provided.

5.2.2. Property 2: Continuously change lanes

As depicted in Fig. 8, when a vehicle changes lanes in the same
direction more than once within a limited amount of time, the traf-
fic rule is violated for every lane change except the first. For exam-
ple, the vehicle violates the rule twice if it changes lanes to the left
three times in T seconds.

Property 2. The number of violations depends on the number
of vehicle lane changes.

Property 2 £ Vt0 € 1..NOW :

IF A ActCrossLeft[t0] = TRUE

A Vt1 € t0 + 1...NOW: ActCrossRight[t1] = FALSE

AVEt2 € t0 + 1..NOW: ActCrossLeft[t2] = —-ActCrossLeft[t2 — 1]
THEN A TrafficRule]NOW] = FALSE

AVE3 € t0 + 2..NOW: TrafficRule[t3] = —TrafficRule[t3 — 1]
ELSETRUE

G3)

In this property, the vehicle violates the rule if it changes state
from ST2/ST4 to ST1/ST3, regardless of how many times it has been
in the ST2/ST4 state.

5.2.3. Property 3: Reverse lane change

What will occur when the vehicle first changes lanes to the left
and then back? The FSM indicates that the vehicle does not violate
this traffic regulation in this manner. As depicted in Fig. 9.

&) No violation x Violation

Fig. 8. Illustration of property 2.

@ No violation ® Violation

Fig. 9. Diagram of property 3.

L. Wan, C. Wang, D. Luo et al.

Property 3. No violation occurs when an opposite lane change
occurs between two identical lane changes.

Property3 £ IF ActCrossLeft[NOW] = TRUE
THENVtO e 1.t — 1:
IF A ActCrossLeft[t0] = TRUE
A3t1 € t0+ 1...t — 1: ActCrossRight[t1] = TRUE
AVt2 € t0 + 1...t — 1: ActCrossLeft[t2] = FALSE
THEN TrafficRule]NOW] = TRUE
ELSETRUE

(4)

According to the traffic rule, it is only when a vehicle crosses
two lanes in the same direction that the vehicle violates the rule.
Therefore, if the lane crossing is not continuous, the behavior is
acceptable. This circumstance is easily ignorable, so we set this
property to validate the MTL model.

We proposed the above three properties as model-checking
examples. To verify each digital traffic rule, the designer of the dig-
ital traffic rules can create a variety of properties from various per-
spectives. Because each traffic rule corresponds to a unique
scenario, it is essential to design properties and a state machine
to ensure the correctness and semantic consistency of the digital
rule.

5.3. Equivalent checking

Both the MTL and the FSM are used to describe the same traffic
rule, but they are completely different. Their results, which indi-
cate whether or not traffic laws have been broken, should be iden-
tical. Therefore, a method of equivalence checking can be used to
ensure mutual correctness.

Definition 1. The outcome of the state machine and the MTL
model must be identical.

Consistency £ Vt € 1..SIMTIME: TrafficRule]t]
—Violation]t]

()

An implementation of Definition 1 is found in Eq. (5). The con-
sistency of the state machine and the MTL model is defined as: At
any time, their outputs indicate the same state. There is a logical
negation symbol in Eq.(5), because when a violation occurs, the
output “TrafficRule” in Eq.(1) is “false,” while the state “violation”
of the FSM is “true.”

Case 1: erval time
Case 2:
Case 3: @

ST2

®
€)

®
€y
OXOXORENE)
DOOO®G
DOO®E

)

)

€)

Case 6: ST1 ST1 T1

6

¢

Simulation time

Engineering 33 (2024) 47-62
6. Evaluation of the formal verification method

Some formal verification tools use static analysis to prove or
disprove that a program'’s behavior conforms to a formal specifica-
tion [43]. Temporal Logic of Actions Plus (TLA") [44,45] and Z [46]
are state-based descriptions that emphasize the characteristics and
values of the system. Labelled Transition System Analyzer (LTSA)
[47] is an event-based specification that describes a series of sys-
tem events. SPIN [48], a generic verification system for models, is
state-based but can describe a system that resembles imperative
programming. PRISM [49] is also state-based but introduces a
probabilistic Markov model. There are additional formal languages,
each with its own benefits and drawbacks.

6.1. Evaluation technique and instruments

TLA" is a formal language of the highest level for modeling sys-
tems. For the formal verification of digital traffic rules, we employ
TLA". In addition, TLC, a model checker, is the standard tool for
model checking. Since the MTL model, FSM, and properties are
all described by mathematical equations, formal verification with
TLC is straightforward. Due to the invariance of the TLA" equation
under stuttering, the Until and Next operators are unavailable in
TLA*. Eq. (1) is implemented in TLA" using the Any and Exist
operators.

Fig. 10 is a schematic representation of a verification process.
The simulation time refers to the number of states in each case.
The parameter IT is used to represent the sampling interval, that
is, the time interval between two states directly. In accordance
with the real world, IT may be set to any period, such as 1s. The
status is updated every IT seconds. The interval time represents
the length of time spent in the ST2/ST4 state. In addition, it corre-
sponds to the minimum DeltaTime allowed between two consecu-
tive lane changes.

During formal verification, TLA* automatically traverses all
paths and state combinations to ensure that all possible cases are
verified. When we apply the traffic rule to the state machine for
formal verification, we can therefore verify the correctness of the
traffic rule in a variety of situations. Case 6 is an S-shaped path
in which the vehicle changes lanes first to the left and then to
the right. Fig. 6’s state machine demonstrates that this scenario
does not result in a violation; however, if the verified traffic rule
in Eq. (1) indicates a violation, the result of Eq. (5) is false, indicat-
ing that the traffic rule is inconsistent with the state machine and
that the designed digital traffic rule is flawed.

A " |
e—a—
e —E—E)—€n)

)

Fig. 10. Evaluation method.

55

L. Wan, C. Wang, D. Luo et al.
6.2. Model implementation

The traffic rule model shown in Eq. (1) is implemented in TLC.
The primary functions of the state machine are property definition
and equivalent checking.

6.3. Evaluation results

We set IT to 1 s, the simulation time to 25, and the interval
time to 10s. The permitted interval time is the time between
two lane changes in the same direction. The TLC is where the
checking module is implemented. In this evaluation, a total of
16666625 states were discovered, and neither an error nor a
warning was generated. In this verification flow, there were
approximately 2 777 540 different possible states for ST1 and ST3
and approximately 5553 740 different possible states for ST2 and
ST4.

In this instance, the MTL model of traffic rule corresponds to the
properties, and the output of the MTL model and the FSM are iden-
tical. The formal verification result indicates that the equivalence
verification and model checking have been successfully completed.
Eq. (1)'s digital traffic rule is consistent with the natural language
traffic rule and can accurately describe violations.

6.4. Formal verification of the violation of an incorrect digital traffic
rule

It is challenging to design the MTL equation correctly on the ini-
tial attempt. In this section, we provide an example of an incorrect
digital traffic rule and then test its correctness using the formal
verification method proposed in the previous section to determine
whether this formal verification method can accurately identify
problems with digitization in traffic rules.

TrafficRule £ actCross(Left) v actCross(Right)
— (actCross(Left) A G(_r,0)(—actCross(Left)) (6)
Vv (actCross(Right) A G(_rg)(—actCross(Right))))

Eq. (6) is another application of the traffic rule. When the vehi-
cle crosses the lane line, the vehicle must ensure that a similar
action has not occurred in the recent past.

When the verification flow depicted in Fig. 11 is executed, there
are two conflicts: one between Eq. (6) and the state machine, and

Crossing
right

t=TH

Engineering 33 (2024) 47-62

another between Eq. (6) and the aforementioned Property 3. This is
because the property described by Eq. (4) is not satisfied by Eq. (6).
When a vehicle changes lanes to the left lane and then to the right
lane, moving to the left lane again should not be considered a con-
tinuous lane change, because a lane change to the right occurs
between the two left turns. Property 3 describes this acceptable
behavior well, but Eq. (6) reported a violation in step 5 of Fig. 11
due to the lack of consideration of the above situation.

This validation warning will not appear if Eq. (1) is used as the
digital rule. The results of the formal verification utilizing these
two digital rules are compared in Table 5.

This experiment demonstrates that the method proposed in this
paper is effective. Using the formal verification ensures the consis-
tency and correctness of traffic regulations.

7. Simulation experiment for the digitalization of a traffic rule

Once a digital traffic rule becomes available, it can be imple-
mented on various computer systems, as follows: (D The autono-
mous driving simulation system can obtain the vehicle trajectory
and environmental data in the simulation software, and then use
the digital traffic rule to determine the legality of vehicle behavior.
@ In the field test of a vehicle, the relevant data is recorded by the
sensor in the field or on the vehicle, and the legality determination
can be made on the remote server. @ Using data from sensors and
high-precision maps, an autonomous driving system can deter-
mine—while the vehicle is driving on the road—whether the driv-
ing trajectory or planned trajectory includes illegal behavior and
can modify the driving behavior to prevent the occurrence of illegal
behavior.

Using the aforementioned methods, we can evaluate whether
the trajectory of an autonomous vehicle violates a particular traffic
rule. This allows traffic authorities to determine whether a vehicle
is roadworthy; the digital rules can also assist automobile

Table 5
Comparison of two equations.

Digital rule Property 3: pass or not? Consistency: pass or not?
(Eq. (4)) (Eq. (5))
Eq. (1) Yes Yes
Eq. (6) No No
t<TH

In the left
; lane

Turn right

Violation

Turn left

In the right t<TH
lane

Fig. 11. The verification flowchart.

L. Wan, C. Wang, D. Luo et al.

r 1
Autonomous
| driving system |

1

r "
Simulation platform

L ||

r " r hl
LScenario IibraryJ LDigital rule IibraryJ

Checker

Fig. 12. The simulation system’s framework.

manufacturers in determining whether their products comply with
traffic regulations. In this section, we apply multiple digital rules to
autonomous driving simulation experiments to determine
whether the simulator-tested vehicle violates the rules.

Engineering 33 (2024) 47-62
7.1. The simulation system’s framework

The architecture of the simulation system used in our experi-
ments is depicted in Fig. 12. Based on the Virtual Test Drive
(VTD) autonomous driving simulation software, we designed and
developed a simulation platform for simulating vehicle behavior.
As the test subject is connected to the simulation platform, an
autonomous driving system was used to control the behavior of
the ego vehicle in the simulation.

In addition, we created a scenario library containing various
simulation scenarios, such as highway segments, intersections,
and so forth. The scenario format was described in accordance with
OpenDrive [50] and OpenScenario [51]. Several digital traffic rules
were simultaneously stored in the rule library and provided to the
simulation platform.

A software named Checker was designed for digitizing traffic
rules in our experiments. It obtains the trajectory of each vehicle
and environmental data from the simulation platform, analyzes

Step Contents

Rule For any two motor vehicles operating in the same driveway, the vehicle in the rear must maintain a safe distance sufficient for
emergency braking measures [34]

MTL onRoadType(Highway) A stObjPosition(Obj, Ego, Ahead) A stObjPosition(Ego, Obj, SamelLane) — stProperDistance

Scenario

Scenario description

The self-vehicle (denoted as the “ego”) is faster than the vehicle in front of it; the distance between the self-vehicle and the vehicle

in front of it in the same lane gradually decreases; when the distance is less than 100 m, it violates the traffic law

Checking result r’.;‘
E s} —Ego
< — Front-car
3
o 351
&
0 25 5.0 7.5 100 125 150 175
Time (s)
—~ 150 F
E
Q
Q
5
4 100
o . . L L A T
0 25 5.0 7.5 100 125 150 175
Time (s)
1E
| g
i)
kS
el
>
0L \ \ \ .
0 25 5.0 75 100 125 150 175
Time (s)

Screenshot of the
violation

Fig. 13. Simulation result 1.

57

L. Wan, C. Wang, D. Luo et al.

the digital traffic rules, and determines whether the ego vehicle’s
behavior violates these rules. Checker parses the digital traffic rules
and uses them to determine whether the simulation environment’s
vehicle behavior is illegal. Using this simulation system, we can
determine whether a vehicle controlled by a planning algorithm
in a self-driving vehicle violates a particular traffic regulation when
operating in the simulation environment. This simulation system
utilized a workstation (ThinkStation P720) with an Intel Xeon Gold
6134 CPU@3.2GHz and 128 GB memory.

7.2. Simulation

The same digital traffic rules as described in Table 4 are applied
here. The results of the simulation experiment are listed below.

Engineering 33 (2024) 47-62

7.2.1. Digital rule 1: Safe distance requirements

The content and result of the simulation are listed in Fig. 13
[34]. To avoid danger, the driver must maintain a safe distance
between the ego vehicle and the vehicle ahead in the same lane.
In the screenshot at the bottom of Fig. 13, the blue vehicle repre-
sents the ego vehicle, and the distance to the car in front in the
same lane decreases continuously from the start of the simulation.
Starting at 7.6 s, the distance between the ego vehicle and the vehi-
cle in front is less than 100 m.

Thus, checker is able to use the formalized digital traffic rule in
Fig. 13 to determine whether the vehicle violates the traffic rule.

7.2.2. Digital rule 2: Continuous lane changes are prohibited
In this scenario, in order to reach the rightmost lane, the ego
vehicle must make two lane changes. The experimental result is

Step Contents
Rule When changing lanes, the vehicle shall not make two or more consecutive lane changes in a row
MTL actCross(Left) V actCross(Right)
H(actCross(Left)AG(_T.O)(-'actCross(Left)VﬂX(-actCross(Right)
u actCross(Lef‘t)))v(actCross(Right)AG(,TO,(-actCross(Right) v X(nactCross(Left) U actCross(Right)))
Scenario

Scenario description

Initially, the ego vehicle was in the middle lane. The vehicle abruptly changes lanes to the right twice as it approaches the exit ramp,

intending to exit the highway via the ramp. The lane identity document (ID) identifies the lane in which the ego vehicle is positioned

Checking result

e 1F
o
=
E
ol : : : . 3
10 12 14 16 18 20
Time (s)
E1f
o
c
E
F oL
10 12 14 16 18 20
Time (s)
a ST
[0} L
o
(]
= 3- 1 1 1 1
10 12 14 16 18 20
Time (s)
c 1F
=
©
Q8
> Ok
10 12 14 16 18 20
Time (s)

Screenshot of the

violation

Fig.14. Simulation result 2.

58

L. Wan, C. Wang, D. Luo et al.

Engineering 33 (2024) 47-62

Step Contents

Rule When a pedestrian crosses a crosswalk, vehicles must stop and yield the right-of-way [34]

’\SATL . stCrossing(Pedestrian, Crosswalk) — —(7stPosition(Vehicle, Crosswalk) A X(stPosition(Vehicle, Crosswalk))
cenario

@p

=l

Scenario description

There is low visibility due to fog; the traffic light on the interstate is green, and the pedestrian crosses the street against the red light

Contravening this traffic regulation, the vehicle does not yield to the pedestrian

Checking result 1F
g o
s .c
»n 0
o
o O - e——_————r 1 1 1 1 1 1
0 25 50 75 100 125 150 175 200
Time (s)
1F
C x
o
3 2
o
=84
g5
(3 .
0 25 50 75 100 125 150 175 200
Time (s)
1F
=
o
K
K]
S
O b
0 25 50 75 100 125 150 175 200
Screenshot of the Time (s)

violation

Fig. 15. . Simulation result 3.

depicted in Fig. 14. It is evident that the ego vehicle made two con-
secutive rightward lane changes, with only a 0.9 s gap between the
lane changes. Checker is used to determine whether the vehicle
violates the digital rule outlined at the top of the table. When
the vehicle changed lanes for the first time, Checker did not note
a violation; however, when the vehicle changed lanes for the sec-
ond time at 14.35 s, Checker indicated that the traffic rule had been
violated. The simulation results align well with our traffic rule
definition.

7.2.3. Digital rule 3: Pedestrian first

In this scenario, the pedestrian begins crossing the street at the
3's mark. Instead of evading, the vehicle continues straight for-
ward. The experimental result is depicted in Fig. 15. The simulation
demonstrates that, when the vehicle enters the pedestrian cross-
ing, it is in violation of traffic regulations. The results of the exper-
iment indicate that Checker and the digital traffic rules can

correctly identify violations and output the violation’s time and
content in these scenarios.

8. Discussion

An authorized organization can use digital traffic rules to eval-
uate the compliance of a tested vehicle’s behavior. In such a case,
the vehicle enterprise is required to provide the authorized organi-
zation with the vehicle’s trajectory and environmental data for off-
line evaluation. Checker of digital traffic rules can also be used as a
module in an autonomous driving system to evaluate in real time
whether a vehicle’s trajectory or a path generated by a planning
module complies with traffic rules. In this situation, the vehicle’s
compliance result may be affected by measurement errors and
uncertainties in the planning and control module. Here, we briefly
discuss these situations.

59

L. Wan, C. Wang, D. Luo et al.
8.1. Influence of measurement errors

Inaccurate measurement may result in mistakes when enforc-
ing traffic regulations. When calculating the condition of a vehicle,
precise data such as position, heading, sideslip, and longitudinal
speed are frequently required. Filters can be used to remove cer-
tain data fluctuations, such as position or speed jumps caused by
measurement errors. However, filters are ineffective against some
persistent errors because their characteristics are obscure. For
example, to determine if a vehicle is running on the lane line by
calculating whether the tire edge exceeds the center of the lane
line, the positions of the vehicle and the lane line are needed.
Unfortunately, the positioning error (e.g., 0.10 m) is frequently
greater than half the width of the lane line (e.g., 0.13 m), making
misjudgment possible.

The development of perception and positioning technology will
diminish the evaluation error. For example, enhancing the accu-
racy of vehicle attitude estimation [52] and sideslip angle estima-
tion [53] results in more precise vehicle locations and more
sophisticated high-definition maps, particularly in Global Position-
ing System (GPS)-denied regions or dense urban areas. This per-
mits a more precise relative position relationship between the
vehicle and the lane line to be obtained.

8.2. Error dynamics and settling time

When an autonomous driving system controls a vehicle, devia-
tions will occur between the actual motion and the desired motion,
due to various errors and uncertainties. Error dynamics are used to
describe the development of this controller deviation [54]. When
an intelligent vehicle starts up or enters the automatic driving
mode, it typically takes a while for the controller to reach a steady
state. This period is known as the settling time. The settling time of
a controller indicates how quickly it can maintain the steady-state
error within a specified range.

When evaluating the behavior of a vehicle using digital traffic
rules, the vehicle’s steady state is typically not a concern, because
we are more concerned with whether the behavior of a vehicle
violates the rules than with why it may do so. Therefore, error
dynamics are not a consideration when designing digital traffic
rules. We can assume that error dynamics are stable in
experiments.

However, error dynamics can be problematic when a large
number of discrete scenarios are tested in simulation software or
on a test field. Usually, we only care about a vehicle’s violation of
traffic laws when it is in a steady state. It is not necessary to start
the evaluation before this condition has been reached.

To avoid the influence of error dynamics, we begin the compli-
ance evaluation in the experiments a short time (usually 3 s) after
the simulation has begun. This time can be used by the vehicle’s
controller to reach a steady state. During this period, no violations
resulting from error responses will be detected.

8.3. Uncertainty in planning

Planning is a complex module of the autonomous driving sys-
tem that requires precise perception of the environment, compre-
hension of the intentions of traffic participants, and the capacity to
ensure stable and safe driving in a variety of scenarios. Under
actual conditions, it is necessary to deal with a substantial amount
of uncertainty related to the front and rear modules; moreover, the
limitations of perception, the contingency of behavior prediction,
and the interaction with control make the implementation of plan-
ning more difficult.

The solutions to deterministic decision problems with known
alternatives in each state are relatively straightforward. In the real

60

Engineering 33 (2024) 47-62

world, however, the behavior of other vehicles may be subject to a
variety of uncertainties, so actions may result in a variety of new
states with a certain probability. As a result of the bifurcation
caused by the random state, the random search tree is exponen-
tially more complex than the deterministic search tree. The perfor-
mance of bounded uncertainty becomes an important issue that
the decision module must address.

In various scenarios, the effect of this uncertainty on the perfor-
mance and digitization of traffic rules can be analyzed. Digital traf-
fic rules have two primary applications. The first application is for
traffic administrators to test and monitor vehicle infractions. In
this scenario, vehicle status data is uploaded to the cloud or a des-
ignated server, and the traffic manager calculates digital traffic
rules offline. The absence of real-time requirements reduces the
importance of performance.

Another application is for determining whether the ego vehicle
has violated or is about to violate traffic regulations. For the for-
mer, calculations can be performed rapidly, because the vehicle’s
behavior is determined by the past; for the latter, since the deci-
sion tree may contain numerous action sequences, it is challenging
to evaluate each sequence for violations. To improve performance,
we can utilize the prior and reduce the sampling space for rules.
For example, based on the current environment, we estimate the
traffic rules that the vehicle is most likely to violate and only eval-
uate those rules.

In addition, the planning module must take into account the
unpredictability of the interaction between traffic participants.
Considering the unpredictability of pedestrian trajectories, ensur-
ing the safety of pedestrians on the road, for example, is an impor-
tant concern. The Road Traffic Safety Law of the People’s Republic
of China stipulates that vehicles must stop and yield to pedestrians
using crosswalks [34]. As demonstrated in Section 7.2.3, we set
corresponding terms when designing the digital traffic rules. To
avoid a dangerous situation, an automatic driving system can
incorporate this digital rule as a high cost into the planning mod-
ule. To prevent the autonomous driving system from making dan-
gerous decisions, a severe penalty will be imposed if this rule is
violated during an action sequence.

Due to data measurement errors and other uncertainties, the
evaluation results will fluctuate when digital traffic rules are
implemented. How to avoid this type of influence, improve the
robustness of traffic rules evaluation, and reduce the result’s sensi-
tivity to the input data is a very important and worthwhile topic
for in-depth study. In the future, we will conduct additional
research in this field.

9. Conclusions

The digitization of traffic rules is a crucial field for the compat-
ibility of autonomous vehicles with traffic rules. Using incorrect
digital traffic rules will have a severe impact on traffic safety. Con-
sequently, the premise for applying digital rules is that the digital
rules must be consistent with the natural language traffic rules for
human drivers. The issue of how to ensure the consistency and cor-
rectness of digital traffic regulations is therefore crucial.

To address this issue, we propose a novel approach that combi-
nes equivalence verification with model checking. At the same
time, we describe the whole design and application process for dig-
ital traffic rules, including digitization and formal verification. The
designed digital rules are then implemented in a simulation envi-
ronment. The evaluation and experiment results indicate that nat-
ural language traffic rules can be translated systematically into
computer-understandable TL. We also demonstrate the semantic
coherence and correctness of the MTL traffic rules. This work

L. Wan, C. Wang, D. Luo et al.

facilitates the compatibility of autonomous vehicles with traffic
regulations.

The proposed method of digitization, verification, and applica-
tion experimentation contributes to current advancements in
autonomous driving and expedites the realization of autonomous
vehicles. Theoretically, the methodology can also be applied to
other types of international traffic and driving rules.

Acknowledgments

This research was conducted jointly by the Research Institute
for Road Safety of the Ministry of Public Security and Huawei Tech-
nologies Co., Ltd.

Compliance with ethics guidelines

Lei Wan, Changjun Wang, Daxin Luo, Hang Liu, Sha Ma, and
Weichao Hu declare that they have no conflicts of interest or finan-
cial conflicts to disclose.

References

[1] Claybrook], Kildare S. Autonomous vehicles: no driver...no regulation?
Science 2018;361(6397):36-7.

[2] Cummings ML, Britton D. Regulating safety-critical autonomous systems: past,
present, and future perspectives. In: Pak R, de Visser EJ, Rovira E, editors. Living
with robots. London: Academic Press; 2019.

[3] Nair GS, Bhat CR. Sharing the road with autonomous vehicles: perceived safety
and regulatory preferences. Transp Res Part C 2021;122:102885.

[4] Otter DW, Medina JR, Kalita JK. A survey of the usages of deep learning for
natural language processing. IEEE Trans Neural Netw Learn Syst 2021;32
(2):604-24.

[5] Kumar E. Natural language processing. New Delhi: IK International Pvt Ltd;
2011.

[6] Grishman R. Computational linguistics: an introduction. Cambridge: Cambridge
University Press; 1986.

[7] Liu X, Wu D. From natural language to programming language. In: Goschnick S,
editor. Innovative methods, user-friendly tools, coding, and design approaches
in people-oriented programming. Hershey: IGI Global; 2018.

[8] Manna Z, Pnueli A. The temporal logic of reactive and concurrent
systems. Berlin: Springer; 1992.

[9] Pnueli A. The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977); 1977 Oct 31-
Nov 1; Providence, RI, USA. New York City: IEEE; 1977. p. 46-57.

[10] Clarke EM, Emerson EA. Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Proceedings of the Workshop on Logic
of Programs; 1981 May 4-6; New York City, NY, USA. Berlin: Springer; 1981. p.
52-71.

[11] Emerson EA, Halpern JY. “Sometimes” and “not never” revisited: on branching
versus linear time temporal logic.] Assoc Comput Mach 1986;33(1):151-78.

[12] Alur R, Henzinger TA. A really temporal logic.] Assoc Comput Mach 1994;41
(1):181-203.

[13] Alur R, Henzinger TA. Real-time logics: complexity and expressiveness. Inf
Comput 1993;104(1):35-77.

[14] Koymans R. Specifying real-time properties with metric temporal logic. Real
Time Syst 1990;2(4):255-99.

[15] Alur R, Feder T, Henzinger TA. The benefits of relaxing punctuality.] Assoc
Comput Mach 1996;43(1):116-46.

[16] Ouaknine], Worrell J. On the decidability of metric temporal logic. In:
Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science
(LICS’05); 2005 Jun 26-29; Washington, DC, USA. New York City: IEEE; 2005. p.
188-97.

[17] Konur S. A survey on temporal logics for specifying and verifying real-time
systems. Front Comput Sci 2013;7(3):370-403.

[18] Rizaldi A, Althoff M. Formalising traffic rules for accountability of autonomous

vehicles. In: Proceedings of the 2015 IEEE 18th International Conference on

Intelligent Transportation Systems; 2015 Sep 15-18; Gran Canaria, Spain. New

York City: IEEE; 2015. p. 1658-65.

Esterle K, Gressenbuch L, Knoll A. Formalizing traffic rules for machine

interpretability. In: Proceedings of the 2020 IEEE 3rd Connected and

Automated Vehicles Symposium (CAVS); 2020 Oct 4-5; Victoria, BC,

Canada. New York City: IEEE; 2020. p. 1-7.

Maierhofer S, Rettinger AK, Mayer EC, Althoff M. Formalization of interstate

traffic rules in temporal logic. In: Proceedings of the 2020 IEEE Intelligent

Vehicles Symposium (IV); 2020 Oct 19-Nov 13; Las Vegas, NV, USA. New York

City: IEEE; 2020. p. 752-9.

[19]

[20]

61

Engineering 33 (2024) 47-62

[21] Karimi A, Duggirala PS. Formalizing traffic rules for uncontrolled intersections.
In: Proceedings of the 2020 ACM/IEEE 11th International Conference on Cyber-
Physical Systems (ICCPS 2020); 2020 Apr 21-25; Sydney, NSW, Australia. New
York City: IEEE; 2020. p. 41-50.

Beck H, Eiter T, Krennwallner T. Inconsistency management for traffic

regulations: formalization and complexity results. In: Proceedings of the

13th European Workshop on Logics in Artificial Intelligence; 2012 Sep 26-28;

Toulouse, France. Berlin: Springer; 2012. p. 80-93.

Krasowski H, Althoff M. Temporal logic formalization of marine traffic rules.

In: Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV); 2021 Jul

11-17; Nagoya, Japan. New York City: IEEE; 2021. p. 186-92.

Esterle K, Aravantinos V, Knoll A. From specifications to behavior: maneuver

verification in a semantic state space. In: Proceedings of the 2019 IEEE

Intelligent Vehicles Symposium (IV); 2019 Jun 9-12; Paris, France. New York

City: IEEE; 2019. p. 2140-7.

Hannah D, Edwards P, Khastgir S. Extended updated proposal for an approach

to defining rules of the road. In: Proceedings of the 27th UNECE Functional

Requirements for Automated and Autonomous Vehicles (FRAV) Session; 2022

Apr 19-20; online. Coventry: The University of Warwick; 2022.

[26] Bjesse P. What is formal verification? ACM SIGDA Newsletter 2005;35(24):1-34.

[27] Paulson LC. The foundation of a generic theorem prover. | Autom Reason
1989;5(3):363-97.

[28] Clarke EM, Grumberg O, Kroening D, Peled D, Veith H. Model checking. 2nd
ed. Cambridge: The MIT Press; 2018.

[29] Baier C, Katoen JP. Principles of model checking. Cambridge: The MIT Press;
2008.

[30] Visser W, Havelund K, Brat G, Park SJ, Lerda F. Model checking programs.
Autom Softw Eng 2003;10(2):203-32.

[31] Huang SY, Cheng KTT. Formal equivalence checking and design
debugging. Berlin: Springer Science & Business Media; 2012.

[32] Alur R, Henzinger TA. Logics and models of real time: a survey. In: Proceedings

of the Symposium of the REX Project (Research and Education in Concurrent

Systems); 1991 Jun 3-7; Mook, The Netherlands. Berlin: Springer; 1991. p.

74-106.

Ouaknine], Worrell J. Some recent results in metric temporal logic. In:

Proceedings of the 6th International Conference on Formal Modeling and

Analysis of Timed Systems; 2008 Sep 15-17; Saint Malo,

France. Berlin: Springer; 2008. p. 1-13.

National People’s Congress. [Road traffic safety law of the People’s Republic of

China]. Beijing: Standing Committee of the National People’s Congress; 2003.

Chinese.

State Council of the People’s Republic of China. [Regulations on the

implementation of the road traffic safety law of the People’s Republic of

China]. Beijing: Standing Committee of the National People’s Congress; 2004.

Chinese.

[36] The Ministry of Public Security of the People’s Republic of China. GA/T 1773.1-
2021: Operating specifications for safe and civilized motor vehicle drivers.
Beijing: The Ministry of Public Security of the People’s Republic of China; 2021.
Chinese.

[37] Ulmasovna ES. The principal use of propositional and suppositional terms in
the sentences. JournalNX 2020;6(11):242-3.

[38] Scholtes M, Westhofen L, Turner LR, Lotto K, Schuldes M, Weber H, et al. 6-
layer model for a structured description and categorization of urban traffic and
environment. IEEE Access 2021;9:59131-47.

[39] Van Winsum W, Heino A. Choice of time-headway in car-following and the role
of time-to-collision information in braking. Ergonomics 1996;39(4):579-92.

[40] AyresT],LiL,Schleuning D, Young D. Preferred time-headway of highway drivers.
In: Proceedings of the ITSC 2001. 2001 IEEE Intelligent Transportation Systems;
2001 Aug 25-29; Oakland, CA, USA. New York City: IEEE; 2001. p. 826-9.

[41] Rizaldi A, Keinholz], Huber M, Feldle J, Immler F, Althoff M, et al. Formalising
and monitoring traffic rules for autonomous vehicles in Isabelle/HOL. In:
Proceedings of the International Conference on Integrated Formal Methods;
2017 Sep 20-22; Turin, Italy. Turin, Italy. Berlin: Springer; 2017. p. 50-66.

[42] Schnoebelen P. The complexity of temporal logic model checking. In:
Proceedings of the 4th Advances in Modal Logic Conference (AiML 2002);
2002 Sep 30-Oct 2; Toulouse, France. London: King’s College Publications; 2003.

[43] Habrias H, Frappier M. Software specification methods—an overview using a
case study. Berlin: Springer; 2012.

[44] Kuppe MA, Lamport L, Ricketts D. The TLA" toolbox. 2019. arXiv:1912.10633.

[45] Lamport L. Specifying systems: the TLA* language and tools for hardware and
software engineers. Boston: Addison-Wesley Professional; 2002.

[46] O’'Regan G. Concise guide to formal methods. New York City: Springer; 2017.

[47] Foster H, Uchitel S, Magee], Kramer J. LTSA-WS: a tool for model-based

verification of web service compositions and choreography. In: Osterweil LJ,

Rombach HD, Soffa ML, editors. Proceedings of the 28th International

Conference on Software Engineering; 2006 May 20-28; Shanghai, China;

2006. p. 771-4.

Holzmann GJ. The model checker SPIN. IEEE Trans Softw Eng 1997;23

(5):279-95.

Kwiatkowska M, Norman G, Parker D. PRISM: probabilistic symbolic model

checker. In: Proceedings of the International Conference on Modelling

Techniques and Tools for Computer Performance Evaluation; 2002 Apr 14-

17. London, UK. Berlin: Springer; 2002. p. 200-4.

[22]

[23]

[24]

[25]

[33]

[34]

[35]

[48]

[49]

http://refhub.elsevier.com/S2095-8099(23)00297-7/h0005
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0005
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0005
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0010
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0010
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0010
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0015
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0015
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0020
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0020
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0020
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0025
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0025
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0030
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0030
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0035
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0035
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0035
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0040
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0040
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0045
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0045
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0045
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0050
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0050
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0050
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0050
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0055
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0055
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0055
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0055
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0060
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0060
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0065
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0065
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0070
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0070
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0075
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0075
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0080
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0080
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0080
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0080
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0085
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0085
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0090
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0090
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0090
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0090
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0095
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0095
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0095
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0095
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0100
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0100
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0100
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0100
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0105
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0105
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0105
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0105
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0110
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0110
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0110
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0110
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0115
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0115
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0115
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0120
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0120
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0120
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0120
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0130
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0135
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0135
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0140
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0140
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0145
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0145
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0150
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0150
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0155
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0155
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0160
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0160
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0160
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0160
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0165
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0165
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0165
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0165
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0170
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0170
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0170
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0175
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0175
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0175
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0175
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0185
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0185
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0190
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0190
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0190
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0195
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0195
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0205
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0205
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0205
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0205
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0210
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0210
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0210
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0215
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0215
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0225
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0225
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0225
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0230
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0240
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0240
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0245
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0245
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0245
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0245

L. Wan, C. Wang, D. Luo et al.

[50] Association for Standardization of Automation and Measuring Systems (ASAM
e.V.). ASAM OpenDRIVE® V1.8.0 [Internet]. Hoehenkirchen: ASAM e.V.; 2021
Aug 3 [cited 2023 May 13]. Available from: https://www.asam.net/standards/
detail/opendrive/

[51] Association for Standardization of Automation and Measuring Systems (ASAM
e.V.). ASAM OpenSCENARIO® V1.2.0 [Internet]. Hoehenkirchen: ASAM e.V.;
2022 May 13 [cited 2023 May 13]. Available from: https://www.asam.
net/standards/detail/openscenario/

62

Engineering 33 (2024) 47-62

[52] Wu Z, Yao M, Ma H, Jia W. Improving accuracy of the vehicle attitude
estimation for low-cost INS/GPS integration aided by the GPS-measured
course angle. [EEE Trans Intell Transp Syst 2013;14(2):553-64.

[53] Xia X, Hashemi E, Xiong L, Khajepour A, Xu N. Autonomous vehicles sideslip
angle estimation: single antenna GNSS/IMU fusion with observability analysis.
IEEE Internet Things] 2021;8(19):14845-59.

[54] Lynch KM, Park FC. Modern robotics. Cambridge:
Press; 2017.

Cambridge University

https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0260
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0260
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0260
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0265
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0265
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0265
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0270
http://refhub.elsevier.com/S2095-8099(23)00297-7/h0270

	Semantic Consistency and Correctness Verification of Digital Traffic Rules
	1 Introduction
	2 Related works
	2.1 Digitization and the implementation of rules
	2.2 Formalized rules verification
	2.3 Contributions

	3 Overview of the digitization, verification, and application procedure
	4 The methodology for digitizing traffic rule
	4.1 Grading and classification of propositions
	4.2 The digitization of a traffic rule

	5 Formal verification of traffic rules
	5.1 State machine design
	5.2 Properties definition
	5.2.1 Property 1: The right to switch lanes
	5.2.2 Property 2: Continuously change lanes
	5.2.3 Property 3: Reverse lane change

	5.3 Equivalent checking

	6 Evaluation of the formal verification method
	6.1 Evaluation technique and instruments
	6.2 Model implementation
	6.3 Evaluation results
	6.4 Formal verification of the violation of an incorrect digital traffic rule

	7 Simulation experiment for the digitalization of a traffic rule
	7.1 The simulation system’s framework
	7.2 Simulation
	7.2.1 Digital rule 1: Safe distance requirements
	7.2.2 Digital rule 2: Continuous lane changes are prohibited
	7.2.3 Digital rule 3: Pedestrian first

	8 Discussion
	8.1 Influence of measurement errors
	8.2 Error dynamics and settling time
	8.3 Uncertainty in planning

	9 Conclusions
	Acknowledgments
	Compliance with ethics guidelines
	References

