基于室内传播模型的无线传感器 网络节点部署策略研究

霍宏伟, 部 帅, 牛延超, 张思东

(北京交通大学电子信息工程学院,北京 100044)

[摘要] 为保证在室内部署无线传感器网络节点时实现感知面积完全覆盖特定区域,在2.4 GHz 的 ISM 频 段,依据对数距离模型,分析了因天线高度不同引起的节点有效覆盖面积的变化问题,讨论了有效通信半径 与有效感知半径的关系。在传统的平面节点部署方法的基础上,提出了一种考虑天线高度等环境因素的室 内无线传感器网络节点快速部署方案,定义了部署规则和补充规则,从而避免了因天线高度变化而引起的感 知黑洞的产生。仿真和试验结果表明该方案可以有效保证规定区域的完全覆盖,具有应用价值。 [关键词] 无线传感器网络;通信半径;感知半径;感知黑洞;覆盖

[中图分类号] TP393.02 [文献标识码] A [文章编号] 1009-1742(2008)09-0064-06

1 前言

一个无线传感器网络的感知能力取决于节点感 知范围的覆盖面积。在室内,无线传感器网络通常 应用于智能家庭、生理样本检测、建筑安全和区域物 品跟踪等方面,这些应用均要求节点感知区域对室 内全面覆盖。最简单的部署方法通常是将传感器网 络节点随机散布。但是这种方法引起节点部署不均 匀,容易产生部分区域感知过度重叠,部分区域无节 点覆盖。因此,室内传感器网络节点的部署通常采 用规则部署的方式,国内外学者也提出了一些简单 的部署规则^[1-4]。

放置于室内的无线传感器网络节点作为一种无 线通信设备,其通信性能对室内环境因素更加敏感。 建筑物内物品的放置、材料结构和建筑物类型等因 素都将对节点的通信性能产生极大的影响。而室内 节点的部署必须依存于室内物品的存在,节点的位 置、天线的高度差异、障碍物的存在也会导致节点的 通信性能的变化。在室内复杂环境下如何保证满足 感知区域完全覆盖的情况下实现节点间通信链路的 连通是一个重要的研究课题。

目前,室内无线传感器网络多采用 ISM 频段。 R. Hekmat 提出了无线传感器网络中研究节点传播 特性与覆盖特性的重要意义,指出室内条件下依据 对数距离模型估测传播特性的可行性^[5];K. Giannopoulou 等给出了室内测定 ISM 频段传播模型的一般 方法^[6];Bahrin 和 Jaime 等对 WLAN 在 2.4 GHz 的 室内传播模型进行了测定,为测定室内无线传感器 网络提供了有益的方法^[7,8];Marina 等对目前无线 传感器网络中流行的协议 IEEE 802.15.4 的性能进 行了试验和仿真分析,测定了室内环境下射频信号 强度指示值(RSSI)随距离的变化^[9]。

笔者在 2.4 GHz 的 ISM 频段,依据对数路径距 离损耗模型对无线传感器网络的室内传播模型进行 了测定,并分析了节点天线高度等因素对节点无线 覆盖特性的影响。在此基础上以保证感知区域完全 覆盖室内为目的,提出了一种考虑环境因素的室内 无线传感器网络节点快速部署方案,并通过计算和

[[]收稿日期] 2007-03-05;修回日期 2007-09-22

[[]基金项目] 国家自然科学基金资助项目(60573001)

[[]作者简介] 霍宏伟(1982-),男,内蒙古赤峰市人,北京交通大学博士研究生,主要研究方向为无线传感器网络的服务发现技术

2 无线信号室内传播对部署模型的影响

测定室内传播模型的目的在于预测特定点或者 特定区域的信号场强。同室外的无线电波一样,室 内无线信号传播同样具有反射、绕射和散射机制。 天线高度、门的开关、人的行为都将影响信号的传 播。但是,室内信号对这些因素的影响更加敏感。 研究表明^[10],室内无线电波传播可以利用对数距离 损耗模型来进行测定。

$$P_{\rm L} = P_{\rm L}(d_0) - 10n \lg (d/d_0) + \chi_{\sigma}$$
 (1)

$$P_{\rm L}(r) = P_{\rm t} - P_{\rm L} \tag{2}$$

式(1)称为室内路径损耗公式。其中 P_{L} 为路 径损耗(dB), d 表示测量点与信号发射点距离, d_{0} 表示参考点与信号发射点距离, $P_{L}(r)$ 为接收信号 强度(dB•m), r 为不同接收天线至发射天线(T - R)的距离, P_{L} 为发射信号强度(dB•m), n 为路径 损耗指数,通常需要在建筑物内进行大量测试获得。 χ_{σ} 表示标准偏差为 σ 的正态随机变量。

为了测定节点间的位置、天线的高度差异对节 点通信性能的影响,利用 TI CC2420 EM^[11]和两块 CC2420 DBK^[12]在 2.4 GHz 的 ISM 频段下进行了实 地测试。图 1 给出了某实验室的平面图。其中周围 墙壁为钢筋混凝土结构。室内长、宽、高分别为 7.35 m, 6.50 m, 3.20 m。在室内选择 13 个点进行 平均 1 000 次/点的测量,将实验结果利用 MMSE (最小平方差估计)^[11]的方法测得不同天线高度下 的 *n* 值与σ值。在测试中取 1 m 为参考距离,发射 点发射功率 1 mW (0 dB•m),节点接收灵敏度 -95 dB•m。表 1 给出了测试结果。

图 1 测试环境平面图 Fig. 1 Ichnography of the testing room

表1 测试结果

Table 1 Test results

<i>T</i> 高度/m	R 高度/m	D_0 / m	n	σ
0.05	0.06	1	1.971 3	4.589 5
0.70	0.06	1	2.818 0	4.215 3
0.70	0.70	1	2.133 7	2.708 2
1.40	0.70	1	2.250 6	7.643 9
1.40	0.06	1	2.261 7	3.901 7

根据表1的结果,利用式(1)容易得到不同接 收天线(*R*)、发射天线(*T*)的高度下接收信号强度 随距离的变化情况,如图2所示。这里需要说明,通 常贴近地面时,*n*的值是应该偏大的^[12],但是在测 试环境中,由于节点收发天线接近地面时各点可以 形成视距传播,所以测得的数值略小于其他高度测 得的*n*值。

 图 2 不同天线高度下接收信号强度随距离的变化
 Fig. 2 Variance of received signal strength with T - R distance in different antenna height

事实上,影响部署密度的最直接因素是覆盖面积。由于随机阴影效应的存在,覆盖区(半径为R')内总有部分区域的接收电平低于设定的阈值。进行 传感器节点的部署,必须计算一个节点覆盖区域内 接收信号强度大于某一阈值 γ 的百分比,记为 $\beta(\gamma)。如果定义<math>r$ 为T-R距离,则在特定面积内 接收信号在r处超过阈值的概率为 $P[P,(r) > \gamma]$ (称为边界或边沿覆盖概率)。根据文献[11]的计 算方法,得到

 $\beta(\gamma) = 1/(\pi R^2) \int_0^{2\pi} \int_0^R P[P_r(r) > \gamma] r dr d\theta (3)$

而接收信号电平超过一定阈值的概率可以由累 计密度函数(0函数)计算得到

$$b = (10n \lg e) / (2^{1/2} \sigma),$$

$$c = (10n \lg r) / (2^{1/2} \sigma)$$
(5)
$$\Re_{\tau}(2) \, (5) \, \Re_{\tau}(4) \, \&_{\tau}(4) \, \&_{\tau}(4) \, \&_{\tau}(7) \, (5)$$

$$r = 10^{\sigma \, \sqrt{2} (erf^{(-1)} | 2P[P_r(r) > \gamma] - 1| - a) / 10a}$$
(6)

这里 erf⁽⁻¹⁾表示误差函数 erf 的逆函数,而 Q 函数和 erf 函数之间存在如下关系:

erf
$$(z) = 2Q(2^{-1/2}z)$$
 (7)

其中, $z \in (0, + \infty)_{\circ}$

由式(6)可以得出节点覆盖的边沿分布概率与 覆盖半径之间的关系。依据图 2 的实测数据,由式 (6)得到前述测试环境的边界覆盖概率与 r 之间的 关系如图 3 所示。

由图 3 可见,发送接收天线的高度不一致,达到 相同边界覆盖概率的 T - R 距离有很大差异。例 如,在上述测试环境下,达到 95 % 的边沿覆盖概率 的情况下,T(0.70 m) - R(0.70 m)距离是 T(0.70 m) - R(0.06 m)距离的2.92 倍。据此,节点 不能完全按水平方向均匀部署,必须考虑不同节点 间的高度差异。

这里需要说明,在实际工程中,利用式(3)直接 计算 β(γ)不容易实现,因此将式(2)、式(4)代入式 (3)整理得到:

$$\beta(\gamma) = [1/2 - (1/2)\operatorname{erf}(c + a) + \exp((1 - (c + a)b)/b)] [1 - \operatorname{ref}((1 - (c + a)b)/b)]$$
(8)

(8)

(8)

(6)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(8)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

图 3 边界覆盖概率与 *T* – *R* 距离 *r* 之间的关系 Fig. 3 Relation between boundary coverage

probability and T - R distance

式(8)实际上可以作为工程中区域覆盖概率 (一个节点覆盖区域内接收信号强度大于某一阈值 γ的百分比)的计算公式。通过对大量的 n 值与 σ 值利用式(9)进行计算,可以得到文献[11]中给出 的区域覆盖概率与边缘覆盖概率的关系图。此外, 可以不严格地定义节点的有效覆盖面积 $A_{ref}(r, \gamma)$ 和有效半径 R_e ,并有

 $A_{\rm ref}(r, \gamma) = \pi r^2 \beta(\gamma) \approx \pi R_{\rm e}^2 \qquad (9)$

通过式(9),可以计算出有效半径 R。作为工程 上的有效通信半径值使用。

3 室内无线传感器网络部署方案

目前,节点的感知模型主要分为 0/1 模型^[13]和 与距离相关的概率感知模型^[14]两大类。为方便分 析,定义一个节点的感知区域为以节点为中心的一 个球,该球的半径称为感知半径,记为 R_s 。0/1 模 型假设在节点感知半径范围内发生的事件都能够被 当前节点感知,而节点感知半径范围外的事件都不 能够被感知;概率感知模型假设节点对覆盖区域内 发生的事件的感知概率为 $e^{-\delta d}$,其中 δ 表示节点感 知能力常数, d表示事件发生点距离当前节点的距 离。规定一个最低检测概率 p_0 ,使得依据概率检测 模型有 $e^{-\delta d} = p_0$ 。既得到 $R_s = \overline{R_s} = (\ln(1/p_0))/\delta$,此时称 R_s 为有效感知半径。

节点的通信覆盖区域也近似为一个球,有效通信半径为 R_e。在进行部署方案规划时,应考虑以下 2 个因素:

1) 尽可能实现全部范围内的完全覆盖;

 2)在保证节点通信连通的前提下,尽可能减少 节点数目,以降低成本,减少不必要的数据采集量。

在实际部署时,需要对这 2 个因素进行折中。 在保证通信的基础上使 2 个节点的有效感知体积的 重叠部分尽可能地小。如图 4 所示,其中实线圆表 示感知面积(体积的水平投影),虚线圆表示有效通 信覆盖面积(体积的水平投影)。在保证对特定区 域的完全感知体积覆盖的前提下,在 $R_e = 3^{1/2}R_e$ 时 是最优方案^[10]。

尽管在一个专门设计的传感器网络中,其传感

图 4 有效通信面积与感知面积的关系 Fig. 4 Relation between effective communication area and sensing area

能力与传输能力应该是大体匹配的。但在实际环境 中不能够总是保证要完成有效覆盖和通信所必须的 *R*。≥3^{1/2}*R*。关系。当某些区域因通信距离*R*。<3^{1/2}*R*。 时,尽管在感知区域形式上还是完全覆盖的,但位于 该区域的节点已经不能利用对称信道同其他节点通 信,便造成了称为感知黑洞的现象,如图 5(a) 灰色 部分所示。因此,在部署节点时必须综合考虑垂直 因素的影响,在水平部署规则的基础上,建立新的部 署规则,规避感知黑洞。

尽管实际的室内部署环境非常复杂,但是可以 把通信差异化归为天线高度的差异和不同天线高度 下传播损耗指数 n 的差异,并在制定部署规则的时 候充分考虑这些差异。基于上述考虑,提出了一种 新的室内无线传感器网络节点部署方案。

步骤1 测算室内物品高度并编号,记为高度 集合 H,使得任意物品高度 h_i ∈ H;由于室内物品是 有限的,因此集合 H 是有限的。

步骤 2 计算各物品之间高度差集合 ΔH ,并记 $\Delta h_{ij} = h_i - h_j, h_i, h_j \in H, \Delta h_{ij} \in \Delta H$;将 ΔH 的元素投 影在平面上绘制等高线图和高度图。

步骤 3 根据 ΔH 的元素 Δh_{ij} ,将测试设备天线 调整至各高度(对),测试各高度差下对应的 *n* 值和 σ 值,记为 n_{ij} 和 σ_{ij}。

步骤4 计算边界覆盖概率 $P[P_r(R'_o) > \gamma]$ 和 区域覆盖概率 $\beta_{ij}(\gamma)$,并建立如图3所示的边界覆 盖概率与 T - R 距离关系图。

步骤 5 根据节点发射功率为 P_t 和节点接收 灵敏度 γ 的大小,计算不同高度节点间有效通信半 径 R_{ii} ;若 R_i 不存在, \Diamond $R_{ii} = 0_o$

步骤 6 给定节点感知半径为 R_s ,计算并比较 R_{ij} 和 3^{1/2} R_s 的大小,若 $R_{ij} \ge 3^{1/2} R_s$,在 ΔH 中去除 Δh_{ijo}

步骤7 判断等高线图中 <i, j> 的邻接关系, 如相邻, Δh_i 保留在 ΔH 中,否则,在 ΔH 中去除 Δh_{ij} 。

步骤8 按部署规则和补充规则部署节点。

配合上述步骤,给出如下部署规则和3个补充 规则。

部署规则 依据文献[15]给出的 ORD 算法, 首先在等高线图中各高度区域部署传感器节点,定 义整个区域为 XYZ 坐标系,则等高线平面图由X – Y 坐标标定,高度区域由 Z 坐标标定。如果 $h_{ij} ∉ ΔH$, 在对应区域内,X 向间隔为 $3^{1/2} R_s$, Y 向间隔为 1. $5R_s$;否则 X 向间隔为 R_{ij} , Y 向间隔为 $3^{1/2} R_s/2$ 。 补充规则 1 如果 $\Delta h_{ij} \ge R_{ij}$,则在 Z 向间隔为 min $\{R_s, R_{ij}\}$ 部署节点。

补充规则 2 对障碍物(等高区域边界)或墙壁,且 $h_{ij} \notin \Delta H$,判定临近障碍物节点距障碍物的距离,若障碍物与临近节点垂直距离超过 R_s 但不足 1.5 R_s ,应就近在障碍物附近补充一个节点。同理, 对 $h_{ij} \notin \Delta H$,若障碍物与临近节点垂直距离超过 3^{1/2} R_s /2但不足 R_{ij} ,亦应就近在障碍物附近补充一个节点。

补充规则3 对于障碍物或墙壁,对 $h_{ij} \notin \Delta H$, 判定临近障碍物节点距障碍物距离,如果障碍物与 临近节点水平距离超过 R_s 但不足 $3^{1/2}R_s$,应就近在 障碍物附近补充一个节点。同理,对 $h_{ij} \notin \Delta H$,如果 障碍物与临近节点水平距离超过 R_{ij} 但不足 $2R_{ij}$,亦 应就近在障碍物附近补充一个节点。

根据上述方法,可以对图 5(a)因节点通信距离 减小而产生的感知黑洞进行修补,修补后的区域如 图 5b 深色部分所示。

图 5 感知黑洞(a)和对感知黑洞的修正(b) Fig. 5 Sensing collapsar (a) & Modification of Sensing Collapsar (b)

4 计算与实验结果

为进一步说明3节所述方案,实测环境见图1, 对实际测试数据进行仿真试验,测试与仿真条件见 表2。测试与仿真过程完全依照所述方案的步骤执 行。天线高度选择1.4 m,0.7 m,0.06 m 和 0.03 m。测得有效通信距离*R*_{ii}值见表3。

> 表 2 仿真试验参数 Table 2 Parameter of simulation

仿真要素	参数
发射功率/dB• m	- 25
接收灵敏度/dB• m	- 95
速率/kb• s ⁻¹	125
感知半径/m	0.42
协议	IEEE 802.15.4 - 2006/2.4 GHz

表 3 有效通信距离 Table 3 Effective communication range

				0	
h_i/m	0.03	0.70	0.70	1.40	1.40
h_j/m	0.06	0.06	0.70	0.06	0.70
R_{ij}/m	0.860 5	0.695 8	1.359 5	0.902 3	0.7694
	h_i /m h_j /m R_{ij} /m	$\begin{array}{c} h_i / m & 0.03 \\ \\ h_j / m & 0.06 \\ \\ R_{ij} / m & 0.8605 \end{array}$	h_i / m 0.03 0.70 h_j / m 0.06 0.06 R_{ij} / m 0.860 5 0.695 8	h_i / m 0.03 0.70 0.70 h_j / m 0.06 0.06 0.70 R_{ij} / m 0.860 5 0.695 8 1.359 5	h_i /m 0.03 0.70 0.70 1.40 h_j /m 0.06 0.06 0.70 0.06 R_{ij} /m 0.860 5 0.695 8 1.359 5 0.902 3

由于节点感知半径为 $R_s = 0.42 \text{ m}$,计算并比较 R_{ij} 和 3^{1/2} R_s 的大小,则 H 中仅有一个 Δh_{ij} ,对应 T(0.7), R(0.06)。

根据上述结果,不设定能量消耗参数,用C++ 编制仿真覆盖特性程序并进行了100次试验,图6 给出了当T(0.03), R(0.06)影响面积为3.7m²时 按所提方案的覆盖模式(见图6中方法1),与随机 覆盖(见图6中方法2)和考虑高度因素的ORD方 法(见图6中方法3)进行了对比。从图6的结果可 以看出,所提出的算法在抑制感知空洞和感知覆盖 范围上性能较优,但时间复杂性较高。

为了动态对比所提方案 1 与 ORD 方案 2、随机 部署方案 3 在感知覆盖面积方面的性能,定义感知 覆盖因数 η,表示总覆盖区域占需覆盖面积的百分 比。该指标的计算公式为

$$\eta = \sum_{j=0}^{m} \sum_{i=0}^{j} k_j (n_{ij} \pi R_s^2 - S_{ij}) / S_h \qquad (12)$$

其中 $k_j = 1$,存在j; $k_j = 0$,其他。 k_j 称为传感 器存在因子,如第j类传感器节点存在, $k_j = 1$,如第j类传感器节点不存在, $k_j = 0$,m为传感器种类数。 n_{ij} 表示第j类传感器在i区域的个数, S_j 表示第j类 传感器个数的区域数, S_{ij} 表示第j类传感器在i区 域的总感知区一次重叠面积,通常用数值方法累加 获得, S_h 为部署区域总面积。 仿真中,仅有一种传感器节点,对比三种部署方 案的感知覆盖因数指标,随恶劣覆盖区域面积的增加,所提方案可以获得 98 %以上的覆盖,明显优于 ORD 覆盖和随机覆盖。当恶劣覆盖面积超过总面 积的 50 %时,所提方案的优势更加明显,如图 7 所 示。

5 结语

在进行无线室内环境测试的基础上,分析了天 线高度引起的节点有效覆盖面积的变化问题以及完 全感知覆盖下有效通信半径与有效感知半径的关 系。针对出现恶劣覆盖区域的极端情况,提出了一 种考虑天线高度影响的室内无线传感器网络部署方 案,相比基于 ORD 算法的放置方法和随机放置方 法,所提方案可以有效克服感知黑洞的影响,保证被 监测区域的完全感知覆盖,具有工程指导意义。

参考文献

- [1] Batalin M A, Sukhatme G S, Hattig M. Mobile Robot Navigation using a Sensor Network [A]. Proceedings of the IEEE International Conference on Robotics & Automation (ICRA04) [C]. New Orleans, 2004
- [2] Clouqueur T, Phipatanasuphorn V, Ramanathan P, et al. Sensor deployment strategy for target detection [A]. Proceedings of ACM Workshop on Wireless Sensor Networks and Applications (WSNA 02) [C], Atlanta, 2002
- [3] Corke P, Hrabar S, Peterson R, et al. Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle [A]. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA04) [C]. New Orleans, 2004
- [4] Yi Zou, Chakrabarty K. Sensor deployment and target localization in distributed sensor networks [J]. ACM Transactions on Embed-

ded Computing Systems (TECS), 2004, 3(2): 61 - 91

- [5] Hekmat R, Van Mieghem P. Interference power sum with log normal components in ad – hoc and sensor networks [A]. Proceedings of the Third International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WIOPT05) [C]. Trentino, Italy, 2005
- [6] Giannopoulou K, Katsareli A, Dres D, et al. Measurements for 2.
 4 GHz spread spectrum system in modern office buildings [A].
 Proceedings of the 10th Mediterranean Electrotechnical Conference (MELECON 00), Vol 1 [C]. Lemesos, Cyprus, 2000
- [7] Lloret J, Lopez J J, Turro C, et al. A fast design model for indoor radio coverage in the 2.4 GHz wireless LAN [A]. Proceedings of the 1st International Symposium on the Wireless Communication Systems (ISWCS 04) [C]. Mauritius, 2004
- [8] Sujak B, Ghodgaonkar D K, Ali B M, et al. Indoor propagation channel models for WLAN 802.11b at 2.4 GHz ISM band [A]. Proceedings of the Asia - Pacific Conference on Applied Electromagnetics (APACE05) [C]. Malaysia, 2005
- [9] Petrova M, Riihijarvi J, Mahonen P, et al. Performance study of IEEE 802.15.4 using measurements and simulations [A]. Proceedings of the Wireless Communications and Networking Conference (WCNC06) [C]. Las Vegas, USA, 2006

- [10] Cavilla A L, Baron G, Hart T E, et al. Simplified simulation models for indoor MANET evaluation are not robust [A]. Proceedings of the First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON04) [C]. Santa Clara, 2004
- [11] Pappaport T S. Wireless Communications: Principles and Practice (2nd Edition) [M]. Prentice - Hall Inc, USA, 1996
- [12] Jakes W C. Microwave Mobile Communications [M]. Wiley Interscience, USA, 1974
- [13] Chakrabarty K, Iyengar S S, Qi H, et al. Grid coverage for serveillance and target location in distributed sensor networks
 [J]. IEEE Transactions on Computers, 2002, 51(12): 1448 (1453)
- [14] Dhillon S S, Chakrabarty K. Sensor placement for effective coverage and surveillance in distributed sensor networks [A]. Proceedings of IEEE Wireless Communication and Networking Conference (WCNC03) [C]. New Orleans, 2003
- [15] Chang Chihyung, Chang Hsuruey, Hsieh Chen Chi. Obstacle - free network deployment and damaged repairation robot algorithms for Wireless sensor networks [J]. Journal of Information, Technology and Society, 2006, 6(2): 15-36

A deployment strategy for wireless sensor networks using indoor radio propagation model

Huo Hongwei, Gao Shuai, Niu Yanchao, Zhang Sidong

(School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044 China)

[Abstract] Deployment strategy for Wireless Sensor Networks is an important issue. Most research works are based on the horizontal Scheme. However, many factors including the height of node's antenna, one of the vertical factors, can also affect the indoor communication performance of sensor nodes, which is a main consideration to design an appropriate deployment scheme. In this paper, the variance of coverage caused by the different antenna's height is analyzed, using log – distance indoor radio propagation model at 2.4GHz ISM band. The relationship between effective communication range and effective sensing range is also discussed. Based on traditional plane deployment strategies, a novel method is proposed to avoid the sensing collapsars. It first calculates the effective communication ranges, and eliminates the useless antenna's height parameter which can not affect the full coverage of sensing area and communication area. Then, it projects the residual height parameter to the plane and uses classical Deploy Rules to place the sensor nodes. Experiments and simulations indicate that this deployment strategy is useful and effective.

[Key words] wireless sensor network; effective communication range; effective sensing range; sensing collapsar; coverage