大规模海上风电场输电方式的探讨

朱宜飞, 陶铁铃

(长江勘测规划设计研究院新能源公司,武汉 430010)

[**摘要**] 分析了大规模海上风电场的并网需求,比较了高压交流输电系统、基于电网换相换流器的高直流输 电系统和电压源换流器的直流输电系统的技术特点,对系统损耗做了数值分析,从而得出各种输电系统的适 用范围。

[关键词] 海上风电;高压交流输电;高压直流输电;电网换相换流器;电压源换流器 [中图分类号] F4 「文献标识码] A 「文章编号] 1009-1742(2010)11-0089-04

1 前言

根据国内实际情况,探讨了未来海上风电场并 网所面临大容量长距离的电能输送问题,以寻找适 合中国国情的海上风电场发展模式。

2 海上风电场输电方式和机组简介

2.1 海上风电场的机组形式

风力发电机组主要划分为恒速机和变速机两大 类,根据目前的发展趋势,双馈变速异步机组和直驱 同步组已逐渐成为主流。双馈机组的特性是定子直 接与电网相连而转子通过换流器与电网相连,该系 统允许电机转速在额定转速的 60 % ~ 110 % 之间 变化,而且换流器额定容量达到风机额定功率的 30 %即可。直驱同步机组采用永磁电机,定子通过 换流器与电网相连,该系统允许电机转速在更大范 围内变化,由此可以省掉变速箱。风电机组的单机 容量也在日益增大,5 MW 的机组即将投入使用,未 来 8 ~ 10 MW 的机组亦在规划之中。同时机端电压 也相应升高,目前已有少数机组的机端电压超过 1 000 V,但升高机端电压的同时必须提高绝缘等级 从而占用更多的机组空间,因此未来机端电压的升 高将是十分有限的。基于以上原因,在后述的模型 中,海上风电机组按5 MW 永磁直驱机组考虑,机端 电压设为2000 V。

2.2 高压交流输电系统

迄今为止所有已建成海上风电场均采用高压交 流输电系统(HVAC),其由以下几部分组成:a.交流 集电线路;b.海上升压站和无功补偿设备;c.三芯 XLPE 交联海底电缆;d.陆上变电站和无功补偿设 备。典型的 HVAC 交流输电系统见图 1。

图 1 典型的高压交流输电系统 Fig. 1 A typical HVAC transmission system

2.2.1 XLPE 海底电缆和无功补偿设备

XLPE 交联聚乙烯电缆是目前应用最广泛的海 底电缆,其具有良好的导热性,所以载流量和过短路 电流能力都十分优秀。XLPE 电缆能在导体温度 90℃的条件下持续工作,而且其介质损耗低于其他 电缆,并且对环境影响较小。如今额定电压 245 kV

[[]收稿日期] 2010-07-16

[[]基金项目] 国家自然科学基金创新研究群体资助(50921001)

[[]作者简介] 朱宜飞(1978—),男,湖北武汉市人,长江勘测规划设计研究院工程师,研究方向为电力系统及其自动化; E-mail: zhuyifei@gmail.com

额定功率 500 MW 的 XLPE 电缆已投入使用, 额定 电压 500 kV 的 XLPE 电缆也即将面世。通常电缆 线路的分布电容要远大于架空线路, 因此在交流输 电系统中会产生很大的电容电流, 从而显著降低了 电缆输送有功的能力, 因此需根据实际情况在电缆 的一侧或两侧加装无功补偿装置, 目前相控电抗器 (TCR)设备的使用较为普遍。

2.2.2 海上升压站

为了降低线路损耗并提高输送能力,海上风电 场通常会配置海上升压站,大规模的海上风电场会 配置一个以上。图2为海上升压站示意图。

图 2 海上升压站

Fig. 2 Offshore substation

2.3 电网换相换流器的高压直流输电(HVDC)系统

基于电网换相换流器(LCC)的直流输电系统被 广泛应用于陆上长距离输电和海底电缆等领域,技 术较为成熟,但目前尚未被运用到海上风电领域。 一个完整的基于 LCC 的直流输电系统(见图 3)应 包含以下部分:a.交流滤波器;b. 直流滤波器;c. 换 流变压器;d. 晶闸管换流阀;e. 平波电抗器;f. 电容 器组件;g. 直流电缆;h. 柴油机辅助动力系统。

图 3 典型的基于电网换相换流器直流输电系统 Fig. 3 Typical HVDC transmission

system based on LCC

 1)滤波器。交流滤波器用来吸收换流变压器 所产生的谐波,减少谐波对交流系统的影响,同时向 换流站提供无功;直流滤波器用于吸收直流侧的谐 波。 2) 换流变压器。在 LCC 直流输电系统中,换流变 压器成对配置,在海上和陆上的换流站中各装一台。

3) 晶闸管换流阀。晶闸管换流阀是换流站的 核心部件之一,其控制交流与直流的相互转换,如今 的可控硅器件额定可达8 kV,容量高达1 000 MW。

4)平波电抗器。平波电抗器和直流滤波器一 起构成直流侧的直流谐波滤波回路,一般串接在每 个极换流器的直流输出端与直流线路之间,在抑制 直流波动的同时还能保护换流阀。

5)电容器组件。电容器组件是和电压器并联 的一系列电容器组,用于提供换流阀工作时所需要 的无功。

6) 直流电缆。直流电缆目前有充油电缆,不滴 流电缆以及 XLPE 交联聚乙烯电缆等几种,其中充 油电缆目前能做到 600 kV,额定容量高达 1 000 MW,但由于被充油所限,其长度很难超过 100 km,且存在绝缘油外泄污染环境的危险;不滴 流电缆则能做到500 kV,容量 800 MW,其容量主要 受导体温度限制。

7)柴油机辅助动力系统。该系统用于在换流站启动时向换流阀供电,并提供保护,冷却等设备所需的电源。

2.4 基于电压源的直流输电系统

基于电压源换流器(VSC)的直流输电系统是近 年来在 IGBT 的基础上所发展出来的一种新兴直流 输电系统(见图 4),其主要组成部分为:a. VSC 换流 站;b. 直流电缆。

图 4 典型的基于电压源换流器的直流输电系统 Fig. 4 Typical HVDC transmission system based on VSC

1) VSC 换流站。VSC 换流站的核心是高频 IG-BT 开关器件,其工作在 500 Hz 到 2 000 Hz 之间,通 过控制 PWM 脉冲,其输出电压可根据系统需要自 动调节。IGBT 开关器件在换流器上的应用消减了 系统谐波并改善了电能质量,但高频同时也带来较 高的系统损耗。 2) 直流电缆。在 VSC 系统中目前主要使用的 是聚合物挤包绝缘电缆,其相对充油电缆和不滴流 电缆有着较好的导热性,对环境影响也较小。

3 输电系统的损耗分析

3.1 系统的简化和抽象

为了比较不同输电系统的损耗,必须考虑风电场的年度发电量,其由风速的分布函数决定。在此假设风电场的年发电量满足瑞利分布函数曲线,年平均风速为8.5 m/s,并简化为18点采样,由此得到的年利用小时数为3450 h。

所有的 AC, DC 电缆均假设为 1 200 mm² XLPE 三芯电缆,并取其相应参数。各级变压器的损耗假 设为定值。换流器均假设为中性点钳位三电平 (NPC)换流器,其满负荷效率大于 98 %。

3.2 高压交流输电系统的损耗

高压交流输电系统的传输距离主要取决于电缆 所产生的无功,比较其在不同电压等级下的传输容 量和传输距离的关系(见图 5),其中边界条件按压 降 10 %,相位变化小于 30°校验。

图 5 不同电压等级下的最大传输容量 Fig. 5 Transmission capacity for different voltage levels

由图 5 可知 110 kV: L_{max} = 377 km,220 kV: L_{max} = 281 km,500 kV: L_{max} = 201 km_o

通过 Matlab 建立模型进行仿真,计算在不同电 压等级下(110 kV、220 kV、500 kV)装机容量为 500 MW 和 1 000 MW 的风电场在不同距离上的系统损 耗 L %。

$$L \% = \frac{\sum_{i}^{n} P_{ii}}{\sum_{i}^{n} P_{gi}}$$

其中,P_u为传输系统在风速*i*时的有功损耗;P_{si}为机 组在风速*i*时所发出的有功功率;n 为风速的等级 划分。 对于装机容量为 500 MW 风电场,传输系统损 耗计算结果如表 1 所示。

表 1 500 MW 风电场高压交流输电系统损耗计算结果

Table 1 Transmission losses of 500 MW capacity

with HVAC transmission system

电缆长	110 kV	220 kV	500111(首相)
度/ km	(3 根并联)	(2 根并联)	500 KV(単侬)
50	2.91 %	1.65 %	1.03 %
100	4.83 %	3.13 %	2.57 %
150	7.55 %	5.07 %	4.72 %
200	11.34 %	7.81 %	19.16 %

对于装机容量为1000 MW 风电场,传输系统 损耗计算结果如表2 所示。

表 2 1 000 MW 风电场高压交流输电系统损耗计算结果 Table 2 Transmission losses of 1 000 MW

capacity with HVAC transmission system

电缆长	110 kV	220 kV	500 LV(首 坦)
度/ km	(3 根并联)	(2 根并联)	500 KV(平松)
50	3.27 %	2.00 %	1.05 %
100	5.81 %	3.75 %	2.36 %
150	8.71 %	5.85 %	4.32 %
200	12.38 %	7.66 %	16.85 %

从上述结果可知,在150 km 以内,采用较高的 电压等级(220 kV、500 kV)可减少传输系统损耗, 但其大规模应用尚未开始,还处于测试阶段;而对于 较为成熟 110 kV 电压等级的其传输损耗的组成见 表 3。

表 3 距岸 100 km 的 500 MW 的风电场传输系统损耗分布 Table 3 Losses component of 500 MW capacity at 100 km distance

	升压变压器/%	无功补偿装置/%	海底电缆/%	
传输损耗	5	4	91	

3.3 基于 LCC 的直流输电系统损耗

通过 Matlab 建立模型进行仿真,计算在不同的 换流器配置下,装机容量为500 MW 和1000 MW 的 风电场在不同距离上的系统损耗 L%。

对于装机容量为 500 MW 风电场,传输系统损 耗计算结果如表 4 所示。

表 4 500 MW 基于 LCC 的直流输电系统损耗计算结果 Table 4 Transmission losses of 500 MW capacity with HVDC transmission system based on LCC

电缆长度/ km	500 MVA	2×250 MVA	600 MVA
50	1.77 %	1.81 %	1.75 %
100	1.98 %	2.14 %	1.87 %
150	2.19 %	2.48 %	1.99 %
200	2.39 %	2.82 %	2.11 %

对于装机容量为1000 MW风电场,传输系统 损耗计算结果如表5 所示。

表 5 1 000 MW 基于 LCC 的直流输电系统损耗计算结果

 Table 5
 Transmission losses of 1 000 MW capacity

with HVDC transmission system based on LCC

电缆长度/ km	2×500 MVA	500 MVA $+$ 600 MVA	$2 \times 600 \text{ MVA}$
50	1.69 %	1.66 %	1.65 %
100	1.92 %	1.84 %	1.78 %
150	2.14 %	2.01 %	1.91 %
200	2.37 %	2.19 %	2.04 %

不同组合条件下的传输损耗组成见表6。

表6 不同组合条件下的传输损耗组成

Table 6 Losses component at different condition

装机容量/ MW	线路长度/ km	线路损耗/%	换流器损耗/%
500	100	13	87
500	200	23	77
1 000	100	20	80
1 000	200	25	75

3.4 基于 VSC 的直流输电系统损耗

通过 Matlab 建立模型进行仿真,计算在不同的 换流器配置下,装机容量为500 MW 和1000 MW 的 风电场在不同距离上的系统损耗 L%。

对于装机容量为 500 MW 风电场,传输系统损 耗计算结果如表 7 所示。

表7 500 MW 基于 VSC 的直流输电系统损耗计算结果

Table 7 Transmission losses of 500 MW capacity

with HVDC transmission system based on VSC

电缆长度/ km	350 MVA + 220 MVA	A 2×350 MVA	500 MVA
50	4.05 %	4.31 %	4.43 %
100	4.43 %	4.58 %	4.87 %
150	4.82 %	4.94 %	5.31 %
200	5.20 %	5.30 %	5.75 %

对于装机容量为1000 MW风电场,传输系统 损耗计算结果如表8所示。

表 8 1 000 MW 基于 VSC 的直流输电系统损耗计算结果 Table 8 Transmission losses of 1 000 MW capacity with

HVDC transmission	system	based	on	VSC
-------------------	--------	-------	----	-----

	-	
 电缆长度/ km	$2 \times 500 \text{ MVA}$	3 × 350 MVA
50	4.09 %	4.02 %
100	4.56 %	4.52 %
150	5.03 %	5.02 %
200	5.51 %	5.52 %

不同组合条件下的传输损耗组成见表9。

表9 不同组合条件下的传输损耗组成

Table 9 Losses component at different condition

装机容量/ MW	线路长度/ km	线路损耗/%	换流器损耗/%
500	100	18	82
500	200	30	70
1 000	100	23	77
1 000	200	30	70

4 不同形式输电系统的比较

综合以上数据比较分析可知(见图 6),在 100 km以内,传统的高压交流输电系统损耗较低, 输送容量较大,而且技术成熟可靠,造价相对较低, 这也很好的解释了为什么目前已建的风电场全部使 用高压交流输电系统的原因。

图 6 不同容量的海上风电场输电电系统的选择

Fig. 6 Choice of transmission system for different wind farm capacities

当距离超过 100 km 时,交流输电系统的传输能 力随着介质损耗的增加而快速下降,而直流输电系 统因为其系统损耗和传输容量对于距离的增加并不 敏感,优势逐渐显露出来,其中 LCC 的损耗要小于 VSC,但考虑到风力发电自身谐波含量较高,而 LCC 的工作原理会进一步加重谐波污染,对电网易造成 较大冲击,所以 LCC 的应用范围应限于 VSC 容量所 不及的超大规模风电场。

直流输电的另一个明显优势是与交流电网柔性 连接,风电场与主网间互不影响,从而增强了系统的 可靠性;而基于 VSC 的直流输电系统甚至可以连接 在弱网上,是解决风电并网问题的关键之一。因此 目前近岸海上风电场的输电系统可以以交流输电为 主,随着 VSC 直流输电技术逐渐成熟,器件价格降 低以后,再向其过渡。

(下转97页)