基于纳米铁碳析出物的钢综合强化机理

傅 杰^{1,2},李光强²,于月光³,毛新平⁴,方克明^{1,2}

(1. 北京科技大学冶金与生态工程学院,北京 100083; 2. 武汉科技大学钢铁冶金及资源利用教育部重点实验室,武汉 430081;
 3. 北京矿冶研究总院,北京 100044; 4. 广州珠江钢铁有限责任公司,广州 510730)

[摘要] 简要叙述了关于钢强化机理的研究现状,用化学相分析 + X 射线小角散射、RTO 方法及高分辨透射 电镜对薄板坯连铸连轧钛微合金化高强耐候钢中纳米粒子的属性进行了综合分析。发现钛微合金化高强耐 候钢中尺寸 < 36 nm 的粒子,除纳米 TiC 以外,还存在大量的纳米 Fe₃C,其体积分数为同尺寸 TiC 体积分数的 4.4 倍,析出强化作用比纳米 TiC 粒子大,不可忽略;提出了钢的综合强化机理,指出对不同种类、不同尺寸的 纳米析出粒子,应分别根据位错切割和位错绕过机理计算出析出强化贡献,然后与固溶强化和细晶强化贡献 加和,求得钢的屈服强度;讨论了细晶强化与位错强化不能加和的原因以及相变对钢强度影响的表现形式, 对钛微合金化高强耐候钢屈服强度的理论计算与生产结果相符,实验钢 $\sigma_s = 630 \sim 676$ MPa,实际 $\sigma_s = 630 \sim 680$ MPa。简述了钢综合强化机理的应用情况,指出了有待进一步研究的科学问题。

[关键词] 屈服强度;纳米铁碳析出物;纳米 TiC;析出强化;钢的综合强化机理

[中图分类号] TG142.1 [文献标识码] A [文章编号] 1009-1742(2011)01-0031-12

1 研究现状

钢铁是一个国家实现工业化的基础材料,钢的 强度,特别是屈服强度是钢结构的一个重要使用性 能。半个多世纪以来,各国的钢铁冶金和材料科学 工作者对钢的强化机理进行过大量深入的研究。我 国近十多年来攀登计划 B 项目"高强高韧钢的基础 研究"、973 项目"新一代钢铁材料的重大基础研 究"、国家自然科学基金重点项目"薄钢板连铸连轧 过程钢的组织性能控制与检测"等,其主要内容均 是通过研究钢的强化机理,达到提高钢的强度,实现 钢结构轻量化,促进国民经济可持续发展的目的。

钢的强化机理,总体说来可分为两类:一类是单 一强化机理。钢具有不同的强化机理,包括固溶强 化、细晶强化、析出强化、位错强化、相变强化(或亚 晶强化)等。近年来,比较一致的看法是钢的主要 强化机理可归结为:固溶强化、细晶强化、析出强化 和位错强化4种,其中,细晶强化随晶粒细化,既可 提高强度,又能提高钢的韧性,其他强化手段都不同 程度地降低钢的韧性。第二类是钢强化机理的加和 法则,即认为钢的屈服强度等于各种强化机理对钢 屈服强度贡献之和。

1.1 超细晶强化

细晶强化实质上是晶界强化。晶界对位错运动的阻力导致晶界强化,晶界面积愈大,钢的强度愈高;晶粒尺寸愈细,晶界面积愈大,即平均晶粒尺寸愈细,钢的强度愈高。提高晶界本身的强度,也会导致钢强度的提高。细晶强化的理论基础是 Hall – Petch 公式^[1,2]:

$$\Delta \sigma_c = \sigma_0 + K_y d^{-\frac{1}{2}} \tag{1}$$

$$\beta T_{\rm e} = \beta - \ln d^{-1/2} \tag{2}$$

1997年,日本、中国、韩国在各自政府的支持下,相继开展了研制新型钢铁材料的工作,日本称之为"超级钢",我国称之为"新一代钢铁材料",韩国称之为"先进结构钢",其理论依据和指导思想是Hall – Petch 公式,认为结构钢材的主要强化机制是

[[]收稿日期] 2010-10-08

[[]基金项目] 国家自然科学基金重点资助项目(50334010);新一代钢铁材料的重大基础研究(973)项目(G1998061500)

[[]作者简介] 傅 杰(1937—),男,湖南湘潭市人,北京科技大学教授,研究方向为冶金与材料;E-mail:fujie9@gmail.com

细晶强化,研究目标是通过将晶粒尺寸细化到 1μm,甚至是亚微米(亚结构板条束宽度),实现钢 的强度翻番,对低合金钢和合金钢分别达到抗拉强 度 800 MPa 和 1 500 MPa。我国与外国不同,在"新 一代钢铁材料的重大基础研究"(973 项目)中,除将 抗拉强度 800 MPa 改为屈服强度为 800 MPa,还包 括对使用广泛的 400 MPa 级碳素钢的研究。研究目 标是制造 400 MPa 级屈服强度的碳素钢热轧板卷和 以Ⅲ级钢筋为目标的长型材。

经过大约6年的工作,从1997年到2003年,日本发现在工业条件下,利用现有装备与技术不能获得1μm尺寸的晶粒。在实验室条件下,利用特殊工艺可将钢组织细化到亚微米级,但细晶强化与位错强化不能加和,钢的强度的实际值低于加和值^[3],终止了超级钢项目。

在同一期间,我国北京科技大学和珠江钢厂合作,发现低碳钢中存在纳米铁碳析出物,具有显著的析出强化作用,开发出了屈服强度为400 MPa级的HSLC钢,提出了钢的综合强化机理。2003年,"钢组织性能的综合控制理论"研究项目被评为2003年度中国高等学校十大科技进展之一。

实验研究和生产实践证明:无论是 400 MPa 级的铁素体珠光体钢,还是 800 MPa 级的贝氏体钢,均 不是超细晶钢(平均晶粒尺寸为 5~10 μm),钢的 强度翻番不是由于晶粒细化的结果(在相同晶粒尺 寸条件下,屈服强度可相差 100~300 MPa 以上)。

1.2 钢强度的加和法则

2003 年4 月至 2007 年 3 月,日本举行了"屈服 强度与显微组织关系研讨会",开展了 4 年的研究 活动,调查了对各种钢的屈服强度起支配作用的组 织结构因素,其成果在 191—192 回西山纪念讲座上 作为教材进行了报告^[3]。报告指出:一般的低碳钢 如图 1 所示,直到晶粒为 1 μm,晶粒直径 *d* 减小时, 屈服强度与 *d*^{-1/2} 成比例增加,符合 Hall – Petch 关 系,细晶强化量可按下述经验式(3)计算:

$$\Delta \sigma [\text{MPa}] = 600d [\mu\text{m}]^{-1/2}$$
(3)

图 1 纵轴上的截距值与单晶材料的屈服强度对 应,包含了固溶强化值,式(3)曲线代表固溶强化和 细晶强化的加和值。不同类型的钢,d^{-1/2}前面的系 数不同,即曲线具有不同的斜率和截距,晶粒尺寸对 强度的影响不同,固溶强化及细晶强化贡献不同。

从式(3)曲线可知,低碳钢晶粒尺寸为 10~ 5 μm 时, σ。约为 190~270 MPa。但实践指出:

HSLC 钢 ZB30 晶粒尺寸约为 8 ~ 10 μm, σ_s 可达 410 MPa, 并保持伸长率为 29 %^[4];含 Ti 约 0.09 % 的钛微合金化高强耐候钢(HSLA 钢), 晶 粒尺寸为 2.9 ~ 3.8 μm^[5], 按式(3) 计算的固溶 强化与细晶强化值 σ_s 为 352 ~ 307 MPa, 但实际可 达 700 MPa^[6]。显然, 对 σ_s 作贡献的尚有其他的强化 机制, 固溶强化与细晶强化的加和值与实际值之间的 差距, 可以认为是析出强化和位错强化机制导致的。

加工过程中,钢中产生大量的位错,钢中原有位 错与受力过程中新产生的位错的交互作用或原有位 错对新产生位错运动的阻力导致位错强化或加工硬 化。位错对钢屈服强度的贡献与其密度的平方根成 正比。文献[3]指出:固溶强化与位错强化的加和 值,可用经验公式(4)(Bailay – Hirsch 关系)表示。

 $\Delta \sigma_{W} [MPa] = 1.2 \times 10^{-5} \sqrt{\rho_{X - ray}}$ (4)

截距的值包含了固溶强化,与基体自身强度对应,冷加工可以给铁导入的最大位错密度为10¹⁶/m²,位错强化贡献可以达到1200 MPa。

热轧钢材中位错密度 < 10¹⁴/m² 时,位错强化贡 献消失^[3]。在奥氏体再结晶或铁素体缓慢冷却(例 如薄板卷取,钢材热处理)过程中,位错密度会降 低。试验指出:1 mm 厚薄板坯连铸连轧成品板材位 错密度为 2.8 × 10¹³/m^{2[4]}。考虑到原有的位错密度 与第二相析出粒子的钉轧作用有关,在计算了第二 相粒子对钢屈服强度的析出强化以后,可以不再考 虑原有的位错密度对新产生位错运动的阻力,即不 再考虑位错强化贡献。文献[3]认为:细晶强化与 析出强化不能加和,钢的屈服强度是由细晶强化和 析出强化二者之一决定的。

2 钢中的纳米铁碳析出物及其对钢的析出 强化作用

2.1 Ti 微合金化高强耐候钢中的纳米铁碳析出物

薄板坯连铸连轧是当代先进的钢生产流程之一。近年来在国内外有着迅速的发展。薄板坯连铸 连轧产品95%以上是含碳<0.06%~0.25%的低 碳钢或低合金高强度钢。强度较高是薄板坯连铸连 轧产品力学性能的重要特征之一。

在研究薄板坯连铸连轧 HSLC 钢强度高的原因 时,文献[7,8]作者首先发现钢中存在大量纳米尺 寸的氧化物和硫化物,其尺寸一般为几十纳米至几 百纳米,并发现钢中存在大量尺寸 < 20 nm 的沉淀 粒子,它们具有尖晶石类型的结构;文献[9,10]实 验观察到钢中存在的纳米 AIN 粒子,其尺寸为几个 纳米至几十纳米,并进行了动力学研究;文献[11, 12]研究了用 CSP 工艺生产低碳钢中纳米碳化物及 其对钢力学性能的影响,指出薄板坯连铸连轧低碳 钢铸坯、轧卡件和钢材中均存在大量尺寸 < 20 nm 的析出物,主要为铁碳析出物,对钢起显著的沉淀强 化作用。 文献[13]系统地研究了薄板坯连铸连轧低碳 钢中存在的尺寸 < 20 nm 的铁碳析出物的类型,尺 寸分布及体积分数。讨论了铁碳析出物对钢屈服强 度的贡献。指出沉淀析出对 HSLC 钢材屈服强度的 贡献与细晶强化的贡献相当。对于 HSLC 钢和低合 金钢 SPA - H,回火快冷试验前后,钢的晶粒尺寸未 变,但钢的屈服强度可提高 100 MPa 以上,显然是由 于钢中纳米铁碳析出物的析出强化作用导致的。

在实验室条件^[14]和生产条件下^[6]研究了钛微 合金化高强耐候钢,发现钛微合金化对热轧钢板的 强度具有显著的影响。文献[6]根据化学相分析及 X-射线小角散射、电镜分析等方法研究了 Ti 的强 化机理,发现随钢中钛含量增加,钢中纳米 TiC 的百 分含量增加,钢的屈服强度提高。认为:Ti 的强化 作用主要是纳米 TiC 的析出强化。没有考虑铁碳析 出物的影响,从而计算结果与实际不符。文章研究 了薄板坯连铸连轧 Ti 微合金化钢中 Fe₃C 和 TiC 的 粒度分布及质量百分数。

表1列出了实验用钢的化学成分。

表 2~表 6 分别为析出相结构参数, M₃C 及 MC 中各元素占钢的质量分数。2#试样的 M₃C 类析出 物的粒度分布, 2#试样 MC 类析出物的粒度分布及 实验钢的力学性能。

表 1	实硷	田钢	的化	学成分
1X I	<u></u>	ציא ני נ	HJFL	エルシノ

			Table 1	Chemical co	mposition of	experiment	al steels		%
编号	С	Mn	Si	Cu	Ni	Cr	Ν	Al	Ti
1	0.061	2.10	0.10	0.03	0.03	0.06	0.000 9	0.01	0.085
2	$0.04 \sim 0.06$	0.40~0.50	0.35~0.42	0.25 ~ 0.29	0.18~0.22	$0.40 \sim 0.45$	0.006 0 ~0.008 0	0.03~0.04(Total)	< 0.10

注:1为实验室条件;2为生产条件,2#试样含 Ti 0.09 % 左右

表 2 析出相结构参数

Table 2 Structural parameters of precipitates

	-		
相类型	点阵常数/nm	晶系	结构式
M ₃ C	a_0 = 0.451 5 – 0.452 3, b_0 = 0.507 9 – 0.508 8, c_0 = 0.674 8 – 0.674 3	正交	$(\ {\rm Fe}_{0.955}{\rm Cr}_{0.035}{\rm Mn}_{0.010})_{3}{\rm C}$
Ti(C,N)	<i>a</i> ₀ = 0.424 - 0.425		
TiC	$a_0 = 0.430 - 0.431$	面心立方	$(\ \mathrm{Mo}_{0.022}\mathrm{Nb}_{0.006}\mathrm{Ti}_{0.972})(\ \mathrm{C}_{0.661}\mathrm{N}_{0.339})$
${\rm Ti}_2 {\rm CS}$	$a_0 = 0.3210, c_0 = 1.1203, c/a = 3.49$	六角	

表 3 2#试样 M₃C 及 MC 中各元素占钢的质量分数 Table 3 M₃C and MC element mass fraction in steel in No. 2 sample

相		相占钢的质量分数/%			
Fe. C	Fe	Cr	Mn	С	Σ
1030	0.493 7 0.016 7	0.005 1	0.037 1	0.552 6	
	Mo	Nb	Ti	Ν	0 108 2
M(C,N)	M(C,N) 0.003 7 0.001 0	0.081 4	0.008 3	0.108 5	

相		相占钢的质量分数/%		
	Al	Ν		0,002,2
AIN	0.001 5	0.000 8		0.002 3
T: CS	Ti	С	S	0.014.0
11203	0.010 2	0.001 3 0.003 4	0.003 4	0.014 9

从表3可知,析出相中质量分数最大的是渗碳体为主的 M₃C 类化合物,其次是 Ti(C,N)为主的 MC 类化合物,M(C,N)的质量分数与文献[6]中含 Ti 0.09%钢的相同。X 射线小角散射得到了 2#试样的 Fe₃C 和 MC 析出物的粒度分布数据,分别见表4 和表5,实验用钢的力学性能见表6。

表4 2#试样的 M₃C 类析出物的粒度分布

Table 4Size distribution of M3 C precipitates

in	No.	2	sample	
----	-----	---	--------	--

粒径范围/nm	频率 f(D) /(%/nm)	质量分数/%	累积质量 分数/%
1 ~ 5	3.39	13.5	13.5
5~10	2.13	10.7	24.2
10 ~ 18	2.34	18.7	43.0
18 ~ 36	0.49	8.8	51.8
36 ~ 60	0.28	6.8	58.6
60 ~ 96	0.31	11.1	69.7
96 ~ 140	0.24	10.5	80.2
140 ~ 200	0.16	9.8	90.0
200 ~ 300	0.10	10.0	100.0

表 5 2#试样的 MC 类析出物的粒度分布

Table 5Size distribution of MC

precipitates	in	No. 2	sample
I I I I			I

粒径范围/nm	频率 <i>f</i> (D) /(%/nm)	质量分数/%	累积质量 分数/%
1 ~ 5	2.13	8.5	8.5
5~10	1.75	8.8	17.3
$10 \sim 18$	1.49	12.0	29.3
18 ~ 36	0.49	8.7	38.0
36~60	0.31	7.3	45.3
60 ~ 96	0.22	8.1	53.4
96 ~ 140	0.23	10.1	63.5
140 ~ 200	0.19	11.3	74.7
200 ~ 300	0.25	25.3	100.0

2#试样的 M₃C 类析出物的平均粒径达到了 72.2 nm; MC 类析出物的平均粒径是 109.1 nm, M₃C 类析出物的平均粒径比 MC 小。

为进一步研究 HSLA 钢中纳米铁碳析出物的存在,用 RTO 金属包埋切片微米—纳米表征法制备试样,用高分辨透射电镜进行了分析。

RTO 金属包埋切片微米—纳米表征法(以下简

34 中国工程科学

称 RTO 表征法)是在室温下在有机溶液中用金属包 埋微米—纳米切片试样的方法。这种方法解决了从 微米—纳米材料中切取厚度为纳米级薄膜的难题, 在微米—纳米材料研究中已成功获得了广泛应 用^[15]。从微米—纳米材料中切取薄膜的步骤见文 献[16]。

续表

表 6 实验用钢的力学性能 Table 6 Mechanical properties of experimental steels

编号	板厚 /mm	钛含 量/%	$\sigma_{\rm s}/{ m MPa}$	$\sigma_{\rm b}/{\rm MPa}$	δ/%	$\sigma_{\rm s}/\sigma_{\rm b}$
1	6	0.085	648	749	16.4	0.9
2	3	0.09	630 ~ 680	680 ~730	21	0.88

注: σ_s 为屈服强度,Rel; σ_b 为抗拉强度,Rm

采用 RTO 方法,把实验的热轧钢板在有机溶液 中电解 24 h,将得到的含有纳米析出物的电解液用 无水乙醇分散于铜箔上,用前述的 RTO 方法将纳米 析出物包埋于铜中;通过磨抛和离子薄化仪把包埋 后的试样减薄到电子束可以穿透的薄度,然后进行 高分辨透射电镜观察。

图 2 是从实验钢样中电解提取出来的析出物制成的 RTO 试样的透射电镜形貌照片。从图 2 可以看到,较多粒径在 20 nm 以下的析出物颗粒,呈多边形而非圆形和椭圆形。

图 2 RTO 试样的 TEM 照片 (图中标尺 20 nm) Fig. 2 TEM morphology of RTO sample (the ruler shows 20 nm)

图 3 和图 4 分别是 RTO 试样中典型的 Fe-C

析出物和 TiC 类型析出物的能谱,从中可大致判断 析出物中元素的原子百分比,由于纳米析出物颗粒 很小,根据能谱分析的结果难以准确认定析出物的 相组成。

图 3 RTO 试样中 Fe - C 析出物的 XEDS 谱 Fig. 3 XEDS spectrum of Fe - C precipitates in RTO sample

图 5 和图 6 是 RTO 试样中 Fe₃C 和 Ti(C,N) 析 出物的高分辨图像和电子衍射花样。

2.2 纳米铁碳析出物对钢的析出强化贡献

2.2.1 析出强化的理论计算公式

析出强化是通过钢中细小弥散的沉淀相,与位 错发生交互作用,造成对位错运动的障碍,阻碍位错 运动,使钢的强度提高的一种强化方式。

晶体中的位错,在运动前方遇到沉淀相阻碍时, 表现出两种不同类型的交互作用,产生两种不同类 型的强化机制,一是位错运动切割质点,称为切割机 制;一是不穿过质点,而是绕过它,并在其周围留下 位错环,称为绕过机制或 Orowan 机制。

按照 T Gladman 等采用的 Ashby – Orowan 修正模型的简化公式可以计算钢中细小析出粒子的析出强化作用^[17],粒子平均直径大于 40 nm 时,析出强化贡献不大。

图 5 Ti 微合金化高强耐候钢 RTO 试样中 Fe - C 析出物的高分辨图像和电子衍射花样 Fig. 5 High resolution micrographics and diffraction of Fe - C Precipitate in RTO sample of Ti microalloyed high strength weathering steel

图 6 Ti 微合金化高强耐候钢 RTO 试样中 TiC 析出物的高分辨图像

Fig. 6 High resolution micrographics of TiC precipitate in RTO sample of Ti microalloyed high strength weathering steel

$$\sigma = \frac{5.9 \int}{\overline{x}} \times \ln(\frac{\overline{x}}{2.5 \times 10^{-4}}) \tag{5}$$

式(5)中, σ 是析出强化对屈服强度的贡献(增量), MPa; x 是析出粒子的平面截距直径, μm; f 是析出相 的体积百分数。

当析出相粒子直径很小,且与基体的界面张力 较小,成共格或半共格析出时,根据 Olson 的工 作^[18~20]:

$$\tau_{\rm P} = -\frac{1.1}{DAG} \times \frac{\gamma^{3/2}}{b^2} \times d^{1/2} f^{1/2}$$
(6)

式(6)中, τ_{P} 是析出强化对钢屈服强度的贡献(增量),MPa; $A = \frac{1}{2\pi K} \ln \left[\frac{d}{2b} \right]$ 为位错线张力函数,K对刃型位错为(1 - v),对螺型位错为1,对混合型位

错 $\frac{1}{K} = \frac{1}{2} \left[1 + \frac{1}{1-v} \right]$; *v* = 0.291 为泊松比, *b* 为位错的柏格斯矢量的绝对值 = 0.248 nm; *G* 为切变弹性模量 = 80 650 MPa; γ = 0.5 ~ 1 J/m², 为析出粒子与基体的界面能; *d* 是第二相粒子直径, μm; *f* 是体积百分数。

由式(5)、式(6)可见,钢铁材料第二相颗粒以 切割机制强化时,其强化效果正比于第二相体积分 数的 1/2 次方和颗粒尺寸 *d* 的 1/2 次方,以绕过机 制强化时,其强化效果正比于体积分数的 1/2 次方, 大致反比于颗粒尺寸 *d*,即切割机制的强化效果随 粒子尺寸的增大而增大,绕过机制强化时,其强化效 果随粒子尺寸的增大而减小,存在一个临界转换尺 寸 *d*^[18-20]:

$$d_c = 0.209 \frac{Gb^2}{K\gamma} \ln \left[\frac{d_c}{2b} \right]$$
(7)

由于体积分数与粒径 $d 与 d_e$ 难以确定,式(5) ~式(7)实际上是一组定性公式。

2.2.2 析出强化贡献的定量计算

Ti 微合金化高强耐候钢的屈服强度随钢中 Ti 含量的增加而提高,如图 7 所示^[6]。

图 7 带钢 Ti 含量、厚度和屈服强度的关系^[6]

Fig. 7 Yield strength relationship between Ti content, strip thickness and yield strength of strip steels^[6]

根据文献[6],[Ti]从0%~0.1%左右,钢的 屈服强度随Ti含量的提高而提高,不同含Ti钢晶 粒基本相近(见图8)。含0.09%Ti的微合金高强 度耐候钢中,Ti对屈服强度的贡献可达300MPa以 上,钢的屈服强度可达700MPa级。减去固溶强化 与细晶强化的加和值,析出强化与位错强化的贡献 应在300MPa以上。

Ti 含量和延伸率分别为 a:0.04 %,31 %;b:0.054 %,27 %;c:0.063 %,26 %; d:0.076 %,21 %;e:0.096 %,21 %;f:0.12 %,20 %

图 8 厚度 4 mm 不同 Ti 含量高强度耐候钢的显微组织

Fig. 8 Microstructures of high strength weathering steel with 4 mm

thickness and various Ti contents

文献[6]用化学相分析和 X 射线小角散射研究 了不同含 Ti 量钢中纳米 TiC 析出物的尺寸分布及 体积百分数,发现随钢中 Ti 含量的提高,纳米 TiC 的体积百分数增加,认为钢的屈服强度的提高主要 是由于纳米 TiC 的析出强化作用。

用公式(5)计算出 < 36 nm 的纳米 TiC 对 Ti 微 合金化高强耐候钢屈服强度的贡献,结果见图 9。 结果表明,计算得到的含 Ti 0.09 % 的高强耐

图 9 小于 36 nm 的纳米 TiC 对 Ti 微合金化 高强耐候钢析出强化的贡献

候钢中 Ti 对钢析出强度的贡献值(增量)仅为 130 MPa左右,比实践结果低约200 MPa。其原因主 要是没有考虑钢中可能存在的纳米 Fe₃C 的影响。

为了证明这一点,用珠钢含 Ti 0.09 % 的高强 耐候钢重新作了一次化学相分析 + X 射线小角散射 试验。

在考虑析出粒子对屈服强度的贡献时,应对不 同尺度粒子,分别根据绕过机制和切割机制,同时考 虑不同析出物的共同贡献。

$$\sigma_{sp} = \sum_{i=1}^{n} \sigma_{sp_{1i}} + \sum_{i=1}^{n} \sigma_{sp_{2i}}$$
(8)

式(8)中:*i*为纳米析出物; σ_{sp_1} 为按绕过机制计算的 析出强化对钢屈服强度的贡献; σ_{sp_2} 为按切割机制 计算的析出强化对钢屈服强度的贡献。

根据式(5)~式(7)及表4,表5数据,计算纳米 Fe₃C和Ti(C,N)对Ti微合金化高强耐候钢屈服强 度的贡献,结果见表7。

表 7 纳米 Fe₃C 和 Ti(C,N)对 Ti 微合金化 高强耐候钢析出强化的贡献

Table 7Contribution of Fe_3C and Ti(CN)nanosized precipitates to the yield strength ofTi microalloyed high strength weathering steel

10.27	F	e ₃ C	Ti(C,N)			
型位 范围∕nm	体积 分数/%	析出强化 增量/MPa	体积 分数/%	析出强化 增量/MPa		
1 ~ 5	0.077	54.5	0.015	59		
5~10	0.060	61.9	0.015	33		
$10 \sim 18$	0.105	55	0.021	25		
18 ~ 36	0.050	23	0.015	13		
合计	0.292	194.4	0.066	130		

计算时, TiC的 $d_e = 1.5 \sim 6$ nm, Fe₃C的 $d_e = 4.7 \sim 10$ nm, 对纳米 TiC, 不同粒度的纳米粒子的析出 强化作用均按绕过机制计算。对纳米 Fe₃C, 小于 10 nm的粒子按切割机制计算, 大于 10 nm 的粒子按 绕过机制计算, 计算结果与实际相符, 见表 8。

表 8 中同时列出了根据文献[13]关于 ZJ330 及 ZJ510 数据的计算结果。进一步证实了纳米铁碳析 出物的析出强化作用。

表8 屈服强度的计算值与实际值比较

Table 8	Comparison of	calculated y	yield s	strength	values	with	those	of	actual	measured
---------	---------------	--------------	---------	----------	--------	------	-------	----	--------	----------

钢种	晶粒尺寸/µm	固溶强化 + 细晶 强化贡献/MPa	析出强化 贡献/MPa	$\sigma_{\rm s}/{\rm MPa}$	— 头际 值/MPa
ZJ330	8 ~ 10	189 ~ 212	145	334 ~ 357	330 ~ 390
ZJ510	5	268	202	470	$408 \sim 492$
3 mm 厚钛微合金化高强钢	2.9 ~ 3.8	307 ~ 352	324	631 ~ 676	630 ~ 680

3 钢综合强化机理要点

1) HSLC 钢中存在纳米铁碳析出物,存在析出 强化机理;在钛微合金化的高强耐候钢中,亦存在纳 米铁碳析出物。Fe₃C 纳米析出物的体积分数大于 同粒径 TiC 的体积分数。应对不同种类及尺寸的纳 米粒子,根据位错切割机理和位错绕过机理,同时考 虑它们的共同贡献。 2) 对低碳钢可以采用下述计算公式。

$$\sigma_{sp} = \sum_{i=1}^{n} \sigma_{sp_{1i}} + \sum_{i=1}^{n} \sigma_{sp_{2i}}$$

$$\sigma_{s} = 600 \times d^{-1/2} + \sum_{i=1}^{n} \frac{5.9 \int f}{d_{1i}} \ln(\frac{d_{1i}}{2.4 \times 10^{-4}})$$

$$+ \sum_{i=1}^{n} \frac{1.1}{\sqrt{2AG}} \times \frac{\gamma^{3/2}}{b^{2}} \times d_{2i}^{1/2} f^{1/2}$$

$$d_{1i} > d_{c} > d_{2i} \qquad (9)$$

式(9)中:*i*为纳米析出物; σ_{sp_1i} 为按绕过机制计算的 析出强化对钢屈服强度的贡献; σ_{sp_2i} 为按切割机制 计算的析出强化对钢屈服强度的贡献。

计算析出强化贡献所需的纳米粒子体积分数及平均粒径,可通过化学相分析+X射线小角散射试验确定。

3)钢的综合强化机理定义。

钢的综合强化机理是"钢的屈服强度等于各种 强化机理对钢屈服强度贡献之和",是修正的加和 法则。一定条件下,钢的屈服强度等于固溶强化,细 晶强化与析出强化之和。

4) 对于细晶强化, Hall – Petch 公式的应用范围 与物理意义。

应用范围:a. 单相金属;b. Hall – Petch 公式描述的是破断强度与晶粒尺寸的关系;c. 屈服强度与晶粒尺寸的关系没有实验数据,Petch 只是 expected 破断强度与下屈服点具有直线关系;d. 如果有第二 相析出,则公式需要修正,实际上晶粒越细,屈强比越高。

物理意义: $\Delta\sigma_{c} = \sigma_{0} + K_{y}d^{-\frac{1}{2}}$ 只是一个经验公 式。钢的成分与组织不同, $\sigma_{0} = K_{y}$ 不同。在 Hall – petch 原始文献中, $\Delta\sigma_{s}$ 为破断强度, σ_{0} 为铁素体中 溶质原子对位错运动的摩擦阻力, K_{y} 为破断强度对 铁素体晶粒尺寸的变化率。

修正的 Hall – petch 公式中, Δσ,为屈服强度, σ。包括相结构和成分对固溶强化的影响以及析出 强化, *K*,为不同成分与组织钢的屈服强度对晶粒尺 寸的变化率。包括相结构及第二相析出对晶界强度 的影响。在固溶强化与细晶强化项中包括了相变强 化或亚结构强化。

5)在一定条件下, $\rho < 10^{14}/m^2$, 位错强化可以 忽略。

6) 笔者认为, 细晶强化与位错强化不能加 和^[3], 是因其在计算细晶强化时, 采用贝氏体, 马氏 体板条束的宽度作为晶粒尺寸, 而在贝氏体马氏体 形成过程中已经伴随着大量第二相纳米粒子的析出 和被纳米粒子钉扎的位错线产生。即在细晶强化的 同时伴随着析出和位错强化的产生, 加和等于重复 计算。如果将晶粒尺寸考虑为铁素体尺寸(近似地 可视为奥氏体转变之前的晶粒尺寸), 细晶强化符 合 Hall – Petch 关系, 此时细晶强化就可以与析出强 化加和了。

4 钢综合强化机理及工程应用

4.1 回火快冷技术

通过回火快冷(亚调质)处理,可使珠江钢厂 ZJ330成品板的屈服强度提高100 MPa 以上^[13]。

4.2 基于纳米铁碳析出物控制的新品种开发

4.2.1 HSLC 钢

根据 Hall - Petch 公式,要使 Q195 和 Q235 的 屈服强度从传统工艺的 200 MPa 提高到 400 MPa, 实现强度翻番是不可能的。基于发现薄板坯连铸连 轧钢中存在大量的纳米铁碳析出物,通过控轧控冷, 控制纳米铁碳析出物的析出行为,珠江钢厂与北京 科技大学合作开发出了 HSLC 钢。HSLC 钢是一种 低碳锰系钢,不含微合金元素 V、Nb、Ti,但其力学性 能与类似成分的 HSLA 钢相当(见表9)。

HSLC 钢具备各向同性特征,纵横屈服强度、拉伸强度、延伸率比大多为0.96~1.10^[11]。

HSLC 钢强度高,塑性好,韧性也高。用作汽车 板的 ZJ510L 的力学性能与低温冲击韧性见表 10 和 表 11^[4]。

表 9	400 MPa 级钢	的化字成分及室温拉伸性能的对比	

Table 9	Comparison of	chemical composition	and room	temperature	strength	in σ_s	400	MPa	steel	grades
---------	---------------	----------------------	----------	-------------	----------	---------------	------------	-----	-------	--------

钢种	厚度/mm	С/%	Mn/%	Si/%	P/%	S/%	Al/%	N/%	$\sigma_{\rm s}/{\rm MPa}$	$\sigma_{\rm b}/{\rm MPa}$	δ/%
Q195	≤16	0.06 ~ 0.12	0.25 ~ 0.50	≤0.30	≤0.045	≤0.050	≥0.015		195	315 ~ 430	> 33.0
珠钢	$2.0 \sim 6.0$	0.05	0.3	0.06	≤0.020	0.004 9	$0.02\sim\!0.04$	< 0.005 0	387	433	33
Q235	≤16	$0.14 \sim 0.22$	$0.30 \sim 0.65$	≤0.30	≤0.045	≤0.050	≥0.015		235	$375 \sim 500$	> 26
珠钢	6	0.06	0.61	0.17	0.017	0.006	0.015	< 0.005 0	439	494	31.5
$16\mathrm{Mn}$	≤16	≤0.20	$1.0 \sim 1.6$	≤0.30	≤0.045	≤0.055	≥0.015		345	$470 \sim 630$	21
ZJ510	6	0.17	1.21	0.28	0.023	0.04	0.024	< 0.005 0	492	597	27.8
	6	0.16	1.22	0.3		0.03	0.037	< 0.005 0	408	566	34
HSLA	6.3	0.055	1.1				Nb:0.045	0.009	456	547	32.2
国外									402	486	32.7

表 10 珠钢 ZJ510L 钢板的平均力学性能 Table 10 Average mechanical performance of ZJ510L produced by Zhujiang steel

厚度/mm -		横	́р			纵向			
	$\sigma_{\rm s}/MPa$	$\sigma_{\rm b}/{\rm MPa}$	δ/%	屈强比	$\sigma_{\rm s}/{\rm MPa}$	$\sigma_{\rm b}/{\rm MPa}$	δ/%	屈强比	
4.5	445	580	34	0.77	440	575	31	0.77	
6	455	602	26.5	0.76	457	605	27.5	0.76	
8	437	585	26	0.75	427	572	28	0.75	
10	415	565	26	0.73	435	580	26	0.75	

表 11 ZJ510L 及 ZJ550L 在不同温度下的夏比冲击功 Akv(J)

Table 11 Charpy impact energy Akv (J) of ZJ510L and ZJ550L

备注	厚度/mm	室温	0°C	-20 ℃	-40 ℃	-60 ℃	– 80 °C	– 100 °C
Q345	≤16	≥34	≥34	≥34	≥27			
ZJ510L	6	52	48	44	43	33.5	25.5	6
ZJ550L	5	52	51	50	49	42.5	28.5	27
ZJ550L	6.5	63.5	57.5	56	53	33	17	7.5
ZJ550L	8	60	57	55	45	35	23.5	9.5

4.2.2 集装箱板及 Ti 微合金化的高强耐候钢

基于对钢中纳米铁碳析出物的控制,珠江钢厂 与北京科技大学合作在电炉 – CSP 生产线上,通过 低碳、低氮控制及控轧控冷,生产出了 C \leq 0.07 %, Mn 0.25 % ~0.5 %,Si 0.25 % ~0.50 %,P 0.07 % ~0.12 %,S \leq 0.01 %,N < 0.005 %,Al < 0.04 % 的 SPA – H 集装箱板,实际合金元素总含量小于 1 %, σ_s 在 400 MPa 以上。珠钢集装箱板年产量占世界 集装箱板年总产量的 1/4 以上。

为了开发 450 MPa 级以上集装箱板,考虑到通 过纳米析出物的析出强化贡献,北京科技大学与珠 江钢厂合作,先后在实验室和生产条件下开发出了 Ti 微合金化的高强耐候钢。

珠江钢厂开发出了钛微合金化高强耐候钢系列 板,不同 Ti 含量的钢具有不同的强度级别。 550 MPa级的 Ti 微合金化高强耐候钢板做成的集装箱比 400 MPa 级集装箱板减重 15 %,如表 12 所示。

表12 新一代轻量化集装箱减重效果

 Table 12
 Results of weight reduction

of new containers

20'DV 箱	40'HC 箱
1 900	3 350
2 220	3 840
320	490
15.2	14.5
	20°DV 箱 1 900 2 220 320 15.2

4.2.3 正在开发的其他钢种

基于对钢中纳米粒子析出强化的控制,北京科技大学、武汉科技大学与钢厂合作^[21,22],正在开发的钢种见表 13。

表 13 正在开发的其他钢种 Table 13 Other steel grades under developing

					0		1 0		
成分/%	С	Mn	Si	S	Р	Ν	Al	Ti	备注
螺纹钢*	≤0.06	< 2.0	< 1.0	≤0.004	≤0.020	< 0.005	0.01 ~ 0.03	< 0.1	低成本高强钢筋
管线钢**	0.046	1.45	0.23	0.003	0.007		0.03	0.09	低成本 X70 以上
工程用钢**	≤0.06	≤2.0	≤0.5	≤0.004	≤0.018		0.025 ~ 0.05	≤0.1	低成本 700 MPa 级

注:*实验室条件;**生产条件

4.3 基于纳米铁碳析出物控制的钢的软化

文献[23]研究了基于纳米铁碳析出物控制的 钢的软化,在略高于 A₁ 温度进行回火缓冷,使 ZJ330 钢的屈服强度从 350 MPa 降低到 220~250 MPa以下,结果见表 14。

表 14 A_1 附近温度回火缓冷对 ZJ330 钢力学性能的影响^[4]

 Table 14
 Effect of the tempering – slow cooling near temperature of A1

on the mechanical properties of ZJ330 steel ^[4]

处理工艺	温)	度/℃	σ_s	$\sigma_{\rm b}$	$\sigma_{\rm s}/\sigma_{\rm b}$	δ/%
		600	322	397	0.81	43
X ℃加热保温 20 min,	v	700	310	370	0.83	46
炉冷至室温	Λ	760	265	335	0.79	51
		800	225	310	0.72	50
		700	305	400	0.76	34
800 ℃加热,保温 20 min,	v	600	250	360	0.69	35
炉冷至 Y℃,水冷至室温	Ŷ	500	245	345	0.71	36
		400	245	340	0.72	40

4.4 基于纳米铁碳析出物控制的 UHU 工艺路线

王国栋院士发明了 UFC 超快冷技术,根据生产 过程中钢的纳米析出物的控制观点,作者认为 UHU 工艺路线即 UFC - Holding - UFC 工艺路线对于宽 厚板等的生产具有重要意义。它具有与薄板坯连铸 连轧类似的热历史,连续冷却,可能使得在成品板材 厚度较大的条件下,整个钢材体积内(边部、中心) 纳米析出物的体积分数相同,从而钢的强度相同,生 产出低成本高强度钢材。UHU 可使铁素体 + 珠光 体类型钢屈服强度达 700 MPa。UHU 工艺路线亦即 文献[24]中提出的 HTR - UFC - Holding - UFC -Coiling 工艺路线。

4.5 σ_b = 1 500 MPa 先进高强钢的技术分析

中国和韩国先进高强度钢研究的主要目标之一 是生产 σ_b = 1 500 MPa 的结构钢材。根据对钢中纳 米铁碳析出物的控制思路和钢的综合强化机理,笔 者认为,在制备 σ_b = 1 500 MPa 高强结构钢时,应采 取下述技术措施。

4.5.1 增加固溶强化贡献

根据 Orowan 位错绕过机制,当纳米析出粒子的 尺寸 > 40 nm 时,强化作用很小,应采用快冷,减少 > 40 nm 碳化物消耗的碳量。尺寸 < 40 nm 铁碳析 出物和其他元素的碳化物消耗的碳含量较少,适当 提高钢中碳含量会增加钢中固溶的碳量。而自由碳 原子对提高钢的固溶强化贡献很显著。

此外,增加其他固溶合金元素的含量也可提高 钢的固溶强化贡献(增量)。

4.5.2 增加析出强化贡献

V、Nb、Ti、Mo等的纳米碳化物会提高钢的析出 强化贡献。但要注意纳米铁碳析出物的析出强化贡 献,研究 V、Nb、Ti、Mo等对钢中纳米铁碳析颗粒析 出的影响。

4.5.3 提高回火温度及冷却速度

σ_b = 1 500 MPa 的高强结构钢材,通常采用调 质处理。根据回火快冷试验结果。600 ℃时碳的扩 散速度大,建议采用 600 ℃左右的回火温度和回火 后水冷的工艺。

4.5.4 晶粒细化强化贡献

σ_b = 1 500 MPa 的高强结构钢,应通过控轧控 冷,细化转变前奥氏体晶粒尺寸,增加细晶强化 贡献。

4.5.5 提高钢的纯洁度

钢的综合强化机理,从工艺上既要控制钢的轧 后冷却过程,又要控制钢的冶金质量。提高钢的纯 洁度是提高钢纳米析出贡献的基础。

5 结语

1) 对薄板坯连铸连轧 HSLC 钢及钛微合金化高 强耐候钢中的纳米粒子的属性进行了综合分析,发 现尺寸 < 36 nm 的粒子主要为纳米 Fe₃C 及纳米 Ti(C,N),钛微合金化高强耐候钢中粒径 < 36 nm 的 Fe₃C 的体积分数为同尺度 Ti(C,N)体积分数的 4.4 倍,其析出强化作用较大,不可忽略。纳米 Fe₃C 及纳米 Ti(C,N)共同对热轧钢板起显著的析出强 化作用。

2) 对钢的综合强化理论进行了讨论,指出 HSLC钢中存在纳米铁碳析出物,存在析出强化机 理,在钛微合金化高强耐候钢中,亦存在纳米铁碳析 出物。应对不同种类及尺寸的纳米粒子,根据位错 绕过机制和位错切割机制,同时考虑不同析出物的 共同贡献。

3)钢的屈服强度等于不同的强化机理对钢屈

服强度贡献之和,钢的综合强化机理是修正的加和 法则。低碳钢在一定条件下,对不同种类、不同尺寸 的纳米析出粒子,应分别根据位错切割和位错绕过 机理计算出析出强化贡献,然后与固溶强化和细晶 强化贡献加和。

对于低碳钢计算公式为:

 $\sigma_{sp} = \sum_{i=1}^{n} \sigma_{sp_{1i}} + \sum_{i=1}^{n} \sigma_{sp_{2i}} \sigma_{s} = 600 \times d^{-1/2} + \sum_{i=1}^{n} \frac{5.9 \int d_{1i}}{d_{1i}} \ln\left(\frac{d_{1i}}{2.4 \times 10^{-4}}\right) + \sum_{i=1}^{n} \frac{1.1}{DAG} \times \frac{\gamma^{3/2}}{b^2} \times d_{2i}^{1/2} f^{1/2}$

其中,体积分数及粒径可用化学相分析 + X 射 线小角散射试验确定,对钢的析出强化贡献及钢的 屈服强度进行了定量计算,计算结果与生产实际相 符。

4) 钢的综合强化机理已广泛地应用于工程。

5) 对钢中纳米 Fe₃C 和纳米微合金元素碳氮化 物的析出强化作用和钢的综合强化机理有待进一步 研究。特别是对析出强化与位错强化的交互作用,相 变及相结构对钢强度的影响机理。微合金元素 V、 Nb、Ti、Mo等的作用机理,纳米析出物的类型,结构 及析出动力学等方面还有待进一步研究。

致谢:衷心感谢中国科学院资深院士柯俊先生的 指导、鼓励与支持;感谢柳得橹教授、康永林教授、王 中丙先生对研究工作的帮助;研究生吴华杰、余健、王 建锋分别参加了文章部分研究工作,一并致谢。

参考文献

- Petch N J. The Cleavage strength of polycrystals [J]. Journal of the Iron and Steel Institute, 1953, 174:25 28.
- [2] Petch N J. The ductile brittle transition in the fracture of α -Iron: I [J]. The Philosophical Magazine,1958(3):1089 -1097.
- [3] 高木節雄.降伏強度と組織因子 強化機構の加算則 について[J].ふえらむ,2008,13(5):44 - 49.
- [4] 康永林,傅 杰,柳得橹,等.薄板坯连铸连轧钢的组织性能 控制[M].北京:冶金工业出版社,2006:375.
- [5] 毛新平,霍向东,孙新军,等.薄板坯连铸连轧Ti微合金化超高 强钢的研究[C]//TSCR2009 论文集.南京:2009,306-313.
- [6] 毛新平.薄板坯连铸连轧为合金化技术[M].北京:冶金工业 出版社,2008.
- [7] Liu Delu, Fu Jie, Kang Yonglin, et al. Oxide and sulfide dispersive precipitation and effects on microstructure and

properties of low carbon steels [J]. J Mat Sci Tech,2002, 18(1):7 - 12.

- [8] Liu Delu, Chen Nanjing, Huo Xiangdong, et al. Nano scaled precipitates in low carbon steel by EAF - CSP process [C]// Proceedings of TSCR'2002. Guangzhou:2002,323.
- [9] Kang Y L, Yu H, Fu J, et al. Morphology and precipitation kinetics of AlN in hot strip of low carbon steel produced by compact strip production [J]. Mater Sci and Eng, 2003, A351: 265 - 271.
- [10] 傅 杰,刘阳春,吴华杰.HSLC钢中纳米氮化物的析出与作 用[J].中国科学E辑:技术科学,2008,38(5):797-806.
- [11] 傅 杰.新一代低碳钢 ——HSLC 钢[J].中国有色金属学报,2004,14(s.1):82 90.
- [12] 傅 杰,康永林,柳得橹,等.CSP工艺生产低碳钢中的纳米碳化物及其对钢的强化作用[J].北京科技大学学报,2003, 25(4):328-331.
- [13] 傅 杰,吴华杰,刘阳春,等. HSLC和HSLA钢中的纳米铁碳 析出物[J].中国科学E辑:技术科学,2007,37(1):43-52.
- [14] Wang Zhongbing, Wu Huajie, Fu Jie. Production and research on container steel plates by EAF - CSP process [C]//Proc of TSCR'2006. Guangzhou:2006,56 - 62.
- [15] Fang Keming, Lin Zheng, Fang Kun, et al. Revealing microstructure of fine particles by tem [J]. China Particuology, 2003(2):88 - 90.
- [16] 方克明,王国承. 微米 纳米材料微观结构的透射电镜研究
 [C]// 中国工程院化工· 冶金与材料工程学部第六届学术 会议. 济南: 2007, 863 - 868.
- [17] Gladman T. Second phase particle distribution and secondary recrystallization [J]. Scripta Metallurgica et Materialia,1992, 27(11):1569 - 1573.
- [18] 雍岐龙,马鸣图,吴宝榕.微合金钢一物理和力学冶金[M].
 北京:机械工业出版社,1989.
- [19] Brian F Picking,刘嘉禾.钢的组织与性能[M].北京:科学出版社,1999.
- [20] 雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社, 2006.
- [21] 李光强,王建锋,温德智,等.转炉 CSP 流程生产低成本低合金高强度钢 钛微合金化管线钢的初步探讨
 [C]//TSCR2009论文集.南京:2009,400 405.
- [22] 陈林恒,康永林,温德智.CSP 生产低碳贝氏体高强钢的组织 性能特征及强化机理研究[C]//TSCR2009 论文集.南京: 2009,371-376.
- [23] 傅 杰,吴华杰,刘阳春.薄板坯连铸连轧铁素体 + 珠光体 类型钢的强化与软化[J].中国工程科学,2008,10(4):65 -71.
- [24] 傅 杰.现代电炉炼钢理论与应用[M].北京:冶金工业出版社,2009.

Comprehensive strengthening mechanism of steel based on nano-scale cementite precipitates

Fu Jie^{1,2}, Li Guangqiang², Yu Yueguang³, Mao Xinping⁴, Fang Keming^{1,2}

(1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory for Ferrous Metallurgy and Resources
Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China; 3. Beijing General Research Institute of Mining and Metallurgy, Beijing 100044, China; 4. Guangzhou Zhujiang Steel Co., Ltd., Xiji Industrial Zone, Economic and Technical Development Zone, Guangzhou 510730, China)

[Abstract] This paper summarized the status of comprehensive strengthening mechanism of steel. By using chemical phase analysis, X-ray small-angle scattering, RTO and high-resolution TEM observation, the properties of nano-scale cementite precipitates in Ti micro-alloyed high strength weathering steels produced by thin slab continuous casting and rolling process were analyzed. Except nano-scale TiC, cementites precipitates less than 36 nm and high volume fraction were also found in Ti micro-alloyed high strength weathering steels. The volume fraction of cementite less than 36 nm is 4.4 times as much as that of TiC in the same size. Cementite with high volume fraction has stronger precipitation strengthening effect than that of nano-scale TiC, which can not be ignored. The precipitation strengthening contributions of nano-scale precipitates of different types and sizes should be calculated respectively according to the mechanisms of dislocation intersection and dislocation bypass, and then be added up with the contributions of solid solution strengthening and grain refinement strengthening. A formula for calculate the yield strength of low carbon steel is proposed, and the calculated yield strength considering the precipitation strengthening contributions of nano-scale precipitates and the comprehensive strengthening mechanism of steels matches the experimental results well. The calculated $\sigma_s = 630 \sim 676$ MPa, while the examined $\sigma_s = 630 \sim 680$ MPa. The reason for grain refinement strengthening can not directly plus dislocation strengthening and the performance form of phase transformation's influence on steel strength were debated. The applications for comprehensive strengthening theory were summarized, and several scientific questions for further study were put forward.

[Key words] yield strength; nano-scale cementite; nano-scale titanium carbide; precipitation strengthening; comprehensive strengthening of steel