细水雾作用下烟气组分浓度变化 规律的模拟研究

房玉东

(国家安全生产监督管理总局通信信息中心,北京100013)

[摘要] 在ISO 9705标准房间通过模拟实验研究了细水雾与火灾烟气的相互作用,揭示了细水雾作用下烟 气中氧气、一氧化碳和二氧化碳浓度的变化规律,建立了氧气、一氧化碳和二氧化碳浓度与细水雾工作压 力及风机速率的数学模型。实验发现当风机速率达到1.5 kg/s时烟气组分浓度变化规律发生突变,对这一 现象进行了深入分析和解释。本文为细水雾技术用于火灾烟气抑制提供了必要的理论基础和科学的参考 依据。

[关键词] 细水雾;氧气;一氧化碳;二氧化碳

[中图分类号] X932 [文献标识码] A [文章编号] 1009-1742(2014)08-0099-07

1 前言

通常在建筑火灾中烟气造成的人员伤亡比例 最大。研究表明,在火灾人员的伤亡中,大约50% 是由烟气中一氧化碳(CO)中毒引起的,而其余 50%由烧伤、爆炸及其他有毒气体引起。细水雾进 入烟气层后会与之发生复杂的物理化学作用,在细 水雾的作用下烟气中氧气(O₂)、CO和二氧化碳 (CO₂)浓度都会发生变化^[1,2]。中国科学技术大学火 灾科学国家重点实验室建成了ISO 9705 全尺寸多 功能热释放速率测试仪,该实验装置是参照国际标 准化组织在1993 年制定的 ISO ROOM 实验方法建 设的,可同步测量火灾烟气中CO、CO2和O2浓度,同 时可测量喷水灭火系统作用下上述特性参数的变 化规律[3~6]。由于是全尺寸大型实验,能够模拟真实 火灾条件,所以其测试结果比较可靠,为室内火灾 模拟和灭火系统优化设计提供了有力的实验数据 支持。本文利用上述实验平台深入研究细水雾作 用下烟气组分浓度的变化规律,为细水雾技术用于 火灾烟气抑制提供了必要的参考依据。

2 实验描述

实验中选用柴油作为发烟材料,油盘位于房间 的墙角处,油盆尺寸长×宽×高=0.4 m×0.4 m× 0.05 m,利用酒精引燃柴油。利用高压泵式细水雾 发生装置产生细水雾,采用两种不同类型的喷头: 喷头1雾滴粒径为50~100 μm,工作压力为7~ 10 MPa;喷头2雾滴粒径为300~500 μm,工作压力 为1~4 MPa。实验中柴油预燃60 s,每种工况施加 细水雾100 s。图1给出了实验系统示意图,表1给 出了实验工况。

ISO 9705 的测量系统由集烟罩、排烟系统和测 试段构成。集烟罩的开口尺寸为3 m×3 m,位于燃 烧室出口的正上方,集烟罩上方与排烟管道系统相 连,下边缘与燃烧室顶相齐,这样可以收集实验中 通过门离开燃烧室的所有燃烧产物。排烟 管 的一

[收稿日期] 2012-12-21

[作者简介] 房玉东,1979年出生,男,黑龙江哈尔滨市人,高级工程师,研究方向为清洁高效灭火技术、公共安全应急技术等; E-mail:fangyd@chinasafety.gov.cn

 $-\oplus$

[[]基金项目] 国家自然科学基金青年科学基金项目(50904041);中国博士后科学基金面上项目(20070410067)

表1 实验工况 Table 1 Experimental case

工况	喷头	开启	工作压力/	风机流量/
	类型	位置	MPa	$(kg \cdot s^{\cdot i})$
1	喷头1	3	7	0.5, 1, 1.5, 2, 2.5
2	喷头1	3	8	0.5, 1, 1.5, 2, 2.5
3	喷头1	3	9	0.5, 1, 1.5, 2, 2.5
4	喷头1	3	10	0.5, 1, 1.5, 2, 2.5
5	喷头2	3	1	0.5, 1, 1.5, 2, 2.5
6	喷头2	3	2	0.5, 1, 1.5, 2, 2.5
7	喷头2	3	3	0.5, 1, 1.5, 2, 2.5
8	喷头2	3	4	0.5,1,1.5,2,2.5

端与集烟罩相连,另一端与变频风机相连。风机流量范围为0~4 kg/s。测试段中的气体采样设备与Servomex400气体分析仪连接,测量烟气中的O₂、CO和CO₂浓度。实验中用取样探针采集气体,经过碳黑过滤器过滤后,通过控制台的冷却柱进行冷却,再经过无水硅胶的干燥后通向气体分析仪,其量程为O₂(0~25%)、CO(0~1%)、CO₂(0~10%)。每5s采集一次数据。图2给出了烟气采样分析的流程图。

3 典型实验结果与分析

 \oplus

3.1 细水雾作用下O2浓度变化规律分析

从图3可以看出,施加细水雾之后O2浓度明显 上升并最终稳定在某个值附近,O2浓度的回升量随 着风机速率的增大而增加。为了研究细水雾作用

下O₂浓度的变化规律,定义一个变量,即氧气浓度 回升量

$$i_n = C_{0_2}^1 - C_{0_2}^0 \tag{1}$$

式(1)中, i_n 代表 O_2 浓度回升量,%; $C_{O_2}^1$ 代表细水雾 作用后 O_2 浓度平稳时刻的浓度,%; $C_{O_2}^0$ 代表施加细 水雾之前稳定燃烧阶段的 O_2 浓度,%。

从图4可以看出,O₂浓度的回升量随着风机速 率的增大而增加,在喷头1产生的细水雾作用下, O₂浓度回升量要远大于喷头2,这表明雾滴粒径较 小的细水雾更有利于O₂浓度的回升。这是因为雾 滴粒径较小的细水雾的比表面积更大,从而能够更 加有效地吸收热量,有效地冷却烟气温度,降低烟 气对火源的辐射热反馈并抑制燃烧,大大降低了燃 烧反应的耗氧量。同时随着风机速率的增大,细水 雾的卷吸作用被强化,大量的新鲜空气不断进入火 场环境,这也加速了O₂浓度的回升过程。

Fig. 4 Curves of i_n with S_e

下面以工况1~4为例,将O₂浓度回升量与风机 速率按如下函数形式进行多项式拟合

 $i_n = k_1 + k_2 S_e + k_3 S_e^2 \tag{2}$

式(2)中, *S*_e为风机速率; *k*_i (*i*=1, 2, 3)为多项式 系数。表2给出了拟合函数的 *k*_i 系数。

 \oplus

表2 拟合函数的*k*_i系数 Table 2 The coefficient *k*_i of fitting function

工作压力/ MPa	k_1	k_2	<i>k</i> ₃
7	0.786	-0.229	0.303
8	1.270	-0.127	0.194
9	1.418	-0.071	0.154
10	1.452	-0.046	0.14

从图5可看出k系数与工作压力之间满足一定的函数关系,将k系数和工作压力P按如下函数形式进行曲线拟合

$$k = a + b \cdot e^{-P/C} \tag{3}$$

式(3)中,*a*、*b*、*C*均为多项式拟合系数。则可给出*k*, 系数与工作压力*P*之间的函数关系如下

$$k_1 = 1.53 - 392 e^{-P/1.11} \tag{4}$$

$$k_2 = 0.01 - 8.54 \mathrm{e}^{-P/1.95} \tag{5}$$

$$k_3 = 0.132 + 205.9 \mathrm{e}^{-P/0.99} \tag{6}$$

将式(4)~式(6)带人式(2)可得如下函数关系
$$i_n = 1.53 - 392e^{-P/1.11} + (0.01 - 8.54e^{-P/1.95}) \cdot S_e$$
 (7)

+ $(0.132 + 205.9e^{-P/0.99}) \cdot S_e^2$

Fig. 5 Correlation curves of k_i with P

从图6可以看出,O2浓度的回升量随着细水雾 工作压力的增大而增加,随着风机速率的增大而增 加,当风机速率超过1.5 kg/s时,O2浓度回升量的增 加速率加快。这是因为通风使得火灾环境O2浓度 增大,这有助于燃烧反应的进行;同时通风扰动火 灾环境的流场,使燃烧变得不稳定,这有助于火焰 的熄灭。当风速超过一定值后,通风对火焰的熄灭 作用占主导地位。根据实验数据和计算曲面可以 判定,实验中O2浓度快速上升的临界风机速率为 1.5 kg/s。

Fig. 6 Correlation surface of i_n with *P* and S_e

3.2 细水雾作用下CO浓度变化规律分析

从图7可以看出,在没有细水雾作用的情况下, CO浓度缓慢上升,并最终维持在120 μL/L左右。 施加细水雾之后,CO浓度上升速度加快;细水雾作 用一段时间后,CO浓度恒定在某个值附近,此时 CO浓度要大于无细水雾作用时的CO浓度。造成 CO浓度上升的原因是细水雾有效抑制了燃烧,使 燃烧不充分,从而加快了CO的生成速率,使其浓度 快速上升。由于细水雾无法直接进入火焰区域,只 能通过冷却烟气和蒸发吸热来抑制燃烧,作用一定 时间后,燃烧系数进入稳定状态,此时CO浓度上升 缓慢,并最终恒定在某个值附近。

为了研究细水雾作用下CO浓度的变化规律, 定义一个无量纲参数,即CO浓度增大倍数

$$\ln C_{\rm co} = \left(C_{\rm co}^{\rm l} - C_{\rm co}^{\rm o} \right) / C_{\rm co}^{\rm o} \tag{8}$$

式(8)中, InC_{co}代表 CO浓度增大倍数; C¹_{co}代表细 水雾作用下稳定阶段的 CO浓度, µL/L; C⁰_{co}代表无 细水雾作用下稳定阶段的 CO浓度, µL/L。

从图8可以看出,CO浓度同风机速率之间满足 一定的函数关系,将InCco与S。按照式(9)进行多项 式拟合。表3给出了拟合函数的k值。

$$\ln C_{\rm co} = k_1 + k_2 S_{\rm e} + k_3 S_{\rm e}^2 \tag{9}$$

从图9可看出,k系数与工作压力P之间满足一 定的函数关系。利用二次多项式的函数形式对k值 和P进行多项式拟合,可给出k,与P的数学关系

$$k_1 = -3.67 + 0.88P - 0.041P^2 \tag{10}$$

$$k_2 = -4.28 + 1.07P - 0.054P^2 \tag{11}$$

$$k_3 = 1.49 - 0.364P + 0.018P^2 \tag{12}$$

图 6 InC_{co}她Se文化画线 Fig. 8 Curves of InC_{co} with S.

表3 拟合函数ki系数

工作压力/ MPa	k_1	k_2	<i>k</i> ₃
7	0.494	0.580	-0.187
8	0.755	0.867	-0.290
9	0.948	0.996	-0.345
10	1.045	1.069	-0.377

将式(10)~式(12)带入式(9)可得 CO 浓度增大倍数 InCco与工作压力 P 和风机速率 S。之间的数学关系

$$\ln C_{\rm co} = 0.88P - 3.67 - 0.041P^2 +$$

 $(1.07P - 4.28 - 0.054P^2)S_e + (13)$ $(1.49 - 0.364P + 0.018P^2)S_e^2$

从图10可以看出,当风机速率小于1.5 kg/s时, CO浓度增大倍数InCco随着细水雾工作压力P的增 大而增加;当风机速率大于1.5 kg/s时,P增大到 10 MPa后,InCco开始下降。这是因为当风机速率 超过1.5 kg/s时,通风对火焰的熄灭作用占主导地 位;同时工作压力增大到10 MPa后,细水雾的冷却 和蒸发吸热作用得到强化,在细水雾和通风的耦合 作用下,火焰尺寸明显变小,燃烧强度明显减弱,使 得CO浓度的上升速度开始下降。

3.3 细水雾作用下CO2浓度变化规律分析

从图 11 可看出,进入稳定燃烧阶段 CO₂浓度恒 定在 1.8 %左右,施加细水雾之后 CO₂浓度快速下 降,CO₂浓度下降幅度随着工作压力的增大而增加, 并最终恒定在某个值附近。这主要是因为 施 加 细

102 中国工程科学

Fig. 9 Correlation curves of k_i with P

Fig. 10 Correlation surface of InC_{co} with S_e and P

 \oplus

水雾之后,有效地降低了火灾环境的温度,抑制了 燃烧反应,导致 CO₂的生成速率减小。同时大量的 CO₂吸附在烟颗粒表面,还有部分 CO₂溶解在空间 中的细水雾颗粒中,随着工作压力的增大细水雾冲 刷烟气的效率被强化,这也加快了火灾环境中 CO₂ 浓度的下降。

为了研究细水雾作用下CO₂浓度的变化规律, 定义一个无量纲参数,即二氧化碳浓度衰减比例

$$D_{\rm co_2} = \left(C_{\rm co_2}^{\rm l} - C_{\rm co_2}^{\rm o}\right) / C_{\rm co_2}^{\rm l}$$
(14)

式(14)中, D_{co_2} 代表细水雾作用后 CO₂浓度的衰减 比例; C_{co_2} 代表稳定燃烧阶段的 CO₂浓度,%; $C_{co_2}^{0}$ 代表细水雾作用后 CO₂的最终浓度,%。

图 12 给出了 CO₂浓度衰减比例 D_{co₂} 与风机速 率 S₆之间的曲线关系。从图 12 中可以看出,喷头 1 抑制 CO₂的效果要好于喷头 2。这是因为喷头 1产 生细水雾的粒径要小于喷头 2,因此喷头 1的冷却作 用和全淹没效果要好于喷头 2,随着细水雾工作压 力的增大,其对火焰的抑制程度加强。CO₂浓度的 衰减比例随着细水雾工作压力的增大而增加,从 图 12 可看出,CO₂浓度衰减比例 D_{co₂}随着风机速率 S₆的增大先增大后减小。对 D_{co₂}和S₆按式(15)进行 多项式拟合

$$D_{\rm co_3} = k_1 + k_2 S_{\rm e} + k_3 S_{\rm e}^2 + k_4 S_{\rm e}^3 \tag{15}$$

表4给出了拟合函数的k_i系数。从表4可以看出,在不同工作压力下,k₂、k₃、k₄基本为常数,只有k₁随着工作压力的增大而增加。图13给出了k₁与压力P之间的二次多项式拟合曲线,k₁与P之间满足如下数学关系

 $k_1 = -3.8 + 0.92P - 0.045P^2 \tag{16}$

表4 拟合函数*k*_i系数 Table 4 The coefficients *k*_i of fitting function

工作压力/ MPa	k_1	k_2	k_3	k_4
7	0.41	0.29	0.031	-0.071
8	0.65	0.29	0.03	-0.07
9	0.8	0.29	0.03	-0.071
10	0.86	0.29	0.031	-0.071

将式(16)和k₂、k₃、k₄的平均值带入式(15)可得 D_{co},与S。之间的数学关系如下

 $D_{co_2} = 0.92P - 3.8 - 0.045P^2 + 0.29S_e + 0.031S_e^2 - 0.071S_e^3$ (17)

图 14 给出了 CO₂浓度衰减比例与工作压力和 风机速率之间的曲面关系。从图 14 中可以看出,当 风机速率达到 1.5 kg/s时,工作压力超过 10 MPa后, CO₂浓度衰减比例下降。这是因为在通风和细水雾 的耦合作用下,火焰尺寸变小,燃烧强度减弱,此时 火焰逐步开始熄灭,使得 CO₂生成速率快速下降,从 而导致了 CO₂浓度衰减比例下降。

4 结语

本文通过实验研究和计算分析得出如下结论。

1) 施加细水雾后,烟气中的O₂浓度快速回升, CO浓度上升速度加快,CO₂浓度快速下降。随着细 水雾工作压力的增大,O₂浓度回升速度加快,CO浓 度上升速度减慢,CO₂浓度下降速度加快。

2)通风作用既可以提高火场O₂浓度,助燃火 焰,又可以破坏火焰燃烧的稳定性,加速火焰熄 灭。实验发现,当风机速率小于1.5 kg/s时,通风造 成的助燃火焰发挥主导作用;当风机速率大于 1.5 kg/s时,通风造成的熄灭火焰发挥主导作用。

3)利用实验数据建立了O₂浓度回升量、CO浓 度增大倍数和CO₂浓度衰减比例随风机速率和细水 雾工作压力变化的数学模型。

参考文献

- 刘江虹,廖光煊,范维澄,等.受限空间中固体可燃物的热释放 速率[J].材料研究学报,2002,16(4):418-420.
- [2] 陈长坤,汪 箭,廖光煊,等.受限空间火灾环境固体可燃物热 释放速率模拟研究[J].燃烧科学与技术,2002,8(2):122-125.
- [3] 王 蔚,张和平,杨 昀,等.全尺寸多功能热释放速率实验台 的设计[J].消防科学与技术,2004,23(6):521-524.
- [4] 张和平, 聂 磊, 张 军, 等. 建筑装饰板材的 ISO ROOM 大型 热释放速率测试与研究[J]. 火灾科学, 2003, 12(2):105-114.
- [5] 钟 委,霍 然,史聪灵. 热释放速率设定方式的几点讨论[J]. 自然灾害学报,2004,13(2):64-69.
- [6] 范维澄,王清安,姜冯辉,等.火灾学简明教程[M].合肥:中国科 学技术大学出版社,1999.

Study on variation of smoke component concentration with water mist applying

Fang Yudong

 \oplus

(Communication and Information Center, State Administration of Work Safety, Beijing 100013, China)

[Abstract] Interaction between water mist and fire smoke is studied by experiments in an ISO 9705 room. The variation of oxygen, carbon monoxide and carbon dioxide concentration is disclosed, and the mathematics models of smoke component concentration with water mist pressure and ventilation speed are established according to the experimental results. It is found in the experiment that when ventilation speed exceeds 1.5 kg/s, the smoke component concentration will break. This paper provides necessarily theory for water mist technology using in smoke restraining.

 $-\oplus$

[Key words] water mist; oxygen; carbon monoxide; carbon dioxide