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ABSTRACT The configuration space is a fundamental con  cept 
that is widely used in algorithmic robotics. Many applications 
in robotics, computer-aided design, and related areas can be 
reduced to computational problems in terms of configuration 
spaces. In this paper, we survey some of our recent work 
on solving two important challenges related to configuration 
spaces: ① how to efficiently compute an approximate 
representation of high-dimensional configuration spaces; and 
② how to efficiently perform geometric proximity and motion 
planning queries in high-dimensional configuration spaces. 
We present new configuration space construction algorithms 
based on machine learning and geometric approximation 
techniques. These algorithms perform collision queries on 
many configuration samples. The collision query results 
are used to compute an approximate representation for the 
configuration space, which quickly converges to the exact 
configuration space. We also present parallel GPU-based 
algorithms to accelerate the performance of optimization and 
search computations in configuration spaces. In particular, 
we design efficient GPU-based parallel k-nearest neighbor 
and parallel collision detection algorithms and use these 
algorithms to accelerate motion planning.

KEYWORDS configuration space, motion planning, GPU 
parallel algorithm

1 Introduction
Intelligent robots are becoming increasingly important in 
both industry and everyday life. In industry, rising labor 
costs are motivating manufacturers to consider using more 
robots in factories. For example, in China the average mini-
mum wage increased by more than 20% in 2012, while the 
supply of manufacturing robots also increased by 51% [1]. 
Europe and USA exhibit similar trends: Intelligent robots 
are being designed in order to make workers more produc-
tive and make manufacturers more competitive in terms 
of price and quality. One recent example among these 

intelligent robots is the new “Baxter” robot [2], which is 
equipped with software that enables the robot to learn vari-
ous tasks from human demonstration, recognize different 
objects, and react intelligently to external forces. Intelligent 
robots are expected to assist people in everyday life. In the 
future, such robots are expected to perform various tasks, 
including ① household and care support, such as cooking 
and laundry; ② healthy life support, such as chatting with 
the elderly and taking care of people with disabilities; and  
③ labor support in unsafe working conditions such as chemi-
cal plants [3]. Several successful prototypes for assistant ro-
bots exist. For example, the PR2 robot from Willow Garage 
has been shown to assist people with severe physical dis-
abilities such as quadriplegia [4]; and humanoid robots such 
as the HRP-4 can perform human-like actions, and can com-
municate with people using speech [5]. In addition to their 
applications in industry and everyday life, modern intelligent 
robots can be helpful in other areas, including autonomous 
vehicles [6], medical and surgical intervention [7], emergency 
and disaster rescue [8], and military tasks [9].

The tremendous improvement in the design and availa-
bility of intelligent robots over the last decade is based on 
progress in many related areas, including computer vision, 
artificial intelligence, machine learning, control, sensor sys-
tems, and mechanical systems, which correspond to diffe rent 
components of an intelligent robot system (Figure 1). For ex-
ample, the simultaneous localization and mapping (SLAM) 
algorithm enables a robot to accurately track its position in an 
unknown environment [10]. In addition, with the help of ad-
vanced vision techniques, robots can now recognize and seg-
ment objects from background point clouds [11]. Compared 
to traditional industrial robots, one important feature of the 
modern intelligent robot system is high-level planning and navi-
gation. Its main purpose is to compute low-level instructions 
based on high-level descriptions for the tasks to be executed; 
these low-level instructions are then provided to the robot 
actuator system. This planning and navigation component is 
composed of many different sub-components (Figure 1) and 
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there has been extensive work in this area, such as task plan-
ning [12], feedback from observation [13, 14], optimal control 
[15], and adaptive control [16]. 

One of the most important sub-systems of the high-level 
planning and navigation component is the motion planning 
system, which enables the robot to move safely from an initial 
position to a goal position without colliding with any static 
or moving obstacles in the environment. A fast online mo-
tion planning algorithm is critical for many applications. For 
instance, there exists an increasing demand to incorporate 
mobile robots to assist humans in repetitive, non-value added 
tasks in the manufacturing domain [17]. To ensure a safe col-
laboration between robots and human beings, a robot needs to 
react to the changing environment in time, and this requires 
a real-time motion planning to avoid any accidents. Online 
motion planning is also critical while improving the level of 
automation for many traditional manufacturing process. For 
instance, for automatic bin picking, an efficient online motion 
planning is critical for the grasp performance [18]. In addition, 
a fast planning is also desirable for service robots working 
in hospitals and human homes. Motion planning problems 
can be directly formalized and solved in the 3D workspace, 
for instance with the widely-used potential field algorithms 
[19]. However, these workspace solutions cannot easily handle 
robots with different geometries and mechanical constraints. 
To overcome these difficulties, motion planning may be for-
malized and solved in a new space called the configuration 
space [20–22]. In the configuration space, a robot with a com-
plex geometric shape in a 3D workspace is mapped to a point 
robot, and the robot’s trajectory corresponds to a continuous 
curve in the high-dimensional configuration space (Figure 
5). Based on the configuration space formulation, the motion 
planning problem can be solved in two steps: 

(1) Construct a representation of the configuration space; 
(2) Perform optimization based on the computed represen-

tation. 
This motion planning pipeline based on configuration 

spaces is very successful and is adopted by many real-world 
planning applications that require optimal planning solu-
tions. Many different representations for the configuration 
space have been proposed, including polyhedrons [23], semi-
algebraic sets [24, 25], graphs [26], and trees/forests [27]. 
Different optimization approaches have been proposed for 
different configuration space representations, including com-
puting a shortest path, computing the minimum distance to 
the boundary of a closed set inside the configuration space, 
and so forth. Moreover, the same pipeline is also implicitly 
used in some motion planning algorithms for only computing 
a feasible path (i.e., a collision-free path that does not violate 
other constraints). For example, many variants of rapidly 
exploring random tree (RRT) [27] use different heuristics to 
guide the search toward the goal configuration while grow-
ing a search tree structure as an approximate representation 
of the configuration space. Such a strategy can be viewed as a 
variant of the above pipeline, in which the configuration space 
construction alternates with the optimization computation. 

However, this algorithmic pipeline based on configuration 
space still has many computational challenges. Two of the 
most important challenges are described here: 

(1) Efficiently computing an approximate or exact repre-
sentation for the configuration space is difficult, espe-
cially for high-DOF (degree of freedom) robots with 
high-dimensional configuration spaces. Such configura-
tion space approximation problems would have expo-
nential complexity. 

(2) Many robotics applications require real-time plan-
ning in order to work reliably and efficiently in human 
environments with moving obstacles, but performing 
optimization in the computed representation for the 
configuration space can be time consuming. 

In this paper, we will discuss our recent work for solving 
these challenges related to the configuration space. In par-
ticular, we first demonstrate how to convert the configuration 
space construction problem into a machine learning problem, 
and then use active learning to compute an approximate con-
figuration space efficiently and robustly (Section 4). Second, 
we provide parallel GPU-based algorithms to accelerate the 
optimization computations in the configuration space, which 
can allow for real-time planning computation in many chal-
lenging environments (Section 5). 

2 Background and related work 

2.1 Configuration space
The configuration space is a key concept used in classical 
mechanics to describe and analyze the motion of many im-
portant systems [28]. Generally, a configuration q is a vector 
of independent parameters uniquely specifying the state of 
a system; and a configuration space or C-space is a collection 
of all possible configurations for a given system. For example, 
for a system of n point particles, the configuration is a vector 
describing the positions of all the particles, and the corre-
sponding C-space is R3n; the configuration of a 3D rigid body 

Figure 1. Important hardware and software subsystems in a robot system. 
① Feed-forward system (F), including task planning, navigation strategy, 
motion planning, and trajectory generation; ② control system (C), including 
kinematics, dynamics, and control algorithms; ③ actuator system (A), including 
motors, servos, transmissions, and so forth; ④ sensor system (S), including 
various sensors such as camera, laser, IMU, and related low-level sensor 
data processing algorithms such as signal processing, estimation, and fusion;  
⑤ sensor post-processing system (S+), including localization, mapping, etc. 
The main software component of a robot system is the high-level planning 
and navigation, which determines the instructions sent to the actuator system, 
given the desired tasks to be executed. One important component of high-level 
planning and navigation is motion planning, which focuses on computing the 
trajectory from the environment description. 
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Figure 2. The configuration space of two objects. The orange curve 
highlights the contact space Ccont of A and B. A point inside/on the orange curve 
belongs to Cobs and a point outside the orange curve belongs to Cfree. The red 
and green points denote configurations in Cobs and Cfree, respectively. 

consists of its position and orientation, and the configuration 
space is SE(3) if both rotation and translation are allowed, 
and R3 if only translation is allowed; and the configuration of 
an articulated object is the vector of all its joint angles. 

The configuration space of a robot A is composed of two 
components: collision-free space Cfree = {q : A(q) ∩ B = Ø} and in-
collision space or obstacle space Cobs = {q : A(q) ∩ B ≠ Ø}, where B 
corresponds to the geometric representation of obstacles in 
the environment and A(q) corresponds to A with the configu-
ration q. Cobs is a closed set and its boundary is denoted as 
the contact space Ccont = ∂Cobs, which corresponds to the set of 
configurations where A and B just touch each other without 
penetration. Figure 2 shows an example of the C-space of two 

Figure 3. Cobs between 2D rigid objects A and B. For each rotation angle θ ∈ 
[0, 2π), we can compute the Minkowski sum between A(θ) and –B, where A(θ) 
is the resulting shape after rotating A about the origin with θ degrees. When 
stacking the Minkowski sums for all angles θ, we obtain the Cobs between A and B. 

or a surface). Since C-space = Cfree∪ Cobs and Cfree ∩ Cobs = Ø, 
we only need to construct the representation for either Cfree 
or Cobs. Another equivalent solution is to compute Ccont, the 
boundary between Cfree and Cobs. 

Previous work on configuration space construction can be 
categorized into two different methods: geometry-based and 
topology-based. Geometry-based methods compute the exact 
geometric representation of the configuration space, while 
topology-based methods capture the connectivity of the con-
figuration space. 

Geometry-based methods are usually limited to low-
dimensional configuration spaces, due to the combinatorial 
complexity involved in computing the boundary of Cobs for 
high-dimensional configuration spaces. Most previous work 
has focused on the special case when objects A and B are 
rigid bodies only performing translational motion. As men-
tioned in Section 2.1, the resulting Cobs is the Minkowski sum 
between A and –B. Even for this special case, the computa-
tional complexity involved in computing Cobs is still high: The 
complexity is O(mn) when A and B are both convex-objects 
and is O(m3n3) when A and B are both non-convex objects 
[29], where m and n are the number of triangles in A and B, 
respectively. In addition to the high complexity, most exist-
ing implementations for computing the Minkowski sum are 
prone to challenges that arise in the context of 3D geometric 
algorithms. In particular, these implementations are ① not 
robust to numerical errors, and ② susceptible to degenera-
cies (i.e., cannot reliably handle polygon soups or meshes 
with holes). Recent work has proposed methods [30  –32] for 
computing the approximate Minkowski sum efficiently and 
reliably, but these methods are also prone to robustness is-
sues and can have high complexity in terms of dealing with 
complex objects. Options other than the Minkowski sum ex-
ist for computing Cobs. For example, Varadhan et al.  [33] com-
puted the Cobs for 2D objects with rotation and translation by 
approximating the Cobs with an adaptive grid; and Zhang et 
al. [34] computed an approximation to 4D C-space using cell 
decomposition. 

Topology-based methods capture the connectivity of the 
configuration space. Most previous approaches attempt to 
capture the connectivity of Cfree using sampling techniques 
[26, 27]. The basic idea is first to generate random samples 
(called milestones) in Cfree and then organize these samples 
using a graph structure or a forest of tree structures (Figure 
4). As the topology of Cfree can be rather complex, and may 
consist of multiple components or small, narrow passages, it 
is hard to capture the full connectivity of Cfree using random 
sampling. There is extensive work on improving the con-
nectivity computation by using different sampling strategies 
[35–40]. Recent work attempts to capture the topology of both 
Cfree and Cobs [41]. Topology-based methods can compute an 
approximate C-space representation much faster than geom-
etry-based methods. However, these methods do not work 
well with narrow passages and can be slow for high-DOF 
robots. 

2.3 Optimization in configuration space
Once an exact or approximate representation for the configu-

2D example in Figure 3. 
Based on the notion of configuration space, the motion 

planning problem in 3D workspace can be reduced to path 
planning for a point robot in C-space, that is, finding a curve 
in Cfree connecting the given initial and goal configurations of 
the robot. 

2.2 Configuration space construction
Before performing the motion planning computation in the 
configuration space, one prerequisite is to compute the geome-
try of C-space in an appropriate representation (e.g., a graph 

objects where Ccont is highlighted with an orange curve. 
In the special case when A and B are both rigid objects and 

robot A can only perform translational motion, Cobs is equal 
to the well-known Minkowski sum between A and  B: Cobs =  
A ⊕ (–B) = {x = xA + xB|xA ∈ A, xB ∈ –B}. One example of the 
Minkowski sum is shown in Figure 2. When robot A can per-
form general motion (i.e., both translation and rotation), the 
geometry of Cobs is much more complicated, as shown by the 
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The decidability is still unknown for motion planning with 
general differential constraints [46]. When the approximate 
representation of C-space is used (e.g., using a graph or forest 
to approximate the connectivity of Cfree), there exist approxi-
mate motion planning algorithms that provide guarantees 
of probabilistic completeness [26, 27] and/or asymptotic op-
timality [47]. The complexity of these approximate motion 
planning algorithms is usually bounded by O(nlnn) where n 
is the number of configuration samples used in the approxi-
mate representation of C-space [47]. Since n can be very large 
when Cfree has narrow passages and/or high dimensionality 
[48], the performance of these approximate algorithms is still 
far from real-time. 

Various planning methods related to C-space have been 
proposed in the past decades, including optimization-based 
planning algorithms such as CHOMP [49] and TrajOPT [50], 
and search-based algorithms such as Anytime A* [51]. For 
motion planning of high-DOF robots, most of the practical 
methods are based on randomized algorithms, including 
probabilistic roadmap (PRM) [26] and RRT [27]. 

3 Overview 
Our solutions to the challenges related to the configuration 
space include two parts, for the configuation space construc-
tion and the optimization in configuration spaces, respectively. 

3.1 Efficient configuration space construction 
In the first part [52], we present a novel algorithm to effi-
ciently approximate a high-dimensional configuration space 
using machine learning techniques. The main idea is to gen-
erate samples in the configuration space and then use these 
samples to approximate the contact space Ccont by a separat-
ing surface that can correctly separate all the in-collision and 
collision-free samples. This separating surface is computed 
using support vector machine (SVM) classification. Our 
method greatly reduces the required number of samples by 
leveraging incremental and active learning techniques. When 
the number of samples increases, the approximate contact 
space computed by our method can quickly converge to the 
exact contact space; we also provide bounds on the expected 
error in the approximate contact space. We evaluate the per-
formance of our algorithm on high-dimensional benchmarks. 

To construct a representation of the configuration space, 
we use an offline learning algorithm, as shown in the left box 
in Figure 6. We first generate a small set of uniform samples 
in a subspace of C-space for two given objects. Next, we 
justify whether these configurations lie in Cfree or in Cobs by 
performing exact collision checking between the two objects. 
We use the notation c(q)∈ {–1, +1} to denote the collision state 
of a configuration q, that is, c(q) = +1 if q ∈Cobs and c(q) = 
–1 if q ∈ Cfree. Given the collision states of all configuration 
samples, a coarse approximation of the contact space, LCS0 
(Figure 6(b)), is computed using classifiers, where LCS stands 
for learned contact space. Next, we select new samples in C-
space to further improve the accuracy of the initial represen-
tation LCS0 using active learning. During active learning, we 
either select samples that are far away from prior samples 
(exploration) (Figure 6(c)) or samples that are near LCS0 (exploi-

Figure 4. Topology-based methods for configuration space computation. 
(a) Capture Cfree using a graph structure; (b) capture Cfree using a forest of tree 
structures. 

ration space is computed, we next need to perform optimi-
zation in this C-space representation. For example, the goal 
of motion planning is to compute a trajectory in C-space, as 
shown in Figure 5. The trajectory should satisfy the following 
constraints: ① It should be completely inside Cfree; and ② it 
should be feasible, e.g., for humanoid robots, the robot should 
not fall down when following the trajectory. Moreover, it is 
preferable for the trajectory to be optimal under some met-
ric. For instance, the optimal trajectory could be the short-
est, take the least time to execute, or maintain the maximum 
distance from obstacles. As a result, motion planning can be 
formalized as a constrained optimization problem in C-space. 
Similar formulation can be applied to different applications, 

Figure 5. Motion planning in workspaces and in configuration spaces. 
The left figure shows obstacles (with different colors) and a 2-linked robot 
in the workspace (both the initial and goal settings). The right figure shows 
the configuration space corresponding to the workspace in the left figure, 
where different colors describe the correspondence between obstacles in 
the workspace and obstacles in the configuration space. The blue curve is a 
trajectory connecting the initial and goal configurations, and is the result of a 
motion planning algorithm. 

such as penetration depth computation [39, 42–44]. 
Optimization in C-space is usually computationally expen-

sive, especially for a high-dimensional C-space with a com-
plicated structure and topology. To illustrate the computa-
tional challenge for C-space optimization problems, we take 
motion planning in C-space as an example. Theoretically, 
motion planning using the exact representation of C-space 
has high computational complexity. Planning algorithms 
are considered to be “complete” if for any planning problem 
instance, the algorithm will either find a solution or will 
correctly report that no solution exists. Complete planning 
algorithms have been proved to be PSPACE-hard [45] and 
PSPACE-complete [24], and kinodynamic motion planning 
(i.e., motion planning with simple kinematic or dynamic 
constraints) has been shown to be NEXPTIME-hard [25]. 
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tation) (Figure 6(d)). After the new samples are generated, we 
compute an updated approximation LCS1 (Figure 6(e)) based 
on incremental machine learning techniques. We repeat this 
process, generating a sequence of approximate representa-
tions LCS0, LCS1, ..., with increasing accuracy. This iterative 
process is repeated until the collision states of all the new 
samples can be correctly predicted by the current approxi-
mation. The final result LCS (Figure 6(f)) corresponds to a 
smooth surface approximation of the contact space. 

3.2 Efficient optimization in configuration spaces 
The approximate contact space computed by the first part of 
our work can potentially be directly used for motion plan-
ning, for instance, by using it as the collision-free constraint 
in the trajectory optimization framework [53]. However, this 
constraint is highly non-convex. Thus, solving the resulting 
optimization problem is still non-trivial, and this is one focus 
of our ongoing work. Another way to solve the motion plan-
ning problem is using a sample-based approximation to the 
configuration space, which has been adopted by many tradi-
tional planning algorithms such as the PRM. In the se-cond 
part [54] of this paper, we present a novel parallel algorithm 
for real-time motion planning of high-DOF robots that ex-
ploits the computational capability of a $400 USD commodity 
graphics processing unit (GPU). Current GPUs are program-
mable many-core processors that can support thousands of 
concurrent threads. We use them for real-time computation 
of a PRM and a lazy planner. We describe efficient parallel 
strategies for constructing the roadmap that include sample 
generation, collision detection, connecting nearby samples, 
and local planning. The query phase is also performed in 
parallel based on a graph search. In order to design an effi-
cient single query planner, we use a lazy strategy that defers 
collision checking and local planning. We also describe new 
hierarchy-based collision detection algorithms, to accelerate 
the overall performance. 

We choose the PRM algorithm as the underlying method 
for parallel planning, because it is most suitable to exploit 
multiple cores and data parallelism on GPUs. The PRM algo-
rithm has two phases: roadmap construction and querying. 
The roadmap construction phase includes four main steps: 
① Generate samples in the configuration space; ② com-
pute milestones that correspond to the samples in the free 
space by performing discrete collision queries; ③ for each 
milestone, find other milestones that are nearest to it; and  
④ connect nearby milestones using local planning, and form 
a roadmap. The query phase includes two parts: ① Connect 
initial and goal configurations of the query to the roadmap, 
and ② execute a graph search algorithm on the roadmap and 
find collision-free paths. 

Parts of the PRM algorithm, such as the collision queries, 
are embarrassingly parallel [55]. We can use a many-core 
GPU to significantly enhance the performance of the other 
components as well. The framework of our PRM algorithm on 
the GPU is shown in Figure 7. We parallelize each of the six 
steps of the PRM algorithm efficiently. First, each thread of a 
multi-core GPU generates a random robot configuration, and 
some of these configurations will collide with obstacles. All 
of the collision-free samples are milestones and become ver-
tices of the roadmap graph. Next, each GPU thread computes 
the k-nearest neighbors of a single milestone and collects all 
the neighborhood pairs. Each thread then checks whether 
it is possible to connect these adjacent pairs by performing 
local planning. If there is a collision-free path between that 
neighborhood pair of milestones, we add the edge to the 
roadmap. Once the roadmap is built, queries are connected 
to the roadmap in parallel and we use a parallel graph search 
algorithm to find paths. 

The resulting GPU-based framework is very efficient for 
a multi-query version of the planning problem. The most 
expensive step in this computation is the local planning algo-
rithm; thus, we use new collision detection algorithms to im-

Figure 6. Offline computation pipeline for Ccont approximation. The different approximations of LCS are shown below the corresponding stages. We use green 
points to indicate collision-free configuration samples and red points to indicate in-collision samples. (a) Exact contact space (for reference); (b) initial model;  
(c) exploration; (d) exploitation; (e) solution after i-th iteration; (f) final approximate contact space.
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prove its performance. In order to accelerate the single-query 
algorithm, we introduce a solution that uses a lazy strategy 
and defers collision checking for local planning. In other 
words, the algorithm connects all the edges corresponding 
to the nearest neighbors and searches for paths between the 
initial and final configurations. After that, it performs local 
planning on the edges that constitute these paths. 

4 Learning-based approximate contact space  
construction 
In this section, we present our algorithm for the offline learn-
ing of the contact space and the computation of LCS. Diffe-
rent stages of this algorithm are shown in Figure 6. 

4.1 Initial sampling 
We perform uniform sampling in C-space to obtain a set of 
configuration points. Rather than sampling the entire C-space, 
we generate samples in a subspace that contains Ccont. Given 
two objects A and B, the contact space Ccont is contained in the 
in-collision space of their bounding volumes BV(A) and BV (B). 

4.2 Compute LCS0 

Given a set of k samples from Cobs(BV(A), BV(B)), we perform 
exact collision queries between A and B to check whether 
these samples are within in-collision space or not. Our goal 
is to learn an approximate representation LCS0 from these 
configurations. In particular, LCS0 corresponds to a decision 
function f(q) = 0 that is fully determined by a set of configura-
tions S in C-space. We refer to f(q) as the classifier and use it to 
predict whether a given configuration q is collision-free ( f(q) 
< 0) or in-collision ( f(q) > 0). S corresponds to the support vec-

tors, which are a small subset of configuration samples used 
in learning. Intuitively, S are the samples that are closest to 
Ccont.

We use the SVM classifier [56] to learn LCS0 from the ini-
tial sampling of k configurations. An SVM generates a deci-
sion function that is a smooth nonlinear surface. We use the 
hardmargin SVM, as the underlying samples can always 
be separated into collision-free and in-collision spaces. In-
tuitively, an SVM uses a function to map the given samples 
{qi} from the input space into a higher (possibly infinite) di-
mensional feature space. An SVM computes a linear separat-
ing hyperplane characterized by parameters w and b. The 
hyperplane’s maximal margin is in the higher dimensional 
feature space. The hyperplane corresponds to a nonlinear 
separating surface in the input space. The w is the normal 
vector to the hyperplane, and the parameter b determines 
the offset of the hyperplane from the origin along the nor-
mal vector. In the feature space, the distance between a hy-
perplane and the closest sample point is called the “margin,” 
and the optimal separating hyperplane should maximize 
this distance. The maximal margin can be achieved by solv-
ing the following optimization problem:

           
min
w , b

1
2

w|| ||2

subject to ci (w · ϕ(qi) + b) ≥1, 1 ≤i ≤ks.t.
 (1)

where ci ∈ {–1; +1} is the collision state of each sample qi. We 
define K(qi, qj) = ϕ(qi)Tϕ(qj) as the kernel function (i.e., a func-
tion used to calculate inner products in the feature space). We 
use radial basis function (RBF) kernel in our results.

The solution of Eq. (1) is a nonlinear surface in the input 
space (and a hyperplane in the feature space) that separates 
collision-free and in-collision configurations. This solution 
can be formulated as:

                f(q) = w*·ϕ(q) +b* = ∑ αi ci K(qi, q) +b*
k

i = 1
 (2)

where w * and b*  are the solutions of Eq. (1) and αi ≥ 0. The 
vectors qi corresponding to the non-zero αi are called the sup-
port vectors, which we denote as S. Intuitively, the support 
vectors are those samples closest to the separating hyper-
plane f(q) = 0, as shown by the larger red and green points in 
Figure 6(b). Thus, LCS0 consists of an implicit function fLCS0 (q) 
= f(q) and a set of samples SLCS0 = S (i.e., the support vectors), 
which are used to approximate the exact contact space.

4.3 Refine LCS0 using active learning 
We refine LCS0 using active learning. The goal is to actively 

Figure 7. PRM overview and parallel components in our algorithm.

Figure 8. LCS computation using active learning for the 2D contact space between 2D star and room models shown as the input of learning pipeline in 
Figure 6. We highlight the number of support vectors corresponding to LCSi. (a) i  = 0, |S| = 37; (b) i  = 4, |S| = 75; (c) i  = 8, |S| = 198; (d) i  = 14, |S| = 327; (e) i  = 
20; |S| = 654.
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select new samples so that a better approximate contact space 
representation, LCS1 , can be obtained by in corporating these 
samples into LCS0. We use a combination of exploration and 
exploitation [57]. The idea is to determine whether to explore 
or to exploit by flipping a biased coin with a certain probabili-
ty for landing on heads (initially 0.5). If the result is heads, 
we apply exploration; if it is tails, we apply exploitation. The 
probability of landing on heads is adjusted according to the 
fraction of exploration samples’ collision states that are cor-
rectly predicted by the current LCSi. The new samples are 
used to update LCS0 and generate a new approximation LCS1 
(or refine from LCSi to LCSi+1). We repeat the active learning 
step until all the new samples can either be correctly predict-
ed by the current LCSi, or the final result (represented as LCS) 
has sufficient accuracy to approximate Ccont. 

4.4 Incremental learning 
Instead of computing a new decision function from scratch 
using all the previous samples, we apply incremental learn-
ing techniques to efficiently compute LCSi+1 from LCSi. Incre-
mental learning utilizes a small set of new samples to update 
LCSi. The decision function of LCSi serves as the initial guess 
for generating LCSi+1. The incremental SVM [58] can update 
the current result generated using SVMs; the key is to retain 
the optimality condition of Eq. (1) (i.e., the Kuhn-Tucker con-
dition) on all prior samples while adding new samples. This 
is achieved by adjusting the coefficients αi and b in Eq. (2) and 
by adjusting support vector set S. The coefficient adjustment 
and the support vector changes are guided by the gradient of 
the objective function in Eq. (2). 

4.5 Terminating active learning 
Active learning terminates when either of these conditions 
has been satisfied: 

(1) The collision states of all the new samples generated 
during exploration and exploitation can be correctly 
predicted by the current approximation LCSi. 

(2) The total number of samples used in active learning it-
erations is more than a user-specified threshold. 

The first condition guarantees that all the configurations 
used for learning LCS are consistent (i.e., they can be correctly 
predicted by LCS). This implies that the current LCS is a close 
approximation of the underlying contact space. The second 
condition controls the accuracy of the approximate Ccont: As 
more samples are used, we get a better approximation to Ccont. 

5 GPU-based real-time optimization in configuration 
spaces 

In this section, we present the details about how to use GPU 
to accelerate the optimization speed in configuration spaces. 

5.1 Hierarchy computation
We construct a bounding volume hierarchy (BVH) for the 
robot and one for each of the obstacles in the environment, 
to accelerate the collision queries. We use the GPU-based 
construction algorithm introduced in Ref. [59], which can 
con struct the hierarchy of axis-aligned bounding boxes or 
oriented bounding boxes (OBB) in parallel on the GPU, for 
given triangle representation. For collision detection, we use 
the OBB hie rarchy, as it provides higher culling efficiency 
and improved performance on GPU-like architectures. These 
hierarchies are stored in the GPU memory and we apply ap-
propriate transformations for different configurations. 

5.2 Roadmap construction 
The roadmap construction phase tries to capture the con-
nectivity of the free configuration space, which is the main 
computationally intensive part of the PRM algorithm. 

(1) Sample generation: We first need to generate random 
samples within the configuration space. Since samples are in-
dependent, we schedule enough parallel threads to utilize the 
GPU and use MD5 cryptographic hash function [60], which 
in practice provides good randomness without a shared seed. 

(2) Milestone computation: For each configuration gen-
erated in the previous step, we need to check whether it is 
a milestone: i.e., a configuration that lies in the free space 
and does not collide with obstacles. We use a hierarchical 
collision detection approach using BVHs to test for overlap 
between the obstacles and the robot in the configuration 
defined by the sample. The collision detection is performed in 
each thread by using a traversal algorithm in the two BVHs. 
The traversal algorithm starts with the two BVH root nodes 
and tests the OBB nodes for overlap in a recursive manner. If 
two nodes overlap, then all possible pairings of their children 
should be recursively tested for intersection. 

We also use GPUs to compute the actual BVH structure 
for both the robot and obstacles by using a parallel hierarchy 
construction algorithm [59]. Since the robot’s geometric ob-
jects move depending on the configuration, its BVH is only 
valid for the initial configuration. In order to avoid recomput-

Figure 9. LCS computation using active learning for the 3D contact space between 2D star and room models shown as the input of learning pipeline in 
Figure 6. We highlight the number of support vectors corresponding to LCSi. The vertical axis represents the rotational component of the C-space. (a) LCS0, |S| = 88;  
(b) LCS5, |S| = 174; (c) LCS9, |S| = 237; (d) LCS12, |S| = 248. 
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ing a BVH for each configuration, we instead transform each 
node of the robot’s BVH with the current configuration sam-
ple before performing overlap tests. Thus, only nodes that are 
actually needed during collision testing are transformed. 

(3) Proximity computation: For each milestone computed, 
we need to find its k-nearest neighbors (k-NN). In general, 
there are two types of k-NN algorithms: exact k-NN and ap-
proximate k-NN, which is faster by allowing a small relax-
ation. Our proximity algorithm is based on a range query 
that uses a BVH structure of the points in configuration 
space. 

For 3-DOF Euclidean space, we first construct the BVH 
structure for all the milestones using a parallel algo-
rithm [59]. For each configuration q, we enclose it within 
an axis-aligned box: A box with q as the center and with 
2ε as the edge length. Next, we traverse the BVH tree to 
find all leaf nodes (i.e., configurations) that are within the  
ε box. This reduces to a range-query for q. For a non-Euclide-
an DOF, we duplicate samples to transform it into a Euclidean 
space locally. For example, suppose one DOF is the rotation 
angle α ∈ [0, 2π]. We add another sample α* ∈ [−π, 3π] with 
a distance 2π to α. If all 3-DOF are rotations, we need to add 
another 7 samples for each milestone. Once the range query 
finishes, we choose the k-nearest ones from all the query re-
sults; this gives us the exact nearest neighbors. This approach 
can be extended to handle k-NN search in high dimensional 
space by using a decomposition strategy; the details are in 
our recent work [61]. 

To further improve the performance of proximity compu-
tation in high dimensional space, we have developed a new 
k-NN algorithm, which uses locality sensitive hashing (LSH) 
and cuckoo hashing to efficiently compute approximate k-NN 
in parallel on the GPU. For more details, please refer to our 
recent work [62]. 

(4) Local planning: Local planning checks whether there is 
a local path between two milestones, which corresponds to 
an edge on the roadmap. It is the most expensive part of the 
PRM algorithm. Suppose we have nm milestones, and each 
milestone has at most nk nearest neighbors. Then the algo-
rithm performs local planning at most nm· nk times. If we use 
DCD, then we need to perform at most nl = nm· nk· ni collision 
queries, which can be very high for a complex benchmark. 
For multi-query problems, this cost can be amortized over 
multiple queries, as the roadmap is constructed only once. 
For a single-query problem, com puting the whole roadmap is 
too expensive. 

Therefore, in the single-query case, we use a lazy strategy 
to defer local planning until absolutely necessary. Given a 
query, we compute several different candidate paths in the 
roadmap graph from the initial to final configuration and 
only check local planning for roadmap edges on the candi-
date paths. Local planning may conclude that some of these 
edges are not valid, and in that case, we delete them from the 
roadmap. If there exists one candidate path without invalid 
edges, the algorithm has found a collision-free solution. Oth-
erwise, we compute candidate paths again on the updated 
roadmap and repeat the above process. This lazy strategy can 
greatly improve performance for single queries. 

5.3 Query phase 
The query phase includes two parts: connecting queries to 
the roadmap and executing graph searches to find paths. 

(1) Query connection: Given the initial-goal configura tions 
in a single query, we connect them to the roadmap. For both 
of these configurations, we find the k-nearest milestones on 
the roadmap and add edges between the query and mile-
stones that can be connected by local planning. We use the 
same algorithm from the roadmap construction phase, except 
that the k used is 2–3 times larger in order to increase the 
proba bility of finding a path. 

(2) Graph search: The search algorithm tries to find a path 
on the roadmap connecting initial and goal configurations. 
We use depth-first search (DFS) or breadth-first search (BFS) 
for the graph search. For the multi-query case, each GPU 
thread traverses the roadmap for one query using DFS, and 
the final results are collision-free paths. For the single-query 
case, we exploit all the GPU threads to find the path for 
one query using a BFS search: For nodes that are the same 
number of steps away from the initial node, we add their un-
visited neighbors into the queue in parallel. In other words, 
different GPU cores traverse different parts of the graph. 
The main challenge of this method is that work is gene- 
rated dynamically as the BFS traverse progresses, and 
the computational load on different cores can change 
significantly. To address the problem of load balancing and 
work distribution so that parallelism for all cores is main-
tained, we use the light-weight load balancing strategy in 
Ref. [63]. 

6 Experiments

In this section, we investigate the performance of our ap-
proaches while solving two challenges related to the confi-
guration space. 

6.1 Configuration space construction 
We have used a set of complex benchmarks to evaluate the 
contact space approximation results of our algorithm. 

We first compute the contact space for 2D objects shown 
as the input of the learning pipeline in Figure 6. In this ex-
periment, object A can only undergo translational motion 
and object B is fixed. The resulting configuration space has 2 
degrees of freedom, and the series of LCS surfaces com puted 
by our learning-based approach is shown in Figure 8. We can 
see that after a few iterations with several hundred samples, 
the learned LCS can well approximate the exact contact space 
between these two objects. 

Next, we compute the contact space for the same pair of 
2D objects, but we now allow object A to perform rotation 
in the 2D plane. The resulting configuration space has 3 de-
grees of freedom, and the series of LCS surfaces generated 
by our approach is shown in Figure 9. Similar to the case of 
the 2D contact space, the learned contact space can quickly 
converge to a good approximation of the exact contact 
space. 

Finally, we compute the contact space for a pair of 3D ob-
jects shown in Figure 10(a), where the object A can only un-
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dergo translation and thus the corresponding configuration 
space is three-dimensional. Similarly, we can observe that 
the learned contact space sequence quickly converges to the  
exact contact space. 

6.2 Optimization in configuration spaces 
We present details of our implementation and evaluate the 
performance of our algorithm on a set of benchmarks. All the 
timings reported here were taken on a machine using a Intel 
Core i7 CPU (~$600) at 3.2 GHz CPU and 6 GB memory. We 
implemented our algorithms using CUDA on a NVIDIA GTX 
285 GPU (~$380) with 1 GB of video memory. 

RRT) with the same setting as C-PRM. 
Table 1 shows the comparison of timings between algo-

rithms. In general, G-PRM is about 10 times faster than  
C -PRM, and GL-PRM can provide another 10-fold accelera-
tion for single-query problems. G-PRM is faster than C-PRM 
even for dynamic scenes. The current C-RRT and C-PRM are 
both single-core versions. However, even a multi-core version 
of PRM would only improve the timing by 4-fold at most, be-
cause on an 8-core CPU it is hard to scale the hierarchy com-
putations and nearest neighbor computations linearly. Our 
GPU algorithms can still provide performances 1  –2 orders of 
magnitude higher than CPU algorithms. 

Figure 10. LCS computation using active learning for the 3D contact space between 3D cup and spoon. We provide the number of support vectors 
corresponding to LCSi. As shown, the algorithm can compute a good approximation in a few iterations. (a) Objects A and B; (b) LCS0, |S| = 231; (c) LCS5, |S| = 869;  
(d) LCS9, |S| = 1350; (e) LCS12, |S| = 1572.

Figure 11. The benchmark scenes used for our algorithms in the following 
order: Piano (2484 triangles), helicopter (2484 triangles), maze3d1 (40 
triangles), maze3d2 (40 triangles), maze3d3 (970 triangles), and alpha 
puzzle (2016 triangles). 

We implement the PRM algorithm on the GPU (G-PRM) 
for multi-query planning problems, and implement its lazy 
version (GL-PRM) for single-query problems. We compare 
these with the PRM and RRT algorithms implemented in 
the OOPSMP library [64], which is a popular library for mo-
tion planning algorithms on CPU. The benchmarks used are 
shown in Figure 11. Our comparisons are designed as fol-
lows: For each benchmark, we find a suitable setting where 
CPU-PRM (C-PRM) finds a solution, and then we run G-PRM 
with a comparable number of samples. After that, we run GL-
PRM with the same setting as G-PRM, and run CPU-RRT (C-

Table 1. The left two columns evaluate the performance of the PRM and 
RRT algorithms in the OOPSMP. The right two columns evaluate the 
performance of our GPU-based algorithms. 

  C-PRM    C-RRT    G-PRM    GL-PRM 

Piano 6.53 s 19.44 s 1.71 s 111.23 ms 

Helicopter 8.20 s 20.94 s 2.22 s 129.33 ms 

Maze3d1 138.00 s 21.18 s 14.78 s 71.24 ms 

Maze3d2 69.76 s 17.40 s 14.47 s 408.60 ms 

Maze3d3 8.45 s 4.30 s 1.40 s 96.37 ms 

Alpha1.5 65.73 s 2.80 s 12.86 s 1446.00 ms 

Figure 12. Split-up of timings: the fraction of time spent in different parts of the G-PRM and GL-PRM.  

Figure 12 shows the timing breakdown between various 
steps for G-PRM and GL-PRM. The difference between the 
performance of the two algorithms is clear: In G-PRM, local 
planning is the bottleneck and dominates the timing, while 
in GL-PRM the graph search takes longer because local plan-
ning is performed in a lazy or output-sensitive manner. In 
GL-PRM, three components take most timing: milestone 
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construction, proximity computation, and graph search, 
because all of them may perform collision queries heavily. 
If the environment is cluttered and the model has complex 
geometry, milestone construction will be slow (alpha puzzle 
in Figure 12). If the environment is an open space and has 
many milestones, proximity computation will be the bottle-
neck (maze3d2 in Figure 12). If the lazy strategy cannot guess 
a correct path, then the graph search will be computation-
ally intensive due to the large number of collision queries 
(maze3d3 in Figure 12). However, in all these environments, 
GL-RPM outperforms all other methods. 

We tested the scalability of G-PRM and GL-PRM on the 
maze3d3 benchmark, and the result is shown in Figure 13. 
It is obvious that GL-PRM is generally faster than G- PRM, 
and both algorithms achieve near-linear scaling on the 
benchmark. However, observe that as the number of samples 
increases, GL-PRM slows down faster than G-PRM. This is 
because when the number of samples increases, proximity 
computation becomes increasingly expensive and dominates 
the timing when the number of samples is near 1 million. 

expect progress in all these areas and more. While there is 
always more to do, the work presented in this paper has ad-
dressed many of the important issues in this field. 

To summarize the main results presented in this paper, 
we first presented a novel approach to the approximation 
of configuration spaces. The main idea is to sample the 
configuration space and approximate the contact space based 
on machine learning classifiers, particularly support vector 
machines. Furthermore, we use active learning techniques 
to select the samples during precomputation. Next, we in-
troduced a whole motion planning algorithm on GPUs. Our 
algorithm can exploit all the parallelism within the PRM 
algorithm, including the high-level parallelism provided by 
the PRM framework and the low-level parallelism within dif-
ferent components of the PRM algorithm, such as collision 
detection and graph search. This makes our work the first to 
perform real-time motion planning and global navigation in 
general environments using GPUs. 
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