
046 Engineering Volume 1 · Issue 1 · March 2015 www.engineering.org.cn

Engineering 2015, 1(1): 46–57
DOI 10.15302/J-ENG-2015009

Efficient Configuration Space Construction and
Optimization for Motion Planning
Jia Pan1* and Dinesh Manocha2

1 Department of Computer Science, The University of Hong Kong, Hong Kong, China; 2 Department of Computer Science, University of N. Carolina, Chapel Hill, NC
27599-3175, USA
* Correspondence author. E-mail: jpan@cs.hku.hk
Received 12 March 2015; received in revised form 20 March 2015; accepted 25 March 2015

© The Author(s) 2015. Published by Engineering Sciences Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Robotics—Article

ABSTRACT The configuration space is a fundamental con cept
that is widely used in algorithmic robotics. Many applications
in robotics, computer-aided design, and related areas can be
reduced to computational problems in terms of configuration
spaces. In this paper, we survey some of our recent work
on solving two important challenges related to configuration
spaces: ① how to efficiently compute an approximate
representation of high-dimensional configuration spaces; and
② how to efficiently perform geometric proximity and motion
planning queries in high-dimensional configuration spaces.
We present new configuration space construction algorithms
based on machine learning and geometric approximation
techniques. These algorithms perform collision queries on
many configuration samples. The collision query results
are used to compute an approximate representation for the
configuration space, which quickly converges to the exact
configuration space. We also present parallel GPU-based
algorithms to accelerate the performance of optimization and
search computations in configuration spaces. In particular,
we design efficient GPU-based parallel k-nearest neighbor
and parallel collision detection algorithms and use these
algorithms to accelerate motion planning.

KEYWORDS configuration space, motion planning, GPU
parallel algorithm

1 Introduction
Intelligent robots are becoming increasingly important in
both industry and everyday life. In industry, rising labor
costs are motivating manufacturers to consider using more
robots in factories. For example, in China the average mini-
mum wage increased by more than 20% in 2012, while the
supply of manufacturing robots also increased by 51% [1].
Europe and USA exhibit similar trends: Intelligent robots
are being designed in order to make workers more produc-
tive and make manufacturers more competitive in terms
of price and quality. One recent example among these

intelligent robots is the new “Baxter” robot [2], which is
equipped with software that enables the robot to learn vari-
ous tasks from human demonstration, recognize different
objects, and react intelligently to external forces. Intelligent
robots are expected to assist people in everyday life. In the
future, such robots are expected to perform various tasks,
including ① household and care support, such as cooking
and laundry; ② healthy life support, such as chatting with
the elderly and taking care of people with disabilities; and
③ labor support in unsafe working conditions such as chemi-
cal plants [3]. Several successful prototypes for assistant ro-
bots exist. For example, the PR2 robot from Willow Garage
has been shown to assist people with severe physical dis-
abilities such as quadriplegia [4]; and humanoid robots such
as the HRP-4 can perform human-like actions, and can com-
municate with people using speech [5]. In addition to their
applications in industry and everyday life, modern intelligent
robots can be helpful in other areas, including autonomous
vehicles [6], medical and surgical intervention [7], emergency
and disaster rescue [8], and military tasks [9].

The tremendous improvement in the design and availa-
bility of intelligent robots over the last decade is based on
progress in many related areas, including computer vision,
artificial intelligence, machine learning, control, sensor sys-
tems, and mechanical systems, which correspond to diffe rent
components of an intelligent robot system (Figure 1). For ex-
ample, the simultaneous localization and mapping (SLAM)
algorithm enables a robot to accurately track its position in an
unknown environment [10]. In addition, with the help of ad-
vanced vision techniques, robots can now recognize and seg-
ment objects from background point clouds [11]. Compared
to traditional industrial robots, one important feature of the
modern intelligent robot system is high-level planning and navi-
gation. Its main purpose is to compute low-level instructions
based on high-level descriptions for the tasks to be executed;
these low-level instructions are then provided to the robot
actuator system. This planning and navigation component is
composed of many different sub-components (Figure 1) and

Research

047www.engineering.org.cn Volume 1 · Issue 1 · March 2015 Engineering

Robotics—Article Research

there has been extensive work in this area, such as task plan-
ning [12], feedback from observation [13, 14], optimal control
[15], and adaptive control [16].

One of the most important sub-systems of the high-level
planning and navigation component is the motion planning
system, which enables the robot to move safely from an initial
position to a goal position without colliding with any static
or moving obstacles in the environment. A fast online mo-
tion planning algorithm is critical for many applications. For
instance, there exists an increasing demand to incorporate
mobile robots to assist humans in repetitive, non-value added
tasks in the manufacturing domain [17]. To ensure a safe col-
laboration between robots and human beings, a robot needs to
react to the changing environment in time, and this requires
a real-time motion planning to avoid any accidents. Online
motion planning is also critical while improving the level of
automation for many traditional manufacturing process. For
instance, for automatic bin picking, an efficient online motion
planning is critical for the grasp performance [18]. In addition,
a fast planning is also desirable for service robots working
in hospitals and human homes. Motion planning problems
can be directly formalized and solved in the 3D workspace,
for instance with the widely-used potential field algorithms
[19]. However, these workspace solutions cannot easily handle
robots with different geometries and mechanical constraints.
To overcome these difficulties, motion planning may be for-
malized and solved in a new space called the configuration
space [20–22]. In the configuration space, a robot with a com-
plex geometric shape in a 3D workspace is mapped to a point
robot, and the robot’s trajectory corresponds to a continuous
curve in the high-dimensional configuration space (Figure
5). Based on the configuration space formulation, the motion
planning problem can be solved in two steps:

(1) Construct a representation of the configuration space;
(2) Perform optimization based on the computed represen-

tation.
This motion planning pipeline based on configuration

spaces is very successful and is adopted by many real-world
planning applications that require optimal planning solu-
tions. Many different representations for the configuration
space have been proposed, including polyhedrons [23], semi-
algebraic sets [24, 25], graphs [26], and trees/forests [27].
Different optimization approaches have been proposed for
different configuration space representations, including com-
puting a shortest path, computing the minimum distance to
the boundary of a closed set inside the configuration space,
and so forth. Moreover, the same pipeline is also implicitly
used in some motion planning algorithms for only computing
a feasible path (i.e., a collision-free path that does not violate
other constraints). For example, many variants of rapidly
exploring random tree (RRT) [27] use different heuristics to
guide the search toward the goal configuration while grow-
ing a search tree structure as an approximate representation
of the configuration space. Such a strategy can be viewed as a
variant of the above pipeline, in which the configuration space
construction alternates with the optimization computation.

However, this algorithmic pipeline based on configuration
space still has many computational challenges. Two of the
most important challenges are described here:

(1) Efficiently computing an approximate or exact repre-
sentation for the configuration space is difficult, espe-
cially for high-DOF (degree of freedom) robots with
high-dimensional configuration spaces. Such configura-
tion space approximation problems would have expo-
nential complexity.

(2) Many robotics applications require real-time plan-
ning in order to work reliably and efficiently in human
environments with moving obstacles, but performing
optimization in the computed representation for the
configuration space can be time consuming.

In this paper, we will discuss our recent work for solving
these challenges related to the configuration space. In par-
ticular, we first demonstrate how to convert the configuration
space construction problem into a machine learning problem,
and then use active learning to compute an approximate con-
figuration space efficiently and robustly (Section 4). Second,
we provide parallel GPU-based algorithms to accelerate the
optimization computations in the configuration space, which
can allow for real-time planning computation in many chal-
lenging environments (Section 5).

2 Background and related work

2.1 Configuration space
The configuration space is a key concept used in classical
mechanics to describe and analyze the motion of many im-
portant systems [28]. Generally, a configuration q is a vector
of independent parameters uniquely specifying the state of
a system; and a configuration space or C-space is a collection
of all possible configurations for a given system. For example,
for a system of n point particles, the configuration is a vector
describing the positions of all the particles, and the corre-
sponding C-space is R3n; the configuration of a 3D rigid body

Figure 1. Important hardware and software subsystems in a robot system.
① Feed-forward system (F), including task planning, navigation strategy,
motion planning, and trajectory generation; ② control system (C), including
kinematics, dynamics, and control algorithms; ③ actuator system (A), including
motors, servos, transmissions, and so forth; ④ sensor system (S), including
various sensors such as camera, laser, IMU, and related low-level sensor
data processing algorithms such as signal processing, estimation, and fusion;
⑤ sensor post-processing system (S+), including localization, mapping, etc.
The main software component of a robot system is the high-level planning
and navigation, which determines the instructions sent to the actuator system,
given the desired tasks to be executed. One important component of high-level
planning and navigation is motion planning, which focuses on computing the
trajectory from the environment description.

048 Engineering Volume 1 · Issue 1 · March 2015 www.engineering.org.cn

Robotics—ArticleResearch

Figure 2. The configuration space of two objects. The orange curve
highlights the contact space Ccont of A and B. A point inside/on the orange curve
belongs to Cobs and a point outside the orange curve belongs to Cfree. The red
and green points denote configurations in Cobs and Cfree, respectively.

consists of its position and orientation, and the configuration
space is SE(3) if both rotation and translation are allowed,
and R3 if only translation is allowed; and the configuration of
an articulated object is the vector of all its joint angles.

The configuration space of a robot A is composed of two
components: collision-free space Cfree = {q : A(q) ∩ B = Ø} and in-
collision space or obstacle space Cobs = {q : A(q) ∩ B ≠ Ø}, where B
corresponds to the geometric representation of obstacles in
the environment and A(q) corresponds to A with the configu-
ration q. Cobs is a closed set and its boundary is denoted as
the contact space Ccont = ∂Cobs, which corresponds to the set of
configurations where A and B just touch each other without
penetration. Figure 2 shows an example of the C-space of two

Figure 3. Cobs between 2D rigid objects A and B. For each rotation angle θ ∈
[0, 2π), we can compute the Minkowski sum between A(θ) and –B, where A(θ)
is the resulting shape after rotating A about the origin with θ degrees. When
stacking the Minkowski sums for all angles θ, we obtain the Cobs between A and B.

or a surface). Since C-space = Cfree∪ Cobs and Cfree ∩ Cobs = Ø,
we only need to construct the representation for either Cfree
or Cobs. Another equivalent solution is to compute Ccont, the
boundary between Cfree and Cobs.

Previous work on configuration space construction can be
categorized into two different methods: geometry-based and
topology-based. Geometry-based methods compute the exact
geometric representation of the configuration space, while
topology-based methods capture the connectivity of the con-
figuration space.

Geometry-based methods are usually limited to low-
dimensional configuration spaces, due to the combinatorial
complexity involved in computing the boundary of Cobs for
high-dimensional configuration spaces. Most previous work
has focused on the special case when objects A and B are
rigid bodies only performing translational motion. As men-
tioned in Section 2.1, the resulting Cobs is the Minkowski sum
between A and –B. Even for this special case, the computa-
tional complexity involved in computing Cobs is still high: The
complexity is O(mn) when A and B are both convex-objects
and is O(m3n3) when A and B are both non-convex objects
[29], where m and n are the number of triangles in A and B,
respectively. In addition to the high complexity, most exist-
ing implementations for computing the Minkowski sum are
prone to challenges that arise in the context of 3D geometric
algorithms. In particular, these implementations are ① not
robust to numerical errors, and ② susceptible to degenera-
cies (i.e., cannot reliably handle polygon soups or meshes
with holes). Recent work has proposed methods [30 –32] for
computing the approximate Minkowski sum efficiently and
reliably, but these methods are also prone to robustness is-
sues and can have high complexity in terms of dealing with
complex objects. Options other than the Minkowski sum ex-
ist for computing Cobs. For example, Varadhan et al. [33] com-
puted the Cobs for 2D objects with rotation and translation by
approximating the Cobs with an adaptive grid; and Zhang et
al. [34] computed an approximation to 4D C-space using cell
decomposition.

Topology-based methods capture the connectivity of the
configuration space. Most previous approaches attempt to
capture the connectivity of Cfree using sampling techniques
[26, 27]. The basic idea is first to generate random samples
(called milestones) in Cfree and then organize these samples
using a graph structure or a forest of tree structures (Figure
4). As the topology of Cfree can be rather complex, and may
consist of multiple components or small, narrow passages, it
is hard to capture the full connectivity of Cfree using random
sampling. There is extensive work on improving the con-
nectivity computation by using different sampling strategies
[35–40]. Recent work attempts to capture the topology of both
Cfree and Cobs [41]. Topology-based methods can compute an
approximate C-space representation much faster than geom-
etry-based methods. However, these methods do not work
well with narrow passages and can be slow for high-DOF
robots.

2.3 Optimization in configuration space
Once an exact or approximate representation for the configu-

2D example in Figure 3.
Based on the notion of configuration space, the motion

planning problem in 3D workspace can be reduced to path
planning for a point robot in C-space, that is, finding a curve
in Cfree connecting the given initial and goal configurations of
the robot.

2.2 Configuration space construction
Before performing the motion planning computation in the
configuration space, one prerequisite is to compute the geome-
try of C-space in an appropriate representation (e.g., a graph

objects where Ccont is highlighted with an orange curve.
In the special case when A and B are both rigid objects and

robot A can only perform translational motion, Cobs is equal
to the well-known Minkowski sum between A and B: Cobs =
A ⊕ (–B) = {x = xA + xB|xA ∈ A, xB ∈ –B}. One example of the
Minkowski sum is shown in Figure 2. When robot A can per-
form general motion (i.e., both translation and rotation), the
geometry of Cobs is much more complicated, as shown by the

049www.engineering.org.cn Volume 1 · Issue 1 · March 2015 Engineering

Robotics—Article Research

The decidability is still unknown for motion planning with
general differential constraints [46]. When the approximate
representation of C-space is used (e.g., using a graph or forest
to approximate the connectivity of Cfree), there exist approxi-
mate motion planning algorithms that provide guarantees
of probabilistic completeness [26, 27] and/or asymptotic op-
timality [47]. The complexity of these approximate motion
planning algorithms is usually bounded by O(nlnn) where n
is the number of configuration samples used in the approxi-
mate representation of C-space [47]. Since n can be very large
when Cfree has narrow passages and/or high dimensionality
[48], the performance of these approximate algorithms is still
far from real-time.

Various planning methods related to C-space have been
proposed in the past decades, including optimization-based
planning algorithms such as CHOMP [49] and TrajOPT [50],
and search-based algorithms such as Anytime A* [51]. For
motion planning of high-DOF robots, most of the practical
methods are based on randomized algorithms, including
probabilistic roadmap (PRM) [26] and RRT [27].

3 Overview
Our solutions to the challenges related to the configuration
space include two parts, for the configuation space construc-
tion and the optimization in configuration spaces, respectively.

3.1 Efficient configuration space construction
In the first part [52], we present a novel algorithm to effi-
ciently approximate a high-dimensional configuration space
using machine learning techniques. The main idea is to gen-
erate samples in the configuration space and then use these
samples to approximate the contact space Ccont by a separat-
ing surface that can correctly separate all the in-collision and
collision-free samples. This separating surface is computed
using support vector machine (SVM) classification. Our
method greatly reduces the required number of samples by
leveraging incremental and active learning techniques. When
the number of samples increases, the approximate contact
space computed by our method can quickly converge to the
exact contact space; we also provide bounds on the expected
error in the approximate contact space. We evaluate the per-
formance of our algorithm on high-dimensional benchmarks.

To construct a representation of the configuration space,
we use an offline learning algorithm, as shown in the left box
in Figure 6. We first generate a small set of uniform samples
in a subspace of C-space for two given objects. Next, we
justify whether these configurations lie in Cfree or in Cobs by
performing exact collision checking between the two objects.
We use the notation c(q)∈ {–1, +1} to denote the collision state
of a configuration q, that is, c(q) = +1 if q ∈Cobs and c(q) =
–1 if q ∈ Cfree. Given the collision states of all configuration
samples, a coarse approximation of the contact space, LCS0
(Figure 6(b)), is computed using classifiers, where LCS stands
for learned contact space. Next, we select new samples in C-
space to further improve the accuracy of the initial represen-
tation LCS0 using active learning. During active learning, we
either select samples that are far away from prior samples
(exploration) (Figure 6(c)) or samples that are near LCS0 (exploi-

Figure 4. Topology-based methods for configuration space computation.
(a) Capture Cfree using a graph structure; (b) capture Cfree using a forest of tree
structures.

ration space is computed, we next need to perform optimi-
zation in this C-space representation. For example, the goal
of motion planning is to compute a trajectory in C-space, as
shown in Figure 5. The trajectory should satisfy the following
constraints: ① It should be completely inside Cfree; and ② it
should be feasible, e.g., for humanoid robots, the robot should
not fall down when following the trajectory. Moreover, it is
preferable for the trajectory to be optimal under some met-
ric. For instance, the optimal trajectory could be the short-
est, take the least time to execute, or maintain the maximum
distance from obstacles. As a result, motion planning can be
formalized as a constrained optimization problem in C-space.
Similar formulation can be applied to different applications,

Figure 5. Motion planning in workspaces and in configuration spaces.
The left figure shows obstacles (with different colors) and a 2-linked robot
in the workspace (both the initial and goal settings). The right figure shows
the configuration space corresponding to the workspace in the left figure,
where different colors describe the correspondence between obstacles in
the workspace and obstacles in the configuration space. The blue curve is a
trajectory connecting the initial and goal configurations, and is the result of a
motion planning algorithm.

such as penetration depth computation [39, 42–44].
Optimization in C-space is usually computationally expen-

sive, especially for a high-dimensional C-space with a com-
plicated structure and topology. To illustrate the computa-
tional challenge for C-space optimization problems, we take
motion planning in C-space as an example. Theoretically,
motion planning using the exact representation of C-space
has high computational complexity. Planning algorithms
are considered to be “complete” if for any planning problem
instance, the algorithm will either find a solution or will
correctly report that no solution exists. Complete planning
algorithms have been proved to be PSPACE-hard [45] and
PSPACE-complete [24], and kinodynamic motion planning
(i.e., motion planning with simple kinematic or dynamic
constraints) has been shown to be NEXPTIME-hard [25].

050 Engineering Volume 1 · Issue 1 · March 2015 www.engineering.org.cn

Robotics—ArticleResearch

tation) (Figure 6(d)). After the new samples are generated, we
compute an updated approximation LCS1 (Figure 6(e)) based
on incremental machine learning techniques. We repeat this
process, generating a sequence of approximate representa-
tions LCS0, LCS1, ..., with increasing accuracy. This iterative
process is repeated until the collision states of all the new
samples can be correctly predicted by the current approxi-
mation. The final result LCS (Figure 6(f)) corresponds to a
smooth surface approximation of the contact space.

3.2 Efficient optimization in configuration spaces
The approximate contact space computed by the first part of
our work can potentially be directly used for motion plan-
ning, for instance, by using it as the collision-free constraint
in the trajectory optimization framework [53]. However, this
constraint is highly non-convex. Thus, solving the resulting
optimization problem is still non-trivial, and this is one focus
of our ongoing work. Another way to solve the motion plan-
ning problem is using a sample-based approximation to the
configuration space, which has been adopted by many tradi-
tional planning algorithms such as the PRM. In the se-cond
part [54] of this paper, we present a novel parallel algorithm
for real-time motion planning of high-DOF robots that ex-
ploits the computational capability of a $400 USD commodity
graphics processing unit (GPU). Current GPUs are program-
mable many-core processors that can support thousands of
concurrent threads. We use them for real-time computation
of a PRM and a lazy planner. We describe efficient parallel
strategies for constructing the roadmap that include sample
generation, collision detection, connecting nearby samples,
and local planning. The query phase is also performed in
parallel based on a graph search. In order to design an effi-
cient single query planner, we use a lazy strategy that defers
collision checking and local planning. We also describe new
hierarchy-based collision detection algorithms, to accelerate
the overall performance.

We choose the PRM algorithm as the underlying method
for parallel planning, because it is most suitable to exploit
multiple cores and data parallelism on GPUs. The PRM algo-
rithm has two phases: roadmap construction and querying.
The roadmap construction phase includes four main steps:
① Generate samples in the configuration space; ② com-
pute milestones that correspond to the samples in the free
space by performing discrete collision queries; ③ for each
milestone, find other milestones that are nearest to it; and
④ connect nearby milestones using local planning, and form
a roadmap. The query phase includes two parts: ① Connect
initial and goal configurations of the query to the roadmap,
and ② execute a graph search algorithm on the roadmap and
find collision-free paths.

Parts of the PRM algorithm, such as the collision queries,
are embarrassingly parallel [55]. We can use a many-core
GPU to significantly enhance the performance of the other
components as well. The framework of our PRM algorithm on
the GPU is shown in Figure 7. We parallelize each of the six
steps of the PRM algorithm efficiently. First, each thread of a
multi-core GPU generates a random robot configuration, and
some of these configurations will collide with obstacles. All
of the collision-free samples are milestones and become ver-
tices of the roadmap graph. Next, each GPU thread computes
the k-nearest neighbors of a single milestone and collects all
the neighborhood pairs. Each thread then checks whether
it is possible to connect these adjacent pairs by performing
local planning. If there is a collision-free path between that
neighborhood pair of milestones, we add the edge to the
roadmap. Once the roadmap is built, queries are connected
to the roadmap in parallel and we use a parallel graph search
algorithm to find paths.

The resulting GPU-based framework is very efficient for
a multi-query version of the planning problem. The most
expensive step in this computation is the local planning algo-
rithm; thus, we use new collision detection algorithms to im-

Figure 6. Offline computation pipeline for Ccont approximation. The different approximations of LCS are shown below the corresponding stages. We use green
points to indicate collision-free configuration samples and red points to indicate in-collision samples. (a) Exact contact space (for reference); (b) initial model;
(c) exploration; (d) exploitation; (e) solution after i-th iteration; (f) final approximate contact space.

051www.engineering.org.cn Volume 1 · Issue 1 · March 2015 Engineering

Robotics—Article Research

prove its performance. In order to accelerate the single-query
algorithm, we introduce a solution that uses a lazy strategy
and defers collision checking for local planning. In other
words, the algorithm connects all the edges corresponding
to the nearest neighbors and searches for paths between the
initial and final configurations. After that, it performs local
planning on the edges that constitute these paths.

4 Learning-based approximate contact space
construction
In this section, we present our algorithm for the offline learn-
ing of the contact space and the computation of LCS. Diffe-
rent stages of this algorithm are shown in Figure 6.

4.1 Initial sampling
We perform uniform sampling in C-space to obtain a set of
configuration points. Rather than sampling the entire C-space,
we generate samples in a subspace that contains Ccont. Given
two objects A and B, the contact space Ccont is contained in the
in-collision space of their bounding volumes BV(A) and BV (B).

4.2 Compute LCS0

Given a set of k samples from Cobs(BV(A), BV(B)), we perform
exact collision queries between A and B to check whether
these samples are within in-collision space or not. Our goal
is to learn an approximate representation LCS0 from these
configurations. In particular, LCS0 corresponds to a decision
function f(q) = 0 that is fully determined by a set of configura-
tions S in C-space. We refer to f(q) as the classifier and use it to
predict whether a given configuration q is collision-free (f(q)
< 0) or in-collision (f(q) > 0). S corresponds to the support vec-

tors, which are a small subset of configuration samples used
in learning. Intuitively, S are the samples that are closest to
Ccont.

We use the SVM classifier [56] to learn LCS0 from the ini-
tial sampling of k configurations. An SVM generates a deci-
sion function that is a smooth nonlinear surface. We use the
hardmargin SVM, as the underlying samples can always
be separated into collision-free and in-collision spaces. In-
tuitively, an SVM uses a function to map the given samples
{qi} from the input space into a higher (possibly infinite) di-
mensional feature space. An SVM computes a linear separat-
ing hyperplane characterized by parameters w and b. The
hyperplane’s maximal margin is in the higher dimensional
feature space. The hyperplane corresponds to a nonlinear
separating surface in the input space. The w is the normal
vector to the hyperplane, and the parameter b determines
the offset of the hyperplane from the origin along the nor-
mal vector. In the feature space, the distance between a hy-
perplane and the closest sample point is called the “margin,”
and the optimal separating hyperplane should maximize
this distance. The maximal margin can be achieved by solv-
ing the following optimization problem:

min
w , b

1
2

w|| ||2

subject to ci (w · ϕ(qi) + b) ≥1, 1 ≤i ≤ks.t.
 (1)

where ci ∈ {–1; +1} is the collision state of each sample qi. We
define K(qi, qj) = ϕ(qi)Tϕ(qj) as the kernel function (i.e., a func-
tion used to calculate inner products in the feature space). We
use radial basis function (RBF) kernel in our results.

The solution of Eq. (1) is a nonlinear surface in the input
space (and a hyperplane in the feature space) that separates
collision-free and in-collision configurations. This solution
can be formulated as:

 f(q) = w*·ϕ(q) +b* = ∑ αi ci K(qi, q) +b*
k

i = 1
 (2)

where w * and b* are the solutions of Eq. (1) and αi ≥ 0. The
vectors qi corresponding to the non-zero αi are called the sup-
port vectors, which we denote as S. Intuitively, the support
vectors are those samples closest to the separating hyper-
plane f(q) = 0, as shown by the larger red and green points in
Figure 6(b). Thus, LCS0 consists of an implicit function fLCS0 (q)
= f(q) and a set of samples SLCS0 = S (i.e., the support vectors),
which are used to approximate the exact contact space.

4.3 Refine LCS0 using active learning
We refine LCS0 using active learning. The goal is to actively

Figure 7. PRM overview and parallel components in our algorithm.

Figure 8. LCS computation using active learning for the 2D contact space between 2D star and room models shown as the input of learning pipeline in
Figure 6. We highlight the number of support vectors corresponding to LCSi. (a) i = 0, |S| = 37; (b) i = 4, |S| = 75; (c) i = 8, |S| = 198; (d) i = 14, |S| = 327; (e) i =
20; |S| = 654.

052 Engineering Volume 1 · Issue 1 · March 2015 www.engineering.org.cn

Robotics—ArticleResearch

select new samples so that a better approximate contact space
representation, LCS1 , can be obtained by in corporating these
samples into LCS0. We use a combination of exploration and
exploitation [57]. The idea is to determine whether to explore
or to exploit by flipping a biased coin with a certain probabili-
ty for landing on heads (initially 0.5). If the result is heads,
we apply exploration; if it is tails, we apply exploitation. The
probability of landing on heads is adjusted according to the
fraction of exploration samples’ collision states that are cor-
rectly predicted by the current LCSi. The new samples are
used to update LCS0 and generate a new approximation LCS1
(or refine from LCSi to LCSi+1). We repeat the active learning
step until all the new samples can either be correctly predict-
ed by the current LCSi, or the final result (represented as LCS)
has sufficient accuracy to approximate Ccont.

4.4 Incremental learning
Instead of computing a new decision function from scratch
using all the previous samples, we apply incremental learn-
ing techniques to efficiently compute LCSi+1 from LCSi. Incre-
mental learning utilizes a small set of new samples to update
LCSi. The decision function of LCSi serves as the initial guess
for generating LCSi+1. The incremental SVM [58] can update
the current result generated using SVMs; the key is to retain
the optimality condition of Eq. (1) (i.e., the Kuhn-Tucker con-
dition) on all prior samples while adding new samples. This
is achieved by adjusting the coefficients αi and b in Eq. (2) and
by adjusting support vector set S. The coefficient adjustment
and the support vector changes are guided by the gradient of
the objective function in Eq. (2).

4.5 Terminating active learning
Active learning terminates when either of these conditions
has been satisfied:

(1) The collision states of all the new samples generated
during exploration and exploitation can be correctly
predicted by the current approximation LCSi.

(2) The total number of samples used in active learning it-
erations is more than a user-specified threshold.

The first condition guarantees that all the configurations
used for learning LCS are consistent (i.e., they can be correctly
predicted by LCS). This implies that the current LCS is a close
approximation of the underlying contact space. The second
condition controls the accuracy of the approximate Ccont: As
more samples are used, we get a better approximation to Ccont.

5 GPU-based real-time optimization in configuration
spaces

In this section, we present the details about how to use GPU
to accelerate the optimization speed in configuration spaces.

5.1 Hierarchy computation
We construct a bounding volume hierarchy (BVH) for the
robot and one for each of the obstacles in the environment,
to accelerate the collision queries. We use the GPU-based
construction algorithm introduced in Ref. [59], which can
con struct the hierarchy of axis-aligned bounding boxes or
oriented bounding boxes (OBB) in parallel on the GPU, for
given triangle representation. For collision detection, we use
the OBB hie rarchy, as it provides higher culling efficiency
and improved performance on GPU-like architectures. These
hierarchies are stored in the GPU memory and we apply ap-
propriate transformations for different configurations.

5.2 Roadmap construction
The roadmap construction phase tries to capture the con-
nectivity of the free configuration space, which is the main
computationally intensive part of the PRM algorithm.

(1) Sample generation: We first need to generate random
samples within the configuration space. Since samples are in-
dependent, we schedule enough parallel threads to utilize the
GPU and use MD5 cryptographic hash function [60], which
in practice provides good randomness without a shared seed.

(2) Milestone computation: For each configuration gen-
erated in the previous step, we need to check whether it is
a milestone: i.e., a configuration that lies in the free space
and does not collide with obstacles. We use a hierarchical
collision detection approach using BVHs to test for overlap
between the obstacles and the robot in the configuration
defined by the sample. The collision detection is performed in
each thread by using a traversal algorithm in the two BVHs.
The traversal algorithm starts with the two BVH root nodes
and tests the OBB nodes for overlap in a recursive manner. If
two nodes overlap, then all possible pairings of their children
should be recursively tested for intersection.

We also use GPUs to compute the actual BVH structure
for both the robot and obstacles by using a parallel hierarchy
construction algorithm [59]. Since the robot’s geometric ob-
jects move depending on the configuration, its BVH is only
valid for the initial configuration. In order to avoid recomput-

Figure 9. LCS computation using active learning for the 3D contact space between 2D star and room models shown as the input of learning pipeline in
Figure 6. We highlight the number of support vectors corresponding to LCSi. The vertical axis represents the rotational component of the C-space. (a) LCS0, |S| = 88;
(b) LCS5, |S| = 174; (c) LCS9, |S| = 237; (d) LCS12, |S| = 248.

053www.engineering.org.cn Volume 1 · Issue 1 · March 2015 Engineering

Robotics—Article Research

ing a BVH for each configuration, we instead transform each
node of the robot’s BVH with the current configuration sam-
ple before performing overlap tests. Thus, only nodes that are
actually needed during collision testing are transformed.

(3) Proximity computation: For each milestone computed,
we need to find its k-nearest neighbors (k-NN). In general,
there are two types of k-NN algorithms: exact k-NN and ap-
proximate k-NN, which is faster by allowing a small relax-
ation. Our proximity algorithm is based on a range query
that uses a BVH structure of the points in configuration
space.

For 3-DOF Euclidean space, we first construct the BVH
structure for all the milestones using a parallel algo-
rithm [59]. For each configuration q, we enclose it within
an axis-aligned box: A box with q as the center and with
2ε as the edge length. Next, we traverse the BVH tree to
find all leaf nodes (i.e., configurations) that are within the
ε box. This reduces to a range-query for q. For a non-Euclide-
an DOF, we duplicate samples to transform it into a Euclidean
space locally. For example, suppose one DOF is the rotation
angle α ∈ [0, 2π]. We add another sample α* ∈ [−π, 3π] with
a distance 2π to α. If all 3-DOF are rotations, we need to add
another 7 samples for each milestone. Once the range query
finishes, we choose the k-nearest ones from all the query re-
sults; this gives us the exact nearest neighbors. This approach
can be extended to handle k-NN search in high dimensional
space by using a decomposition strategy; the details are in
our recent work [61].

To further improve the performance of proximity compu-
tation in high dimensional space, we have developed a new
k-NN algorithm, which uses locality sensitive hashing (LSH)
and cuckoo hashing to efficiently compute approximate k-NN
in parallel on the GPU. For more details, please refer to our
recent work [62].

(4) Local planning: Local planning checks whether there is
a local path between two milestones, which corresponds to
an edge on the roadmap. It is the most expensive part of the
PRM algorithm. Suppose we have nm milestones, and each
milestone has at most nk nearest neighbors. Then the algo-
rithm performs local planning at most nm· nk times. If we use
DCD, then we need to perform at most nl = nm· nk· ni collision
queries, which can be very high for a complex benchmark.
For multi-query problems, this cost can be amortized over
multiple queries, as the roadmap is constructed only once.
For a single-query problem, com puting the whole roadmap is
too expensive.

Therefore, in the single-query case, we use a lazy strategy
to defer local planning until absolutely necessary. Given a
query, we compute several different candidate paths in the
roadmap graph from the initial to final configuration and
only check local planning for roadmap edges on the candi-
date paths. Local planning may conclude that some of these
edges are not valid, and in that case, we delete them from the
roadmap. If there exists one candidate path without invalid
edges, the algorithm has found a collision-free solution. Oth-
erwise, we compute candidate paths again on the updated
roadmap and repeat the above process. This lazy strategy can
greatly improve performance for single queries.

5.3 Query phase
The query phase includes two parts: connecting queries to
the roadmap and executing graph searches to find paths.

(1) Query connection: Given the initial-goal configura tions
in a single query, we connect them to the roadmap. For both
of these configurations, we find the k-nearest milestones on
the roadmap and add edges between the query and mile-
stones that can be connected by local planning. We use the
same algorithm from the roadmap construction phase, except
that the k used is 2–3 times larger in order to increase the
proba bility of finding a path.

(2) Graph search: The search algorithm tries to find a path
on the roadmap connecting initial and goal configurations.
We use depth-first search (DFS) or breadth-first search (BFS)
for the graph search. For the multi-query case, each GPU
thread traverses the roadmap for one query using DFS, and
the final results are collision-free paths. For the single-query
case, we exploit all the GPU threads to find the path for
one query using a BFS search: For nodes that are the same
number of steps away from the initial node, we add their un-
visited neighbors into the queue in parallel. In other words,
different GPU cores traverse different parts of the graph.
The main challenge of this method is that work is gene-
rated dynamically as the BFS traverse progresses, and
the computational load on different cores can change
significantly. To address the problem of load balancing and
work distribution so that parallelism for all cores is main-
tained, we use the light-weight load balancing strategy in
Ref. [63].

6 Experiments

In this section, we investigate the performance of our ap-
proaches while solving two challenges related to the confi-
guration space.

6.1 Configuration space construction
We have used a set of complex benchmarks to evaluate the
contact space approximation results of our algorithm.

We first compute the contact space for 2D objects shown
as the input of the learning pipeline in Figure 6. In this ex-
periment, object A can only undergo translational motion
and object B is fixed. The resulting configuration space has 2
degrees of freedom, and the series of LCS surfaces com puted
by our learning-based approach is shown in Figure 8. We can
see that after a few iterations with several hundred samples,
the learned LCS can well approximate the exact contact space
between these two objects.

Next, we compute the contact space for the same pair of
2D objects, but we now allow object A to perform rotation
in the 2D plane. The resulting configuration space has 3 de-
grees of freedom, and the series of LCS surfaces generated
by our approach is shown in Figure 9. Similar to the case of
the 2D contact space, the learned contact space can quickly
converge to a good approximation of the exact contact
space.

Finally, we compute the contact space for a pair of 3D ob-
jects shown in Figure 10(a), where the object A can only un-

054 Engineering Volume 1 · Issue 1 · March 2015 www.engineering.org.cn

Robotics—ArticleResearch

dergo translation and thus the corresponding configuration
space is three-dimensional. Similarly, we can observe that
the learned contact space sequence quickly converges to the
exact contact space.

6.2 Optimization in configuration spaces
We present details of our implementation and evaluate the
performance of our algorithm on a set of benchmarks. All the
timings reported here were taken on a machine using a Intel
Core i7 CPU (~$600) at 3.2 GHz CPU and 6 GB memory. We
implemented our algorithms using CUDA on a NVIDIA GTX
285 GPU (~$380) with 1 GB of video memory.

RRT) with the same setting as C-PRM.
Table 1 shows the comparison of timings between algo-

rithms. In general, G-PRM is about 10 times faster than
C -PRM, and GL-PRM can provide another 10-fold accelera-
tion for single-query problems. G-PRM is faster than C-PRM
even for dynamic scenes. The current C-RRT and C-PRM are
both single-core versions. However, even a multi-core version
of PRM would only improve the timing by 4-fold at most, be-
cause on an 8-core CPU it is hard to scale the hierarchy com-
putations and nearest neighbor computations linearly. Our
GPU algorithms can still provide performances 1 –2 orders of
magnitude higher than CPU algorithms.

Figure 10. LCS computation using active learning for the 3D contact space between 3D cup and spoon. We provide the number of support vectors
corresponding to LCSi. As shown, the algorithm can compute a good approximation in a few iterations. (a) Objects A and B; (b) LCS0, |S| = 231; (c) LCS5, |S| = 869;
(d) LCS9, |S| = 1350; (e) LCS12, |S| = 1572.

Figure 11. The benchmark scenes used for our algorithms in the following
order: Piano (2484 triangles), helicopter (2484 triangles), maze3d1 (40
triangles), maze3d2 (40 triangles), maze3d3 (970 triangles), and alpha
puzzle (2016 triangles).

We implement the PRM algorithm on the GPU (G-PRM)
for multi-query planning problems, and implement its lazy
version (GL-PRM) for single-query problems. We compare
these with the PRM and RRT algorithms implemented in
the OOPSMP library [64], which is a popular library for mo-
tion planning algorithms on CPU. The benchmarks used are
shown in Figure 11. Our comparisons are designed as fol-
lows: For each benchmark, we find a suitable setting where
CPU-PRM (C-PRM) finds a solution, and then we run G-PRM
with a comparable number of samples. After that, we run GL-
PRM with the same setting as G-PRM, and run CPU-RRT (C-

Table 1. The left two columns evaluate the performance of the PRM and
RRT algorithms in the OOPSMP. The right two columns evaluate the
performance of our GPU-based algorithms.

 C-PRM C-RRT G-PRM GL-PRM

Piano 6.53 s 19.44 s 1.71 s 111.23 ms

Helicopter 8.20 s 20.94 s 2.22 s 129.33 ms

Maze3d1 138.00 s 21.18 s 14.78 s 71.24 ms

Maze3d2 69.76 s 17.40 s 14.47 s 408.60 ms

Maze3d3 8.45 s 4.30 s 1.40 s 96.37 ms

Alpha1.5 65.73 s 2.80 s 12.86 s 1446.00 ms

Figure 12. Split-up of timings: the fraction of time spent in different parts of the G-PRM and GL-PRM.

Figure 12 shows the timing breakdown between various
steps for G-PRM and GL-PRM. The difference between the
performance of the two algorithms is clear: In G-PRM, local
planning is the bottleneck and dominates the timing, while
in GL-PRM the graph search takes longer because local plan-
ning is performed in a lazy or output-sensitive manner. In
GL-PRM, three components take most timing: milestone

055www.engineering.org.cn Volume 1 · Issue 1 · March 2015 Engineering

Robotics—Article Research

construction, proximity computation, and graph search,
because all of them may perform collision queries heavily.
If the environment is cluttered and the model has complex
geometry, milestone construction will be slow (alpha puzzle
in Figure 12). If the environment is an open space and has
many milestones, proximity computation will be the bottle-
neck (maze3d2 in Figure 12). If the lazy strategy cannot guess
a correct path, then the graph search will be computation-
ally intensive due to the large number of collision queries
(maze3d3 in Figure 12). However, in all these environments,
GL-RPM outperforms all other methods.

We tested the scalability of G-PRM and GL-PRM on the
maze3d3 benchmark, and the result is shown in Figure 13.
It is obvious that GL-PRM is generally faster than G- PRM,
and both algorithms achieve near-linear scaling on the
benchmark. However, observe that as the number of samples
increases, GL-PRM slows down faster than G-PRM. This is
because when the number of samples increases, proximity
computation becomes increasingly expensive and dominates
the timing when the number of samples is near 1 million.

expect progress in all these areas and more. While there is
always more to do, the work presented in this paper has ad-
dressed many of the important issues in this field.

To summarize the main results presented in this paper,
we first presented a novel approach to the approximation
of configuration spaces. The main idea is to sample the
configuration space and approximate the contact space based
on machine learning classifiers, particularly support vector
machines. Furthermore, we use active learning techniques
to select the samples during precomputation. Next, we in-
troduced a whole motion planning algorithm on GPUs. Our
algorithm can exploit all the parallelism within the PRM
algorithm, including the high-level parallelism provided by
the PRM framework and the low-level parallelism within dif-
ferent components of the PRM algorithm, such as collision
detection and graph search. This makes our work the first to
perform real-time motion planning and global navigation in
general environments using GPUs.

Acknowledgements
This research was partially supported by the Army Research
Office, the National Science Foundation, Willow Garage, and
the Seed Funding Programme for Basic Research at the Uni-
versity of Hong Kong.

Compliance with ethics guidelines
Jia Pan and Dinesh Manocha declare that they have no con-
flict of interest or financial conflicts to disclose.

References
1. G. Litzenberger. Professional service robots: Continued increase. Statistical

Department, International Federation of Robotics, Tech. Rep., 2012

2. E. Guizzo, E. Ackerman. How Rethink Robotics built its new Baxter robot

worker. IEEE Spectrum, http://spectrum.ieee.org/robotics/industrial-

robots/rethink-robotics-baxter-robot-factory-worker, 2012

3. K. Yamazaki, et al. Home-assistant robot for an aging society. Proc. IEEE,

2012, 100(8): 2429–2441

4. S. Cousins. Robots for humanity. http://www.willowgarage.com/

blog/2011/07/13/robots-humanity, 2012

5. S. Kajita, et al. Cybernetic human hrp-4c: A humanoid robot with human-

like proportions. In: C. Pradalier, R. Siegwart, G. Hirzinger, eds. Robotics

Research, ser. Springer Tracts in Advanced Robotics, vol 70. Berlin: Springer,

2011, 70: 301–314

6. M. Montemerlo, et al. Junior: The Stanford entry in the urban challenge. J.

Field Robot., 2008, 25(9): 569–597

7. M. Bonfe, et al. Towards automated surgical robotics: A requirements en-

gineering approach. In: Proceedings of IEEE RAS EMBS International Confer-

ence on Biomedical Robotics and Biomechatronics, 2012: 56–61

8. E. Guizzo. Robots enter fukushima reactors, detect high radiation. IEEE

Spectrum, 2011. http://spectrum.ieee.org/automaton/robotics/industrial-

robots/robots-enter-fukushima-reactors-detect-high-radiation

9. E. Ackerman. Latest alphadog robot prototypes get less noisy, more

brainy, 2012. http://spectrum.ieee.org/automaton/robotics/military-

robots/latest-ls3-alphadog-prototypes-get-less-noisy-more-brainy

10. S. Thrun, W. Burgard, D. Fox. Probabilistic Robotics. Boston, MA: The MIT

Figure 13. The scalability of the G-PRM and GL-PRM.

Our method can be extended for efficient planning for ar-
ticulated bodies, and can achieve real-time performance for
the PR2 grasping operation, as shown in Figure 14.

Figure 14. Our GPU-based motion planner can compute a collision-free
path for PR2 in less than 1. (a) PR2 simulation; (b) real PR2.

7 Conclusions

In this paper, we have addressed two computational chal-
lenges related to configuration spaces, that is, configuration
space construction and efficient optimization in configuration
space. As research in configuration space continues, we

056 Engineering Volume 1 · Issue 1 · March 2015 www.engineering.org.cn

Robotics—ArticleResearch

Press, 2005

11. R. B. Rusu, N. Blodow, Z. C. Marton, M. Beetz. Close-range scene segmen-

tation and reconstruction of 3D point cloud maps for mobile manipulation

in domestic environments. In: Proceedings of International Conference on

Intelligent Robots and Systems, 2009: 1–9

12. T. Lozano-Pérez, J. L. Jones, E. Mazer, P. A. O’ Donnell. Task-level plan-

ning of pick-and-place robot motions. Computer, 1989, 22(3): 21–29

13. L. Kaelbling, T. Lozano-P’erez. Unifying perception, estimation and action

for mobile manipulation via belief space planning. In: Proceedings of IEEE

International Conference on Robotics and Automation, 2012: 2952–2959

14. L. Kaelbling, T. Lozano-Perez. Hierarchical task and motion planning in

the now. In: Proceedings of IEEE International Conference on Robotics and Au-

tomation, 2011: 1470–1477

15. R. F. Stengel. Optimal Control and Estimation (Dover Books on Advanced Math-

ematics). New York: Dover Publications, 1994

16. K. J. Astrom, B. Wittenmark. Adaptive Control. 2nd ed. Boston, MA: Addi-

son-Wesley Longman Publishing Co., Inc., 1994

17. V. Unhelkar, J. Perez, J. Boerkoel, J. Bix, S. Bartscher, J. Shah. Towards con-

trol and sensing for an autonomous mobile robotic assistant navigating

assembly lines. In: IEEE International Conference on Robotics and Automation,

2014: 4161–4167

18. L. P. Ellekilde, H. G. Petersen. Motion planning efficient trajectories for

industrial bin-picking. Int. J. Robot. Res., 2013, 32(9–10): 991–1004

19. O. Khatib. Real-time obstacle avoidance for manipulators and mobile ro-

bot. Int. J. Robot. Res., 1986, 5(1): 90–98

20. T. Lozano-Pérez, M. A. Wesley. An algorithm for planning collision-free

paths among polyhedral obstacles. Commun. ACM, 1979, 22(10): 560–570

21. T. Lozano-Pérez. Automatic planning of manipulator transfer movements.

IEEE Trans. Syst. Man Cybern., 1981, 11(10): 681–698

22. T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE

Trans. Comput., 1983, C-32(2): 108–120

23. B. Chazelle. Approximation and decomposition of shapes. In: J. T.

Schwartz, C. K. Yap, eds. Algorithmic and Geometric Aspects of Robotics. Hill-

sdale: Lawrence Erlbaum Associates, 1987: 145–185

24. J. F. Canny. Some algebraic and geometric computations in PSPACE. In:

Proceedings of ACM symposium on Theory of Computing, 1988: 460–467

25. J. F. Canny, J. Reif, B. Donald, P. Xavier. On the complexity of kinodynamic

planning. In: Proceedings of Symposium on Foundations of Computer Science,

1988: 306–316

26. L. Kavraki, P. Svestka, J. C. Latombe, M. Overmars. Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Trans.

Robot. Autom., 1996, 12(4): 566–580

27. J. J. Kuffner, S. LaValle. RRT-connect: An efficient approach to single-query

path planning. In: Proceedings of IEEE International Conference on Robotics

and Automation, 2000: 995–1001

28. V. I. Arnold. Mathematical Methods of Classical Mechanics. New York: Spring-

er-Verlag, 1989

29. D. Halperin. Robust geometric computing in motion. Int. J. Robot. Res.,

2002, 21(3): 219–232

30. J. M. Lien. Covering Minkowski sum boundary using points with applica-

tions. Comput. Aided Geom. Des., 2008, 25(8): 652–666

31. J. M. Lien, N. M. Amato. Approximate convex decomposition of polyhe-

dral. In: Proceedings of the ACM Symposium on Solid and Physical Modeling,

2007: 121–131

32. J. M. Lien. A simple method for computing Minkowski sum boundary

in 3D using collision detection. In: Algorithmic Foundation of Robotics VIII,

Springer Tracts in Advanced Robotics, vol 57. Berlin: Springer, 2009: 401–415

33. G. Varadhan, Y. J. Kim, S. Krishnan, D. Manocha. Topology preserving

approximation of free configuration space. In: Proceedings of International

Conference on Robotics and Automation, 2006: 3041–3048

34. L. Zhang, Y. J. Kim, D. Manocha. A hybrid approach for complete motion

planning. In: Proceedings of International Conference on Intelligent Robots and

Systems, 2007: 7–14

35. N. M. Amato, O. B. Bayazit, L. K. Dale, C. Johns, D. Vallejo. OBPRM: An

obstacle-based prm for 3D workspaces. In: Proceedings of Workshop on the

Algorithmic Foundations of Robotics on Robotics, 1998: 155–168

36. V. Boor, M. Overmars, A. van der Stappen. The Gaussian sampling strate-

gy for probabilistic roadmap planners. In: Proceedings of IEEE International

Conference on Robotics and Automation, 1999: 1018–1023

37. D. Hsu, L. E. Kavraki, J. C. Latombe, R. Motwani, S. Sorkin. On finding

narrow passages with probabilistic roadmap planners. In: Proceedings of

Workshop on the Algorithmic Foundations of Robotics on Robotics, 1998: 141–153

38. S. Rodriguez, X. Tang, J. M. Lien, N. M. Amato. An obstacle-based rapidly-

exploring random tree. In: Proceedings of IEEE International Conference on

Robotics and Automation, 2006: 895–900

39. L. Zhang, D. Manocha. An efficient retraction-based RRT planner. In: Pro-

ceedings of IEEE International Conference on Robotics and Automation, 2008:

3743–3750

40. Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, J. H. Reif. Narrow passage sam-

pling for probabilistic roadmap planners. IEEE Trans. Robot., 2005, 21(6):

1105–1115

41. J. Denny, N. M. Amato. Toggle PRM: Simultaneous mapping of C-free and

C-obstacle–A study in 2D. In: Proceedings of IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, 2011: 2632–2639

42. L. Zhang, Y. J. Kim, G. Varadhan, D. Manocha. Generalized penetration

depth computation. Comput. Aided Des., 2007, 39(8): 625–638

43. L. Zhang, Y. J. Kim, D. Manocha. A fast and practical algorithm for gener-

alized penetration depth computation. In: Proceedings of Robotics: Science

and Systems, 2007

44. C. Je, M. Tang, Y. Lee, M. Lee, Y. J. Kim. Polydepth: Realtime penetration

depth computation using iterative contact-space projection. ACM Transac-

tions on Graphics, 2012, 31(3): 5:1–5:14

45. J. H. Reif. Complexity of the mover’s problem and generalizations. In:

Proceedings of Annual Symposium on Foundations of Computer Science, 1979:

421–427

46. P. Cheng, G. Pappas, V. Kumar. Decidability of motion planning with dif-

ferential constraints. In: Proceedings of International Conference on Robotics

and Automation, 2007: 1826–1831

47. S. Karaman, E. Frazzoli. Sampling-based algorithms for optimal motion

planning. Int. J. Robot. Res., 2011, 30(7): 846–894

48. D. Hsu, J. C. Latombe, H. Kurniawati. On the probabilistic foundations of

probabilistic roadmap planning. Int. J. Robot. Res., 2006, 25(7): 627–643

49. N. Ratliff, M. Zucker, J. A. D. Bagnell, S. Srinivasa. CHOMP: Gradient

optimization techniques for efficient motion planning. In: Proceedings of

International Conference on Robotics and Automation, 2009: 489–494

50. J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, P. Abbeel. Finding locally

optimal, collision-free trajectories with sequential convex optimization.

In: Proceedings of Robotics: Science and Systems, 2013

51. M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, S. Thrun. Anytime dy-

namic A*: An anytime, replanning algorithm. In: Proceedings of the Interna-

tional Conference on Automated Planning and Scheduling, 2005

52. J. Pan, X. Zhang, D. Manocha. Efficient penetration depth approximation

using active learning. ACM Transactions on Graphics, 2013, 32(6): 191:1–

191:12

53. J. Schulman, et al. Motion planning with sequential convex optimization

and convex collision checking. Int. J. Robot. Res., 2014, 33(9): 1251–1270

057www.engineering.org.cn Volume 1 · Issue 1 · March 2015 Engineering

Robotics—Article Research

54. J. Pan, C. Lauterbach, D. Manocha. g-Planner: Real-time motion planning

and global navigation using GPUs. In: Proceedings of AAAI Conference on

Artificial Intelligence, 2010: 1245–1251

55. N. M. Amato, L. Dale. Probabilistic roadmap methods are embarrassingly

parallel. In: Proceedings of IEEE International Conference on Robotics and Au-

tomation, 1999: 688–694

56. V. N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-

Verlag, 1995

57. S. J. Huang, R. Jin, Z. H. Zhou. Active learning by querying informative

and representive examples. In: Proceedings of Advances in Neural Information

Processing Systems, 2010: 892–900

58. M. Karasuyama, I. Takeuchi. Multiple incremental decremental learning

of support vector machines. IEEE Trans. Neural Netw., 2010, 21(7): 1048–1059

59. C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha. Fast BVH

construction on GPUs. Comput. Graph. Forum, 2009, 28(2): 375–384

60. S. Tzeng, L. Y. Wei. Parallel white noise generation on a GPU via crypto-

graphic hash. In: Proceedings of the Symposium on Interactive 3D Graphics and

Games, 2008: 79–87

61. J. Pan, C. Lauterbach, D. Manocha. Efficient nearest-neighbor computation

for GPU-based motion planning. In: Proceedings of International Conference

on Intelligent Robots and Systems, 2010: 2243–2248

62. J. Pan, D. Manocha. Bi-level locality sensitive hashing for k-nearest neigh-

bor computation. In: Proceedings of International Conference on Data Engi-

neering, 2012: 378–389

63. C. Lauterbach, Q. Mo, D. Manocha. gProximity: Hierarchical GPU-based

operations for collision and distance queries. Comput. Graph. Forum, 2010,

29(2): 419–428

