Research Advanced Materials and Materials Genome—Article

组合材料芯片的个体化微区合成与表征

项晓东¹, 王刚², 张晓琨³, 向勇³, 汪洪¹*

摘要:用传统实验方法绘制材料相图,需要分别研究各个成分 在一系列温度下的成相情况,这通常要汇集多个研究小组多年 努力的成果。以高通量制备与表征为特征的组合材料芯片技术 能够在一个覆盖完整成分分布的材料样品库上,测定某一温度 下二元或三元材料体系的相图,显著提升了研究效率。但要完 成整个温度区间的材料相图,仍需对多个材料样品库在一系列 不同的温度下进行热处理。本文提出了一种"单芯片方法", 即通过渐进的能量脉冲将组合材料芯片中某一微区独立地自低 向高加热至不同温度,同时原位实时地监测这一微区在温度变 化过程中的物相演化,从而获得该微区成分在完整温度区间内 的物相信息。对组合材料芯片上各个微区分别独立地逐一重复 该过程,就可以在一个组合材料芯片上通过一次实验构建出完 整的二元或三元相图。我们采用"单芯片方法"测定了 Ge-Sb-Te 三元合金体系非晶相与结晶相的相界,验证了这种方法的可 行性。

关键词:组合材料芯片,相图,微区合成,原位表征,相边界 测定

1 引言

系统建立材料成分、结构、工艺参数和性能之间的 关联 (通常以"相图"的形式呈现),是材料科学与工程 的中心任务之一,同时也一向充满了挑战。传统材料研 究方法具有"一次实验,一个样品"的特点,耗时费力, 缺乏系统性,已无法满足当前快速发展时代的需要。以 高通量制备与表征为特征的组合材料芯片技术可以在较 小面积的基片上快速合成、表征包含 10²~10⁴ 个样品的材 料库 [1], 在突破传统材料研究效率瓶颈方面展示出了巨 大潜力。在过去的 20 年中,组合材料实验取得了长足的 发展 [2,3],开发出一系列高通量实验技术和相关设备, 适用于制备薄膜 [4]、粉体 [5]、块材 [6] 和液相 [7] 等多 种形态的材料样品,并能够对材料的成分 [8]、组织结 构 [9]、电化学性能 [10]、催化性能 [11]、电磁性能 [12]、 磁性能 [13]、光学性能 [14]、热性能 [15]、力学性能 [16] 等进行表征。

以三元合金相图为例,通过传统实验方法测定相 图需要分别研究各成分在不同温度下的成相情况,并基 于对大量实验数据的汇编,在以平面内为成分变量、法 向轴为温度变量的三维空间中绘制相界。完成一个相图 通常需要收集数千次实验的数据,汇集多个研究小组 历经数年努力的成果[17-21]。与此形成对照的是,采 用组合材料芯片技术,将完整覆盖Fe-Co-Ni成分空间 的等边三角形组合材料芯片在 600 °C、10⁻⁸ Torr (1 Torr = 133.322 Pa)的真空条件下退火3h后,使用同步辐射 X 射线衍射分析了样品的物相。根据实验结果绘制的 600 °C 等温截面在几天内就完成了[22],如图1所示, 结果与采用传统方法[20,21]获得的这一温度下的Fe-Co-Ni相图非常吻合。而且,通过组合材料芯片技术还首次 发现了前人工作中从未报道过的两个非晶态区域。这个 案例清晰地体现了高通量实验方法的优势。

然而,现有的高通量实验技术仍存在明显的局限性。 具体说来,整个组合材料芯片是在相同的热力学条件下 处理的,尽管一个组合材料芯片可涵盖整个成分空间且

¹ State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China; ² Internatix Corporation, Fremont, CA 94538, USA; ³ State Key Laboratory of Electronic Thin Films & Integrated Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

^{*} Correspondence author. E-mail: hongwang2@cbmamail.com.cn

Received 11 June 2015; received in revised form 25 June 2015; accepted 30 June 2015

[©] The Author(s) 2015. Published by Engineering Sciences Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) 英文原文: Engineering 2015, 1(2): 225–233

引用本文: Xiao-Dong Xiang, Gang Wang, Xiaokun Zhang, Yong Xiang, Hong Wang. Individualized Pixel Synthesis and Characterization of Combinatorial Materials Chips. *Engineering*, DOI 10.15302/J-ENG-2015041

Research Advanced Materials and Materials Genome—Article

分辨率优于 1% (相当于约 5000 个成分),但一次实验只能绘制完整相图的一个等温截面,无法有效观测该等温截面外的其他物相。例如,图 1是 Fe-Co-Ni 相图在 600 °C 处的等温截面,无法使用同一块芯片对高温相,如 Fe-Co 合金体系中的 δ-Fe 相 (稳定于 1394~1538 °C,见图 2),进行研究 [19]。若要绘制完整覆盖图 2 所示温度范围的相图,取温度间隔为 10 °C,仍需要制备约 120 个组合材料芯片。

图 1. 采用高通量方法绘制的 600 °C 下的 Fe-Co-Ni 三元合金体系相图。

为了更高效地通过组合材料芯片技术绘制完整的材料相图,每个微区需要通过渐进式热处理逐步地加热至不同温度,同时原位实时监测这一微区在温度变化过程中的物相演化。在组合材料芯片上各个微区分别独立地逐一重复该过程,只需一个组合材料芯片即可绘制出完整的材料相图。

2 单芯片方法

这里我们提出一种使用一个组合材料芯片构建完整 相图的高通量实验方法 (单芯片方法),其流程如图3所 示。首先,依据设计的组合材料芯片成分分布,逐层沉 积薄膜材料,然后在较低的温度下(数百摄氏度)进行热 扩散,使各组成元素在薄膜厚度方向充分混合,且不形 成任何结晶相[23-25]。由于薄膜厚度为亚微米尺度,薄 膜平面内方向的元素混合不会超出微区范围。用脉冲能 量束(如激光或电子束等)依次辐照组合材料芯片内每个 微区,使微区内的材料成相。受辐照微区的温度可根据 传热学理论进行计算或采用红外测温仪连续测量,对材 料的物相演化使用原位表征技术实时监测。例如,材料 相变可通过其光反射率的变化实时监测,如后文所述; 材料组织结构可利用基于同步辐射光源的高通量 X 射线 衍射进行实时监测。加热过程中使用适当的能量脉冲宽 度和间隔,以确保材料样品结晶成相或发生相变,并给 予足够的时间来采集、处理表征数据。在微区加热过程 中采用主动反馈控制方式,根据样品温度或样品物相演 化情况控制微区热处理的工艺参数。

图 3. 组合材料芯片微区合成、原位实时表征的工作流程以及材料样品 库相应的物相演化过程。

2.1 组合材料芯片叠层前驱体的沉积

为得到完整的材料相图,首先要制备完整覆盖目标 材料体系成分的组合材料样品。因为成分由各组分薄膜 厚度之比决定,采用精密掩模装置,叠层前驱体可通过 离子束溅射、磁控溅射、脉冲激光沉积或分子束外延等 物理气相沉积方法制备。使用连续移动的掩模挡板,可 以方便地制备完整覆盖三元成分空间的组合材料芯片叠 层前驱体 [26]。如图 4(a)所示,在元素 A 薄膜的沉积过 程中,挡板从正三角形基片的一边恒速向对角移动,从 而得到厚度呈楔形分布的薄膜 (如图 4(b)中的 A 层薄膜)。 然后,将基片顺时针旋转 120°,可进行下一元素沉积。 将此过程重复两次,就可制备出如图 4(b)所示的完备的 三元材料体系组合材料芯片。同理,如果用长方形或正 方形基片只以 180°旋转一次,则可获得一个完备的二元 材料体系组合材料芯片。

图 5 是一套可用于组合材料芯片沉积与扩散 (见第 2.2 节) 过程的离子束沉积系统 (宁波英飞迈材料科技有限公司,中国) 的实物照片和系统示意图。该系统由 5 个腔体

图 4. (a) 三元叠层薄膜掩模方法; (b) 所得组分呈梯度分布的叠层薄膜 样品的示意图。

组成:储靶腔、沉积腔、退火腔以及两个传输腔。其中, 有 48 个储靶位的储靶腔拥有独立真空系统,由涡轮分子 泵保持优于 5×10⁻⁸ Torr 的真空度,防止靶材氧化、污 染。沉积室中设置有射频离子源用于薄膜沉积,另有一 个辅助离子源用于基片清洗、辅助沉积等。通过优化靶 材、基片和离子源的空间排布,该系统在1英寸见方的 区域内,可获得优于 ±3%的薄膜厚度均匀度。由计算 机控制的精密移动挡板设置于基片台上方,用于实现呈 线性梯度分布的前驱体薄膜厚度。

2.2 叠层前驱体的扩散

在薄膜厚度方向实现组合材料芯片前驱体在原子水 平上的均匀混合,是实施个体化微区合成的先决条件。 组合材料芯片叠层前驱体沉积完成后,由自动传动装置 直接将基片传送至退火腔,可在暴露于空气中之前,在 低于 500 °C 的温度下通过热扩散进行薄膜的均匀混合。

Fister 和 Johnson 研究了超薄超晶格结构薄膜中物质

扩散距离对固相反应的影响 [27]。固相反应过程中包含 两个相互竞争的过程:扩散与成核/结晶。他们注意到, 扩散时间与扩散距离的平方成正比,这与薄膜的层厚密 切相关。通过降低单层薄膜的厚度,可将扩散过程控制 在成核发生前完成。这意味着如果超晶格结构中每一层 的厚度足够薄,界面在热扩散中会迅速消失,并且形成 均匀的非晶合金,而不会发生结晶或成核现象。与此相 反,一旦层厚大于临界值,则会在界面处发生结晶或成 核现象。这种扩散 / 成核与层厚间的相关性对三元组合材 料芯片的设计具有重要的指导意义。首先,应设计适当 叠层顺序,以抑制稳定性较高的二元化合物的生成,因 为它们可能阻碍三元单一物相的生成。其次,应预先确 定相关二元扩散对中的临界扩散长度。只有叠层结构中 所有相邻二层间的扩散长度均低于临界值,才能确保形 成薄膜厚度方向均匀混合的非晶前驱体。

由于在非晶前驱体形成过程中,叠层结构所有的界 面均已消失,后续步骤中的成核属于均相成核的情况。 与较厚薄膜间异质界面相比,均相的成核温度可能会提 高几百摄氏度 [27]。在实践中,可通过其他工艺变量影 响成核温度,如选择具有适当晶体结构的基片促进外延 生长结晶 [23, 24, 28], 引入可控杂质作为成核辅助剂等。

本文所提出的方法与传统实验方法的关键区别在于, 热处理过程是从低温到高温进行的。如图6红色虚线所 示,非晶样品在逐步升温过程中,在相应温度范围内依 次转变为热力学稳定相,从而测定出低温下固态相转变 的真实边界。与之相反,传统相图实验研究中首先将多 组分样品加热至熔融状态,然后逐渐冷却固化,如图6

(a)

图 5. (a) 离子束沉积系统的实物照片; (b) 离子束沉积系统示意图。

中蓝色箭头所示。由于实验过程基本处于热力学平衡状态,降温过程中无法测到非晶相与结晶相的边界。正是由于这个原因,传统的相图未能标出基于组合材料芯片进行 Fe-Co-Ni 相图研究时所发现的非晶相 [22]。

图 6. 非晶样品逐渐加热(红色虚线)、熔融样品逐渐冷却(蓝线)和 部分晶化的非晶样品逐渐加热(紫色虚线)的相演化示意图。

若不能完全阻止二元相在层间界面形成,传质扩散 将受到阻碍。这在氧化物、氮化物等化合物的多层相互 扩散过程中尤为突出 [25]。届时,与第三种组分的进一 步混合以及三元相的形成将需要高得多的温度和更长的 时间来驱动。即使经历了相当长时间的高温热处理过程, 稳定性较高的二元物相仍可能残留于薄膜样品中,从而 导致物相鉴别变得复杂、困难。因此,扩散过程中我们 希望防止前驱体材料成核或结晶,使组合材料样品在热 扩散过程中呈非晶状态。在传统相图研究中,热处理过 程中保温时间往往长达几十甚至几百个小时,热力学平 衡条件得以充分满足,上述问题并不显著。

退火腔内进行混合 / 非晶化的热处理温度需要精心选择。实践证明,在相对较低的温度下进行热扩散易于形成充分混合的非晶态前驱体,有利于后续实验中在高温下实现外延生长结晶等成相过程[23-28]。热处理过程中, 传质扩散也同时发生在薄膜平面内。由于实验研究中取 样微区的尺寸比膜厚大几个数量级,平面内的传质扩散 将不会影响高通量研究的空间分辨率,反而会使该微区 本身更加均匀。

2.3 微区合成

按前文所述,获得成分混合均匀的非晶态前驱体后, 应使用脉冲能量束,如幅度和宽度可调的脉冲激光,以 逐点逐步的方式合成整个组合材料样品库。

温度是相图研究中最为重要的参数之一,必须精心 确定。方法主要有两种。第一种方法是在每个加热脉冲 后,使用灵敏度高、速度快的红外光谱仪采集微区样品 的红外热辐射光谱 *r*(λ, *T*)和红外反射光谱 *R*(λ, *T*)。薄膜 样品表面的热辐射系数 ε(λ, *T*)可表示为

$$\varepsilon(\lambda, T) = 1 - R(\lambda, T) \tag{1}$$

经处理,微区的确切温度可由联立求解以下方程得出:

$$r(\lambda, T) = \varepsilon(\lambda, T)B_{\lambda}(\lambda, T)$$
(2)

和黑体辐射普朗克定律:

$$B_{\lambda}(\lambda, T) = 2hc^{2}\lambda^{-5}/(e^{hc/(\lambda K_{\rm B}T)} - 1)$$
(3)

其中, λ 为波长;T为绝对温度;h和 c 分别为普朗克常数和光速。

第二种方法:若已知样品和基片的热学性能参数(热 容、密度、导热率等)以及能量束参数(脉冲幅度、脉冲 宽度、束斑尺寸等),在一个能量束脉冲辐照下产生的温 升可通过建立微区样品的热模型计算得出。另外,借助 于定标,受辐照微区的温升计算公式可以简化为

$$\Delta T = P_0 \tau (1 - R) / C_{\text{eff}} \tag{4}$$

其中, P₀和τ分别为激光功率(脉冲幅度)和脉冲宽度; R 为微区表面对辐照激光的光反射率。受辐照微区的有效 热容 C_{eff} 是有效热质量 m_t(包括薄膜和基片的有效热质量) 的函数,取决于脉冲宽度(强相关)、脉冲幅度(弱相关, 因为比热容与温度相关,但变化幅度较小)以及其他材料 特性。

当能量束的脉冲宽度发生变化时,受辐照微区的有 效热质量也随之变化。当脉冲宽度变宽,相对更长的传 热时间使得更大体积的样品被加热,导致有效热质量增 加。有效热质量可使用商用软件,根据传统的传热理论 进行模拟计算。如能辅之以实验标定,则可进一步提高 温升计算的准确度。由于用于微区加热的激光束的束斑 尺寸比样品薄膜厚度大几个数量级,单脉冲加热过程可 简化为沿深度方向的一维传热问题,显著降低有效热质 量模拟计算的复杂性。

如果保持脉冲宽度恒定,通过调节能量束功率(即脉 冲幅度)控制加热温度,则受辐照微区的有效热质量可近 似为一个常数,微区样品在辐照过程中的温升计算将进 一步简化。但是,从仪器装置开发的角度考虑,调制脉 冲能量束的功率比调制脉冲宽度更加复杂,因此调节脉 冲宽度更为常用。 由于受脉冲能量束加热的微区在停止加热后会自然 地急速冷却,这样就能捕捉到逐步加热过程中各温度下 的物相演化特征。当被加热至熔融状态后,微区将恢复 到非晶状态。因此,所有的热处理事件均可始于同一起 点,即非晶相。非晶态样品的温度自低向高的物相演化 过程研究,为了解材料的非晶态形成能力提供了一种独 特手段。这在非晶合金和相变存储材料的研究与应用中 有非常重大的意义。

2.4 原位实时微区表征

在单个微区合成过程中,每个加热脉冲后的物相 演化均应通过原位表征手段实时监测。原则上讲,由 于材料的许多物理、化学性质均会随其相变而发生变 化,可用于指示物相演化的表征方法多种多样。基于 同步辐射光源的"白光"X射线衍射(XRD)是到目前 为止最具前景的在原位实时条件下对晶体结构直接表 征的技术。

X 射线在晶体中产生衍射,必须满足布拉格条件:

$$2d\mathrm{sin}\theta = n\lambda \tag{5}$$

其中, λ 为 X 射线的波长;d为晶面间距; θ 为衍射晶 面与入射 X 射线的夹角;n为正整数。当单色 X 射线 照射在随机取向的多晶样品上,衍射将在不同方向上发 生。此时,要探测衍射 X 射线,探测器需要通过机械运 动扫描较宽范围的 θ 角,如图 7(a)所示,这需要较长时 间。若使用具有连续光谱的"白光"X 射线,理论上在 任一 θ 角方向上总存在适当波长的 X 射线能够满足布拉 格条件(图 7(b))。这种情况下,使用能量色散探测器, 无需机械运动,就能够即时收集到完整的 X 射线衍射 信息。

当样品为单晶或外延生长的薄膜时,若入射 X 射线 为单色光,则需要旋转或摆动样品,以满足布拉格条件。 若"白光"X 射线作为入射光,使用面探测器,无需旋 转或摆动样品,即可通过一次曝光得到劳厄衍射图,获 取完整的晶格信息。图8为单色光和"白光"X射线的 单晶衍射示意图。因此,在这两种情况下,"白光"X射 线衍射都能通过一次曝光快速测定样品晶体结构。

图 8. 单色光(左侧)和"白光"(右侧)X 射线单晶衍射示意图。

图9是一种"单芯片法"实验装置的设计示意图。 组合材料芯片上单个微区由一束功率可调并带有实时反 馈控制机构的脉冲激光逐步地加热。随着每一步加热, 物相演化过程通过同步辐射"白光"X射线微区衍射与 光学反射率实时监测。一旦原位实时表征系统探测到预 先设定的相边界,如产生某种材料相变或样品被熔化, 反馈控制系统即停止激光加热,实验将移至下一微区 进行。

图 9 左侧的"白光"X 射线来自同步辐射光束线站。 以上海同步光源 (SSRF)为例,其中一条光束线站可输 出 X 射线的能量范围为 7~30 keV (λ = 0.413~1.77 Å)。为 了探测间距为 0.82~4.43 Å 的晶面所产生的衍射峰 (相当 于常规 X 射线衍射仪中波长为 1.54 Å 的 Cu Kα X 射线在 2θ 为 20°~140° 的范围内产生的衍射峰),入射角应设置 为 5°~15°。采用能量色散探测器收集粉末衍射信号。采 用面检测器收集单晶或外延生长薄膜样品的 X 射线衍射 信号。此外,该装置中还设置有一束探测激光和对应的 光检测器,以检测由相变导致的微区光反射率的显著变 化。需要注意的是,用于加热的脉冲激光和探测激光应 具有不同的波长,且偏振正交,以避免由光干涉产生的 干扰。

在"白光"XRD 表征样品组织结构的同时,还可利 用 X 射线荧光 (XRF) 光谱分析微区样品的组成成分。由 于两者均为广谱信号,可通过能量色散探测器同时采集。 为了区分这两种信号,上述装置在衍射平面内的不同的 角度设置有两个能量色散探测器。XRD 信号与角度相关, 而 XRF 信号与角度无关。因此,XRD 图谱可通过对比两 个探测器所采集的数据导出。基于这种方法,可同时进 行晶体结构和成分的分析。

Research Advanced Materials and Materials Genome—Article

图 9. "单芯片法"实验装置示意图,系统中包含脉冲激光微区合成、原位实时"白光"X 射线微区衍射以及微区光反射率测量模块等。

3 相变材料的微区合成与原位实时表征

相变材料 (phase change materials, PCM) 在信息存储 领域具有巨大的应用潜力 [29–31],因而其在学术界和工 业界引起了广泛的关注 [32–35]。相变材料薄膜可以在非 晶态和结晶态之间进行快速、可逆的转变,并且其光反 射率会因相变而发生显著变化。因此,在本研究中,我 们将相变材料作为示范材料来验证对组合材料芯片实施 个体化微区合成和原位实时表征的可行性。

我们首先采用本文第2节所述的方法和仪器制备了 Ge-Sb-Te (GST) 三元合金组合材料芯片非晶态前驱体。 在配有自动位移样品台的传统光学显微镜基础上,开发 了脉冲激光扫描光学显微镜 (laser-pulse scanning optical microscope, LPSOM),如图 10 所示。加热光源为 40 mW 的半导体激光器。激光光束经物镜聚焦,在样品表面形 成一个直径约为1 µm 的束斑。显微镜光路中安装了自 动聚焦控制系统,用以监测物镜和样品表面的距离是否 发生了变化,并提供反馈控制信号,使样品位置保持在 激光的聚焦平面附近。当激光对某一微区进行加热时, 脉冲宽度逐步增大,直到样品处的温度足以使其发生相 变为止。一旦材料发生相变,其光反射率将相应地发生 变化。反射光强度可经同一物镜采集,最终由反射光路 中的光探测器感知。为构建整个样品的反射率分布图, 计算机控制自动样品台扫描整个芯片 , 合成并测量每个 微区。

图 11 为脉冲激光扫描光学显微镜的工作时序图。X-Y 自动位移样品台首先将镜头对准首个待测微区,然后开

图 10. (a) 脉冲激光扫描光学显微镜的照片; (b) 系统示意图。

启自动聚焦功能,使样品表面位于焦平面位置。之后, 使用设定的激光功率和脉冲宽度加热测试微区。在样品 加热过程中,自动聚焦系统和光探测器均处于关闭状态, 以避免受到功率密度较高的加热激光脉冲的损伤。在加 热脉冲后,启动一个功率较低的探测激光脉冲,用光探

Advanced Materials and Materials Genome—Article Research

图 11. 脉冲激光扫描光学显微镜测量的时序图。

测器测量样品的反射率。若其反射率未发生变化,则在 同一微区上再次施行"加热-测量"流程,逐步增加脉 冲宽度以提高温度。通常对同一微区需施加一系列脉冲, 直到检测到相变发生为止。加热脉冲的宽度范围可在几 纳秒到 100 ns 以上。

由非晶态转变为结晶态,及其反向相变的温度,是 相变材料的关键性能参数。寻找相变温度更低的材料, 对降低相变存储器的功耗至关重要。图 12(a) 所示为受辐 照微区在加热过程中的反射率演化曲线。受辐照微区内 样品的初始状态为非晶态,反射率较低。随着加热脉冲 的宽度逐步增加,样品温度最终达到相变温度(T_c),由

非晶态转变为结晶态,导致反射率大幅上升。若加热脉 冲宽度继续增加,样品温度将升高直至熔化(称为玻璃态 转变温度 T_a)。此时停止加热,由于基片的热质量远远大 于薄膜样品,微区内的材料样品经历骤冷固化为非晶相。 上述加热脉冲序列使样品完成了整个"非晶态——晶态— 非晶态"的相转变周期。移动 X-Y 样品台, 逐个微区重 复上述过程,即可得到各个微区的相变时序谱。根据这 些数据,可绘制出相变材料结晶温度和玻璃化温度的相 图。在本文中,我们近似地认为在所有微区中,温度变 化与激光脉冲宽度的关系总体上均遵循图 12(b) 中曲线所 示的趋势。受辐照微区的有效热质量与脉冲宽度有很强 的相关性,可使用商用软件进行模拟计算。在模拟计算 $\Delta T(\tau)$ 曲线时,用 Ge₃Sb₂Te₅区域的已知数据对其进行了 进一步校准。图 13 为用校准后曲线计算得到的 Ge-Sb-Te 三元材料体系相变温度 T。分布图,与先前文献中已报道 的数据 [36-40] 一致。Ge-Sb-Te 合金的玻璃态转变温度相 图需要做更多的数据分析工作方能完成,将留待日后另 行报告。

图 12. (a) Ge-Sb-Te 相变材料的一个典型时序反射率谱;(b) 微区样品温升 – 激光脉冲宽度的模拟曲线图,该曲线已用 Ge-Sb-Te 相图中已知的 *T*_c 的标样进行校准。

图 13. 描述 Ge-Sb-Te 合金非晶态 - 结晶态相变温度 (*T_c*)与其组成成 分关联关系的相图。

4 结语

在本文中,我们提出了一种通过对组合材料芯片逐 点逐步成相,原位实时表征,从而快速构建完整材料相 图的新方法。该方法基于一个组合材料芯片,只需进行 一次实验即可绘制出完整的二元或三元材料相图,其可 行性和优越性在测定 Ge-Sb-Te 三元合金体系非晶相与结 晶相相界的案例中清晰地得到了体现。脉冲能量束加热 材料样品的时间尺度效应仍有待进一步的研究,以便更 好地与传统热平衡相图进行关联。

致谢

本研究得到了中国国家高技术研究发展计划 (* 863 " 计划) 项目 (SS2015AA034204) 和中国国家自然科学基金 面上项目 (51472044) 的支持。

Compliance with ethics guidelines

Xiao-Dong Xiang, Gang Wang, Xiaokun Zhang, Yong Xiang, and Hong Wang declare that they have no conflict of interest or financial conflicts to disclose.

References

- X. D. Xiang, et al. A combinatorial approach to materials discovery. *Science*, 1995, 268(5218): 1738–1740
- M. L. Green, I. Takeuchi, J. R. Hattrick-Simpers. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. *J. Appl. Phys.*, 2013, 113(23): 231101
- R. A. Potyrailo, V. M. Mirsky. Combinatorial and high-throughput development of sensing materials: The first 10 years. *Chem. Rev.*, 2008, 108(2): 770–813
- S. S. Mao. High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379: 123–130
- L. Chen, J. Bao, C. Gao, S. Huang, C. Liu, W. Liu. Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-ondemand inkjet delivery system. J. Comb. Chem., 2004, 6(5): 699–702
- J. C. Zhao, M. R. Jackson, L. A. Peluso, L. N. Brewer. A diffusion multiple approach for the accelerated design of structural materials. *MRS Bull.*, 2002, 27(04): 324–329
- J. Montgomery. Chemistry. High-throughput discovery of new chemical reactions. Science, 2011, 333(6048): 1387–1388
- J. M. Gregoire, D. Dale, A. Kazimirov, F. J. DiSalvo, R. B. van Dover. Cosputtered composition-spread reproducibility established by high-throughput x-ray fluorescence. *J. Vac. Sci. Technol. A*, 2010, 28(5): 1279–1280
- J. M. Gregoire, D. Dale, A. Kazimirov, F. J. DiSalvo, R. B. van Dover. High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. *Rev. Sci. Instrum.*, 2009, 80(12): 123905
- E. Reddington, et al. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. *Science*, 1998, 280(5370): 1735–1737
- X. Liu, et al. Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. *Nano Lett.*, 2012, 12(11): 5733–5739
- T. Wei, X. D. Xiang, W. G. Wallace-Freedman, P. G. Schultz. Scanning tip microwave near-field microscope. *Appl. Phys. Lett.*, 1996, 68(24): 3506–3508
- A. Oral, S. J. Bending, M. Henini. Scanning hall probe microscopy of superconductors and magnetic materials. J. Vac. Sci. Technol. B, 1996, 14(2): 1202–1205
- I. Takeuchi, et al. Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in Mg_xZn_{1-x}O composition spreads. *J. Appl. Phys.*, 2003, 94(11): 7336–7340
- S. Huxtable, D. G. Cahill, V. Fauconnier, J. O. White, J. C. Zhao. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. *Nat. Mater.*, 2004, 3(5): 298–301
- H. J. Kim, J. H. Han, R. Kaiser, K. H. Oh, J. J. Vlassak. High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams. *Rev. Sci. Instrum.*, 2008, 79(4): 045112
- 17. C. Allibert, C. Bernard, N. Valignat, M. Dombre. Co-Cr binary system: Experimen-

tal re-determination of the phase diagram and comparison with the diagram calculated from the thermodynamic data. J. Less Common Met., 1978, 59(2): 211–228

- K. Ishida, T. Nishizawa. The Co-Cr (cobalt-chromium) system. Bull. Alloy Phase Diagr., 1990, 11(4): 357–370
- T. Nishizawa, K. Ishida. The Co-Fe (cobalt-iron) system. Bull. Alloy Phase Diagr., 1984, 5(3): 250–259
- J. C. Tedenac. Cobalt-iron-nickel. In: G. Effenberg, S. Ilyenko, eds. Iron Systems, Part 2. Berlin: Springer Berlin Heidelberg, 2008: 653–672
- V. Raghavan. Co-Fe-Ni (cobalt-iron-nickel). J. Phase Equilibria, 1994, 15(5): 526–527
- Y. K. Yoo, et al. Identification of amorphous phases in the Fe-Ni-Co ternary alloy system using continuous phase diagram material chips. *Intermetallics*, 2006, 14(3): 241–247
- H. Chang, I. Takeuchi, X. D. Xiang. A low-loss composition region identified from a thin-film composition spread of (Ba_{1-x-y} Sr_xCa_y)TiO₃. *Appl. Phys. Lett.*, 1999, 74(8): 1165–1167
- Y. K. Yoo, et al. Strong correlation between high-temperature electronic and low-temperature magnetic ordering in La_{1-x}Ca_xMnO₃ continuous phase diagram. *Phys. Rev. B*, 2001, 63(22): 224421
- I. Takeuchi, et al. Microstructural properties of (Ba, Sr)TiO₃ films fabricated from BaF₂/SrF₂/TiO₂ amorphous multilayers using the combinatorial precursor method. *J. Appl. Phys.*, 2001, 90(5): 2474–2478
- Y. K. Yoo, F. Duewer, H. Yang, D. Yi, J. W. Li, X. D. Xiang. Room-temperature electronic phase transitions in the continuous phase diagrams of perovskite manganites. *Nature*, 2000, 406(6797): 704–708
- L. Fister, D. C. Johnson. Controlling solid-state reaction mechanisms using diffusion length in ultrathin-film superlattice composites. J. Am. Chem. Soc., 1992, 114(12): 4639–4644
- I. Takeuchi, et al. Combinatorial synthesis and evaluation of epitaxial ferroelectric device libraries. *Appl. Phys. Lett.*, 1998, 73(7): 894–896
- A. V. Kolobov. Information storage: Around the phase-change cycle. *Nat. Mater.*, 2008, 7(5): 351–353
- G. I. Meijer. Materials science. Who wins the nonvolatile memory race? *Science*, 2008, 319(5870): 1625–1626
- G. Atwood. Engineering. Phase-change materials for electronic memories. *Science*, 2008, 321(5886): 210–211
- H. F. Hamann, M. O'Boyle, Y. C. Martin, M. Rooks, H. K. Wickramasinghe. Ultra-high-density phase-change storage and memory. *Nat. Mater.*, 2006, 5(5): 383–387
- M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Welnic, M. Gillessen, R. Dronskowski. The role of vacancies and local distortions in the design of new phase-change materials. *Nat. Mater.*, 2007, 6(2): 122–128
- C. Peng, et al. Improved thermal stability and electrical properties for Al-Sb-Te based phase-change memory. ECS Solid State Lett., 2012, 1(2): 38–41
- X. Zhou, et al. Phase transition characteristics of AI-Sb phase change materials for phase change memory application. *Appl. Phys. Lett.*, 2013, 103(7): 072114
- M. Belhadji, N. Benameur, J. M. Saiter, J. Grenet. Application of Gibbs-Di Marzio modified equation to the Ge-Te-Sb vitreous system. *Phys. Status Solidi B*, 1997, 201(2): 377–380
- J. Siegel, C. N. Afonso, J. Solis. Dynamics of ultrafast reversible phase transitions in GeSb films triggered by picosecond laser pulses. *Appl. Phys. Lett.*, 1999, 75(20): 3102–3104
- H. J. Borg, et al. Phase-change media for high-numerical-aperture and blue-wavelength recording. *Jpn. J. Appl. Phys.*, 2001, 40(Part 1, 3B): 1592–1597
- B. J. Kooi, J. Th. M. De Hosson. On the crystallization of thin films composed of Sb₃₆Te with Ge for rewritable data storage. *J. Appl. Phys.*, 2004, 95(9): 4714–4721
- B. J. Kooi, W. M. G. Groot, J. Th. M. De Hosson. *In situ* transmission electron microscopy study of the crystallization of Ge₂Sb₂Te₅. *J. Appl. Phys.*, 2004, 95(3): 924–932