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ABSTRACT Building cyber-physical system (CPS) models of 
machine tools is a key technology for intelligent manufactur-
ing. The massive electronic data from a computer numerical 
control (CNC) system during the work processes of a CNC 
machine tool is the main source of the big data on which 
a CPS model is established. In this work-process model, a 
method based on instruction domain is applied to analyze 
the electronic big data, and a quantitative description of the 
numerical control (NC) processes is built according to the 
G code of the processes. Utilizing the instruction domain, 
a work-process CPS model is established on the basis of 
the accurate, real-time mapping of the manufacturing tasks, 
resources, and status of the CNC machine tool. Using such 
models, case studies are conducted on intelligent-machining 
applications, such as the optimization of NC processing 
parameters and the health assurance of CNC machine tools.

KEYWORDS cyber-physical system (CPS), big data, com-
puter numerical control (CNC) machine tool, electronic data 
of work processes, instruction domain, intelligent mach in ing

1 Introduction
Intelligent manufacturing is a core technology of the new in-
dustrial revolution that includes the digitization, networking, 
and intelligentization of the manufacturing industry. “Made 
in China 2025,” “German Industry 4.0,” and the Industrial 
Internet in the US all focus on intelligent manufacturing and 
a deeper integration of information and manufacturing tech-
nologies in order to advance the next industrial revolution. 
Although the strategic priorities are different for each coun-
try, the core technologies converge at cyber-physical system 
(CPS) [1]. 

CPSs are the foundation for the realization of intelligent 
manufacturing systems that integrate computing, commu-
nication, and control, on the basis of sensor technology. The 
system architecture is usually composed of the equipment 
layer, sensing layer, network layer, cognitive layer, and control 

layer. After sensing, collecting, transmitting, storing, mining, 
and analyzing the information about the machine in physical 
space (PS), a digitalized machine (i-Machine) mirroring the 
physical machine is set up in cyber space (CS) and referred to 
as the digital model of the physical machine on the CPS cog-
nitive layer (or the “CPS model of the machine,” in short).

The key of intelligent manufacturing is to set up CPS mod-
els of the machines on the cognitive layer. Using these mod-
els, people can estimate the work performances of a machine 
for pre-determined tasks, establish an integrated environ-
ment combining information, machines, and humans, and 
determine an intelligent-control strategy; realize coordina-
tion, interaction, and dynamic control; and finally, achieve 
intelligent manufacturing.

Computer numerical control (CNC) machine tools are the 
most fundamental and important manufacturing equipments 
and the most important physical resource for manufacturing 
enterprises. In order to realize intelligent manufacturing, it 
is important to establish CPS models of CNC machine tools. 
Given that a CNC machine tool is a complex dynamic system 
that consists of machine tool, cutting tool, fixture, workpiec-
es, and work tasks, creating a CPS model of a CNC machine 
tool is a tremendous challenge.

Several recent studies focused on CPS modeling methods 
based on mathematical and physical computation, centered 
on the forward theoretical modeling method. Jensen et al. [2] 
proposed ten steps for establishing a CPS based on a physical 
model and systematically described and evaluated the CPS 
that was established in this way. Derler et al. [3] analyzed the 
intrinsic heterogeneity, concurrency, and sensitivity to timing 
of CPS model, and proposed to build a CPS model by means 
of hybrid system modeling, concurrent and heterogeneous 
model of computation, domain-specific ontology, and the 
joint modeling of functionality and implementation architec-
ture. Wu and Chen [4] established a multi-domain physical 
system simulation and optimization platform utilizing the 
multi-domain modeling language Modelica in order to real-
ize the expression, modeling, computation, and optimization 
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of a multi-physics model.
The process system that contains machine tool, cutting 

tool, fixture, and workpieces is a complex dynamic system 
with mechanical, electromagnetic, fluid, thermal, material, 
and control components. It is therefore very difficult to de-
scribe the CPS model of a CNC machine tool in a complete 
and accurate manner with the use of any single mathemati-
cal or physical method. In addition, the massive quantities 
of parameters in the theoretical model (e.g., friction, rigidity, 
and the material properties of the machine tool) have high 
dispersion due to the differences in assembly quality and 
processing conditions. With the emergence of big data tech-
nology, the integration of theoretic modeling with the big 
data approach makes it possible to improve the completeness 
and accuracy of the CPS models of CNC machine tools.

In recent years, studies on the CPS modeling method based 
on big data have gained extensive attentions. In 2006, the As-
sociation for Manufacturing Technology (AMT) and the Na-
tional Institute of Standards and Technology (NIST), both in 
the US, proposed a communication standard, MTConnectTM 
[5], for data collection and transmission for CNC machine 
tools. Kao et al. [6] suggested establishing a CS by providing 
services via Watchdog Agent® tools and establishing a prog-
nostics and health management (PHM) technology directly 
on the data thus obtained. Wang [7] proposed a CPS scheme 
in which a plant is set up with a distributed process-planning 
system, a dynamic resource-planning system, a real-time 
process-monitoring system, a remote control system, and so 
on. Lee et al. [8, 9] pointed out that collecting and analyzing 
industrial big data is the key to the establishment of CPS as 
well as future intelligent-manufacturing equipments. They 
proposed a 5C (configure, cognition, cyber, conversion, con-
nection) system structure for establishing the CPS of CNC 
machine tools, under which the status data for CNC machine 
tools could be collected using radio-frequency identification 
(RFID) technology, and the machining process and degrada-
tion of the CNC machine tools and their components could 
be identified based on control and inspection data. Wan et al. 
[10] used the Internet of Things and a multi-sensory network 
technique to enhance the machine-to-machine (M2M) sys-
tem for information exchange in order to realize intelligent 
decision-making and the automatic control of a system, thus 
upgrading from an M2M system to a CPS of machine tools.

Summarizing these studies, we believe that there are three 
key points in the study of the CPS modeling of CNC machine 
tools.

(1) It is necessary to fully collect and utilize the big data 
generated from the use of a CNC machine tool over its whole 
life cycle, and to combine this big data with the theoretical 
modeling method in order to establish the CNC machine tool 
CPS model. The whole life cycle of a CNC machine tool in-
cludes several stages, such as development, design, manufac-
turing, installation, usage, maintenance, repair, till scrapping 
and recycling. During the most important stages of this cycle, 
those that occur at the user site, there are large numbers of 
repeated works, including debugging, testing, trial cutting, 
and production machining. These works produce a massive 
amount of information and data, such as control instructions, 
contour errors, and power consumption. These informa-

tion and data should be collected, stored, and mined in CS. 
Machine operators also accumulate considerable experience 
and technical knowledge, which should also be saved and 
utilized in CS. With the integration of big data with the theo-
retic model, the completeness and accuracy of the CPS mod-
eling of CNC machine tools can be improved. Consequently, 
a dynamic and evolving CNC machine tool CPS model can 
be established that uses mainly the big data stored in the CS 
in the whole life cycle of CNC machine tool, combining with 
the theoretical model.

(2) It is necessary to build a CPS model of a CNC machine 
tool work process using mainly the electronic data gener-
ated inside a CNC system. A CNC system is composed of the 
numerical control (NC) device, servo drive, servo motor, etc., 
which is an important control unit for a CNC machine tool. 
For a CPS model of a CNC machine tool, the CNC system is 
not only an important physical resource in PS, but also an 
important information resource in CS. During the work pro-
cesses of a CNC machine tool, a great deal of electronic data 
consisting of control and feedback signals is generated inside 
the CNC system. This data describes the tasks (or working 
conditions) and operation status of the machine tool in a 
time-specific, quantitative, and accurate manner, and has the 
features of non-structural and multi-dimensional. The acqui-
sition of electronic data can be realized through many ap-
proaches, including adding an external sensor to the machine 
tool and direct acquisition from the inside of a CNC system. 
Compared to acquisition from the external sensors, the direct 
acquisition of electronic data from a CNC system is more di-
rect, complete, and reliable. In the future, CNC systems will 
serve as the main source of the big data necessary for the CPS 
modeling of CNC machine tools.

(3) It is necessary to fully collect and utilize the informa-
tion and data on the work tasks performed by CNC machine 
tools. A CNC machine tool executes the G code of the ma-
chining procedures input by the operator controlling the 
CNC system. Most studies collected the operation status data, 
such as spindle current and spindle vibration, and analyzed 
it in the time and frequency domains, attempting to establish 
a CPS model for the work process of a CNC machine tool. 
However, in actual machining processes, the shapes and 
materials of the workpieces, machining strategies, cutting 
tools, fixtures, and technologies often vary; thus, the opera-
tion status data that is collected based on the time domain 
cannot quantitatively and precisely describe the complicated 
machining tasks. As a result, it is impossible to establish the 
relationship between the work task data and the operation 
status data, resulting in an incomplete and uncertain CPS 
model with little practicability. For example, spindle current 
may increase when the machine tool conducts heavy-load 
cutting; however, it also may increase when the spindle fails. 
If the specific task being executed by the machine tool is not 
comprehended, it is impossible to determine whether or not 
the operation status of the spindle is normal, based only on 
the increase of spindle current.

To address the most important stage in the whole life cycle 
of a CNC machine tool, machining, this paper proposes a 
modeling method for a CPS model of the work processes of a 
CNC machine tool based on the analysis of electronic data in 
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the instruction domain. The electronic 
data generated from an open CNC sys-
tem is considered to be the main source 
of big data in this CPS model. The data 
collection covers work tasks, manu-
facturing resources, and the operation 
status of the CNC machine tool. The 
relationship between the work tasks, 
manufacturing resources, and opera-
tion status data is completely described 
by analyzing the electronic data in the 
instruction domain. A CPS model of 
the work processes of a CNC machine 
tool is then established in order to real-
ize intelligent applications, such as the 
optimization of NC processing param-
eters and the health assurance of the 
machine tool and its components.

Section 2 of this paper provides a de-
tailed introduction to this CPS model of 
the work processes of a CNC machine 
tool and describes the connotations 
of the instruction domain. Sections 
3 and 4 cover the applications of this 
instruction-domain CPS model in the 
optimization of process parameters, the 
quality diagnosis of the feed axis as-
sembly of machine tools, and health as-
surance technology. Section 5 presents 
the conclusions of this paper.

2 Analysis of electronic data in  
the instruction domain and a CPS 
model of a CNC machine tool 
work process
This section will start with the defini-
tion of a CPS model for the work pro-
cess of a CNC machine tool. The con-
cept of instruction domain, work task, 
manufacturing resource, and operation 
status, and the method for collecting 
operation status data are introduced 
separately. Then the CPS modeling 
method of a CNC machine tool work 
process based on the analysis of elec-
tronic data in the instruction domain 
is proposed. Finally, it ends up with an 
overview of the intelligent applications 
of the CPS modeling method.

2.1  Definition of a CPS model of a CNC  
machine tool work process 
The manufacturing resources (referred 
to as MR) of a CNC machine tool are the 
parts of the physical system which is 
required in order to perform machining 
tasks. Manufacturing resources include 
the equipment and materials, such as 

machine tool, cutting tool, fixture, and workpieces, as well as the environmental 
factors of the machining, such as temperature and vibration. The work task (referred 
to as WT) of a CNC machine tool refers to the work to be done by the machine.

A CNC machine tool performs a specific work task WT with given manufactur-
ing resources MR. In the work process, the resulting work quality and efficiency 
of the CNC machine tool can be expressed by the characteristic parameters of the 
operation status data (referred to as Y). As a result, in the CPS model of a CNC ma-
chine tool work process, the model input consists of two parts, i.e., work task WT 
and manufacturing resources MR, while the output is the corresponding operation 
status data Y when the machine tool performs a task.

The CPS model of a CNC machine tool work process is defined as the relation-
ship among work task WT, manufacturing resources MR, and operation status Y es-
tablished in the CS corresponding to the work process in the PS. This relationship 
is expressed as

                                                           Y = f (WT, MR) (1)

As shown in Figure 1, the CPS is composed of the equipment layer, sensing layer, 
network layer, cognitive layer, and control layer; this system achieves deep integra-
tion of human, product, PS, and CS. In the CPS, the sensing layer obtains data and 
information from the equipment layer and transfers such data and information to 
the cognitive layer via the network layer. The CPS model of a CNC machine tool 
work process lies in the cognitive layer and is responsible for analyzing and pro-
cessing the big data. It then transfers the results to the control layer in order to real-
ize the intelligent feedback control and optimization of the equipment layer. The 
CPS model of a CNC machine tool work process collects data on work task WT (in-
cluding the instruction line numbers in G code, instruction segment, cutting tool, 
spindle speed, feed speed, interpolation data, and other process parameters and 
control information), as well as operation status data Y (including spindle power, 
torque, vibration, the contour error of the feed axis, and other electronic data) with 

Figure 1. The CPS architecture of CNC machine tools with a CPS model.
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specific manufacturing resources MR (including production 
system data on the spindle, lead screw, guide rail, bearing, 
motor, and cutting tool; and external environmental data, 
such as ambient temperature), and establishes the function  
Y = f (WT, MR) in the cognitive layer of the CS so as to create a 
digital dynamic model (an i-Machine tool) mapping the CNC 
machine tool.

A CNC machine tool performs various work tasks, due to 
the great variety of parts to be machined. The work process 
of a CNC machine tool is a dynamic process driven by diffe-
rent work tasks. In addition, the process system is a complex 
system that integrates mechanical, electrical, hydraulic, and 
controlling functions, and the CPS model of a CNC machine 
tool work process is a complicated and dynamic model. Due 
to all this complexity, the relationship Y = f (WT, MR) cannot 
be expressed with a theoretical model or with mathematical 
formulas.

However, in today’s information technology era featuring 
cloud computing and big data, the storage and management 
of massive data has become feasible. An effective approach 
to create a CPS model of a CNC machine tool work process is 
to store the characteristic variable data of work tasks, manu-
facturing resources, and operation statuses. With the accu-
mulation of working experiences over the whole life cycle of 
the CNC machine tool, this characteristic variable data along 
with the relationship among them can be accumulated, en-
riched, and updated, resulting in the continual refinement 
and evolution of the CPS model of a CNC machine tool work 
progress.

2.2 Work task and the instruction domain
In the field of digital signal analysis, a signal domain such as 
a time or frequency domain provides a means of describing, 
observing, and analyzing signals from a specific perspective. 
Changes in the operation status data Y of a machine tool (e.g., 
current changes in a feed axis during the machining process) 
can be described as a time-dependent curve in the time do-
main: Y = f (t). That is, if the independent variable t is taken 
as the horizontal axis, the vertical axis displays the current 
in the feed axis, as shown in Figure 2. However, this curve 
cannot indicate what kind of task is being executed by the 
machine tool in the time-domain description.

to be machined, and generates an instruction set—the G-code 
programs—for machining control based on process require-
ments, machining patterns, and machining parameters. Dif-
ferent parts are machined by using different machining tech-
nologies, and therefore require different G-code programs.

The G-code program of the part to be machined constitutes 
a quantitative description of the work task of the NC ma-
chining of the part. The G-code program and the machining 
instructions describe the data and information of work tasks, 
such as shape features, sizes, and the machining processes 
and patterns of the parts to be machined. The line numbers 
for the G-code instructions indicate the execution sequence 
of the instructions. The sequentially arranged G-code in-
structions describe the motion track and machining pattern 
of the process system. The cutting tool follows the G-code 
instructions to move, and its envelope surface describes the 
shape features of the part, such as freeform surfaces, ditches, 
grooves, and bosses. G-code instructions explicitly and im-
plicitly describe the process parameters, such as the shape 
and material of a cutting tool, the material of a workpiece, 
fixture, spindle speed, and feedrate. In the post-processing 
of cutter location files, the G-code instructions also implicitly 
describes the kinematics of a CNC machine tool and the con-
trol character of the CNC system.

It should be noted that the CNC system interprets and 
executes the instructions according to the sequence number 
i (referred to as the line number) of each instruction in the 
G-code program. As the content of instructions differs, the 
length of time for executing each instruction also differs. The 
execution time of an instruction assigns the time attribute 
to the corresponding sequence number. Therefore, accord-
ing to the order and time attribute of instruction sequence 
i, the instruction domain can be defined as the collection of 
the G-code instruction sequence i and the time sequence t 
corresponding to the sequential execution of the instruction 
sequence in the CNC system.

The instruction domain includes both the execution se-
quence of the instruction and the corresponding time inter-
vals. Figure 3 shows the waveform of the operation status 
data given in Figure 2 in the instruction domain. Although 
both waveforms are the same, the horizontal coordinate 
contains information on the instruction sequence i and the 
execution time t of each instruction.

Figure 2. A time-domain waveform of the operation status data of a 
machine tool.

In a computer aided design/computer aided manufactur-
ing (CAD/CAM) software system, the programmer carries 
out a machining process planning according to the shape 
features, sizes, and other technical requirements for the parts 

Figure 3. A waveform of the operation status data of a machine tool, using 
instruction domain as the horizontal coordinate.



251

Manufacturing—Article Research

www.engineering.org.cn  Volume 1 · Issue 2 · June 2015  Engineering

In the instruction domain, the in-
struction sequence i and the execution 
time t are the variables used to analyze 
a particular G-code program and to ob-
tain the work task WT described by the 
G-code program, which is expressed as 
WT = g(i(t), t). The collection of G-code 
instructions which contains line num-
ber, instructions segment, cutting tool, 
spindle speed, and feedrate, as well as 
instruction execution time constitutes 
the description of the work task WT in 
the instruction domain.

Accordingly, the CPS model of a CNC 
machine tool work process Y = f (WT, 
MR) may be expressed in the instruc-
tion domain as follows:

                 Y = f (g(i(t), t), MR) (2)

In the process of building a CPS mod-
el of a CNC machine tool work p ro cess, 
the variable WT that is used to describe 
the work task of a specific CNC ma-
chine tool may be extracted directly 
from the control data generated when 
the CNC system executes the G-code 
program. In the instruction domain, 
this data comprises a collection of or-
dered data to describe the work task 
WT = {x1, x2, ..., xn}, where n represents 
the sampling numbers of the variable 
WT. For example, the work task vari-
able of the work process of a three-
axis CNC machine tool is WT = { px, 
py, pz, T, S, F, M, ...}, where (px, py, pz) 
identifies the position of the motion 
instruction, T represents the cutting 
tool, S represents the spindle speed, 
F refers to feedrate, and M stands for 
auxiliary instructions (e.g., the start-
up/shutdown of cooling liquid). In 
the work process of a CNC machine 
tool, the data of the work task vari-
able WT changes in different sampling 
periods, that is, WT k = {x k

1, x
k
2, ..., x

k
n}, 

where k indicates the k-th sampling  
period.

By collecting the work task variables 
of a CNC machine tool in the instruc-
tion domain according to the G-code 
instructions and corresponding execu-
tion time, information about specific 
work tasks of the CNC machine tool 
may be quantitatively and exclusively 
described. As a result, the completeness 
and practicality of the CPS model of a 
CNC machine tool work process can be 
improved.

2.3 Operation status data of a CNC machine tool
The operation status data Y of a CNC machine tool is the direct or indirect 
quantitative description of the quality, accuracy, and efficiency of the NC ma-
chining of a part. It includes the massive electronic data, such as spindle power, 
spindle current, feed axis current, tracking error, and material removal rate, 
that is obtained through the internal feedback of the CNC system when the 
CNC machine tool is performing a task. It also includes the physical and geo-
metrical data acquired by external sensors, such as cutting force, temperature, 
vibration, spatial (volumetric) error, thermal deformation, and surface rough-
ness of the part. Some of the above data may be directly acquired from the 
CNC system (e.g., current, feedrate), and some may be indirectly calculated 
(e.g., power, acceleration). However, some data (e.g., temperature, vibration, and 
roughness) must be obtained from add-on sensors or measuring instruments. 
This operation status data reflects the work status of the CNC machine tool, the 
part quality, and the process efficiency. 

During the building process of a CPS model of a CNC machine tool work 
process, a sensitivity analysis and feature extraction are first conducted for the 
electronic data variables, physical variables, and geometric variables from the 
operation status variables set of the CNC machine tool, Φ = {y1, y2, ..., yq}. Next, the 
collection of the operation status characteristic variables that are closely related to 
intelligent functions (e.g., machining quality and efficiency optimization), Y = {y1, 
y2, ..., ym}, may be determined, where m labels the characteristic variables, and m q.  
Sampling period is conducted with the same as the work task data in the instruc-
tion domain in order to obtain the sampled operation status characteristic vari-
ables, Y k = {y k

1, y
k
2, ..., y

k
m}, where k indicates the k-th sampling period.

2.4 CPS modeling based on the analysis of electronic data in the instruction domain
To ensure a comprehensive and complete data set for a CPS model of a CNC ma-
chine tool work process, the electronic data obtained should include both the work 
task data and the operation status data. By guaranteeing the consistency between 
these two kinds of data, the relationship between work task and operation status in 
the CPS model may be realized.

Due to the complexity of a CNC machine tool and its work processes, it is diffi-
cult to obtain a mathematical expression for the relationship between WT, MR, and 
Y. Therefore, this paper proposed an electronic data analysis method in instruction 
domain in order to synchronously collect the data on work tasks, manufacturing 
resources, and operation status, with the same sampling period of the instruction 
domain for a specific NC machining G-code execution process, as shown in Figure 4. 
The instruction line number i, the work task data WT k, the manufacturing resourc-
es data MRk, and the operation status data Y k are recorded at each sampling period 
to generate the mapping of the data.

Figure 4. The mapping of work task data, manufacturing resources data, and operation status data of 
a CNC machine tool.

To express the above relationship in a more visual manner, it is assumed that the 
manufacturing resources MR remain unchanged in the work process of the CNC 
machine tool when it performs the work task WT. Thus, the CPS model of a CNC 
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machine tool work process may be simplified as Y = f (WT). 
With the electronic data analysis method in the instruction 
domain, the coordinate system is established on a 2D plane 
in order to express the relationship between work task data 
and operation status data. In this 2D coordinate system, the 
G-code instruction sequence number, which contains the 
information on execution time, is taken as the X coordinate 
and the corresponding operation status data of the machine 
tool (e.g., current and power) is taken as the Y coordinate. 
Thus, the instruction-domain waveform of the CPS model of 
a CNC machine tool work process is generated. This method 
is similar to how an oscilloscope shows an electrical signal or 
how an electrocardiogram shows a bio-electricity signal. The 
method showing the waveform of the operation status data 
in the instruction domain is also referred as the “instruction-
domain oscilloscope.”

Figure 5 shows a part containing three-step features on 
a CNC lathe machine tool. When machining this part, the 
instruction sequence number in the instruction domain, the 
corresponding rough machining G-code instruction, and 
other technical information constitute the machining work 
task WT. Data collected on the spindle current is the machin-
ing operation status data Y. The relationship between WT and 
Y for the process of turning this part is clearly indicated by 
the waveform of instruction domain, as shown in Figure 6.

Figure 5. (a) A three-step part; (b) the dimensions.

Figure 6. The current waveform of a CNC machining spindle in the 
instruction domain.

In Figure 6, the G-code instructions for lines 11, 13, and 15 
correspond to turning the three steps of different depths. As 

the cutting depth sequentially decreases, the correspond-
ing spindle motor current decreases as well. In contrast, the 
heavy currents of instruction lines 4 and 19 are the impulse 
currents when the CNC machine tool executes the spindle 
startup and braking instructions, respectively.

2.5 A method for collecting the operation status data of a machine 
tool based on the instruction domain
In a CPS model of a CNC machine tool, big data is collected 
in two ways. In the first method, data is indirectly acquired 
via add-on sensors on the CNC machine tool [11]. For ex-
ample, the spindle vibration is acquired via piezoelectric and 
strain gauge sensors. Previous studies have widely adopted 
this method to obtain data. The disadvantage of this method 
is that space must be reserved for installing the sensors on 
the machine tool, which increases the complexity and cost of 
the system. In addition, when the CNC machine tool operates 
in an unfavorable work environment with a complicated elec-
tromagnetic interference (EMI), the stability and reliability of 
the signals from the add-on sensors is poor.

In the second method, data is directly acquired from the 
CNC system [12, 13]. Massive electronic data, including con-
trol data (e.g., interpolation positions, feed speed, accelera-
tion, spindle speed, and surface-cutting speed) and feedback 
data (e.g., spindle power, spindle current, feed axis current, 
and position contour error), is generated inside the CNC sys-
tem in real time, as shown in Figure 7. These data contains 
a huge amount of useful information describing work tasks 
WT, manufacturing resources MR, and operation status Y. The 
internal electronic data of a CNC system is standardized, re-
liable, and is not affected by external interferences (e.g., pol-
lution, cutting chips, cutting fluid, machinery, and EMI). The 
cost of collecting internal electronic data from CNC systems 
is low, and there is no disturbance to the machining process.

In previous studies on the CPS model, the method of ob-
taining electronic data directly from inside the CNC system 
was mostly ignored. The CNC system is an important physi-
cal and information resource in the PS and CS, respectively. 
It is very convenient to acquire data directly from a CNC 
system. In the work process of a CNC machine tool, massive 
amount of original data is generated inside the system. These 
data is composed of control signals and electric signals, and 
is detailed, real-time, quantitative, and reliable. These non-
structural and multi-dimensional original electronic data 
should be the main source of the big data to be acquired for 
the construction of a CNC machine tool CPS model, while 
other add-on sensors should be considered as available 
means of data acquisition.

2.6 Overview of the intelligent application of a CPS model of a CNC 
machine tool work process
There are two input variables (work task WT and manufactur-
ing resources MR) and one output variable (operation status 
data Y) in a CPS model of a CNC machine tool work process. 
In the work process, data on the input variables and data on 
the output variables are both collected in real time, and are 
mapped to each other in the instruction domain for analysis 
and processing. The intelligent optimization of work tasks, 
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the intelligent health assurance of manufacturing resources, and the optimization 
of design and manufacturing are then made possible as following.

2.6.1 Intelligent optimization of work tasks
Assuming that manufacturing resources MR remain unchanged (expressed as 
MR0) when the CNC machine tool is performing work task WT, that is, assuming 
that the process system of the machine tool is in a good and stable state, the CPS 
model of the CNC machine tool work process may be simplified to Y = f (WT)|MR0.

Anomalies and the quality of the operation status data Y may be assessed based 
on the instruction-domain waveform, in which the instruction number and the 
content of a specific instruction may be found. Consequently, the process param-
eters contained in the instruction (e.g., feedrate F and spindle speed S) may be op-
timized, thus achieving intelligent optimization. Typical applications are shown as 
follows.

(1) Offline optimization of process parameters. In batch production, initial pro-
cess parameters are set for the given work task WT. When the first part is processed, 
the operation status data Y (e.g., contour error and current) reflecting the process-
ing quality is collected in the instruction domain. By using the operation status 
data to adjust the process parameters, optimized process parameters for process-
ing the subsequent parts are obtained offline. For example, in cutting operations, 
the instruction sequential number and the instruction may be identified based on 
characteristic parameters, such as the spindle current and spindle vibration, con-
tained in the operation status data Y. The intelligent optimization of machining 
parameters can be achieved by adjusting the feedrate F and spindle speed S in the 
instructions.

(2) Real-time online adjustment of process parameters. The operation status data 
Y (e.g., current and vibration) is collected in real time during the machining pro-
cess. If an abnormality occurs in the operation status data, breaking the constraint 
conditions for the work task WT and operation status data Y, the process param-
eters should be adjusted immediately according to the constraint conditions in real 
time (e.g., spindle speed and feedrate) in order to keep the operation status data 
Y within a normal range and to realize real-time online adjustment of the process 
parameters. In the case of vibration during a machining process, the adjustment 
of spindle speed or feedrate may be adopted to realize vibration abatement. The 

feedrate may be adjusted in real time 
based on the spindle current during 
the machining process so as to balance 
the cutting force, improve machining 
efficiency, and realize self-adaptive ma-
chining.

(3) The creation of a self-learning cut-
ting technology database. The cutting 
technology database describes the re-
lationship between the process param-
eters of the machining process (e.g., the 
variable space made up of material of 
the workpiece, the material and struc-
ture of the cutting tool, cutting param-
eters, the state of cooling, the power 
and rigidity of the machine tool, and 
fixture) and the machining status (e.g., 
the state space made up of the cutting 
force, the wear and chip breaking of 
the cutting tool, cutting vibration, and 
surface quality). The traditional way to 
create a cutting technology database 
requires machining tests, which are 
workload-heavy, time consuming, and 
expensive.

The essence of a cutting technology 
database lies in the CPS model of a 
CNC machine tool work process. Mas-
sive amount of electronic data is con-
tinuously generated during the whole 
life cycle of the CNC machine tool, 
from which data can be extracted that 
reflects the correspondence between 
the process parameters and operation 
status data Y; thus establishing a self-
learning cutting technology database. 
As machining process data continuous-
ly accumulates over the whole life cycle 
of a CNC machine tool, the cutting 
technology database is personalized 
and corresponds to the tool, and its 
use conditions continue to accumulate, 
expand, and evolve. The technology 
database may also be shared between 
and integrated with different pieces of 
CNC equipment via the Internet. The 
machining process parameters may 
be dynamically predicted, optimized, 
adjusted, and controlled using the data 
and information from the cutting tech-
nology database.

2.6.2 Intelligent health assurance of 
manufacturing resources
When a CNC machine tool is set to 
perform a certain work task WT0, the 
CPS model of the CNC machine tool 
work process may be simplified to Y = 

Figure 7. Big data acquirable inside a CNC machine tool.
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f (WT)|WT0.
Anomalies and the quality of operation status data Y may 

be assessed based on the instruction-domain waveform. The 
difference in the operation status data Y of the manufactur-
ing system implementing the same work task (WT0) in dif-
ferent periods indicates the change in the health condition of 
the CNC machine tool and the manufacturing system. Thus, 
intelligent health assurance can be achieved. Typical applica-
tions are shown as follows.

(1) Checking and diagnosing the work quality of manu-
facturing resources. The work task WT0 is set to include a 
diagnosis of machine health (e.g., when a feed axis moves the 
head at a constant speed over the entire travel distance). The 
operation status data Y (e.g., the current of the feed axis servo 
motor) that reflects the quality of the manufacturing resourc-
es MR is collected in the instruction domain. If an abnormal 
fluctuation of Y is detected, checking and fault diagnosis may 
be conducted (e.g., checking and diagnosing the assembly 
quality of the feed axis and any wearing or damage of the 
tool).

(2) Checking and diagnosing the health of manufactur-
ing resources based on historical operation status. The key 
idea for the health checking and diagnosis of manufacturing  
resources MR is to check and assess changes in the health 
condition of the machine tool by analyzing and comparing 
the work process CPS models at different stages of the whole 
life cycle of machine tools.

Assuming that the CNC machine tool repeats one work 
task WT0 (e.g., repeatedly machining one part or one program 
of performance diagnosis at different stages over its whole 
life cycle), then theoretically, the corresponding operation 
status data Y collected in the instruction domain should be 
consistent. Inconsistency in data Y indicates that the health 
condition of manufacturing resources (or manufacturing sys-
tem) has changed due to, for example, the prediction of tool 
life, the faults in functional components such as the spindle 
or the ball screw, or the changes in the accuracy of the ma-
chine tool.

Taking the batch NC machining of automobile parts for 
example, the CNC machine tool performs the work task of 
repeatedly machining the same part. The complex process 
capability index (CPK) becomes an important indicator to re-
flect the stability of the manufacturing system. By analyzing 
the electronic data in the instruction domain and comparing 
data against the historical operation status data Y for the ma-
chining of the same part, performance degradation and the 
health of the manufacturing system may be monitored so as 
to ensure system stability.

2.6.3 Optimal design and manufacturing of CNC machine 
tools
In essence, the big data contained in a CPS model of a CNC 
machine tool work process is the ultimate manifestation of 
the performance and function of the multi-physics system of 
a CNC machine tool and production system. As a result, the 
big data obtained during the whole life cycle of a CNC ma-
chine tool may be utilized to realize parameter identification 
and the optimization of the theoretical model on one hand, 
and to trace the source of performance shortcomings and 

monitor the quality and reliability of the machine tool and 
production system on the other hand, so as to improve and 
perfect the CNC machine tool design.

The electronic data analysis and the method and principle 
of CPS modeling based on the instruction domain described 
in this paper are also applicable to the CPS modeling of 
other digital control-based automatic equipment (e.g., robots, 
electric automobiles, and production lines). Third-part soft-
ware that is used usually to process the data in the time and 
frequency domains (e.g., Watchdog Agent® [6]) can also be 
adopted conveniently to analysis the electronic data of the in-
struction domain for the health diagnoses and performance 
prediction of a CNC machine tool and its components. In ad-
dition, an open intelligent-manufacturing ecosystem enabled 
by intelligent applications (APPs) and offering extensive 
prospects may be created based on the CPS model of a CNC 
machine tool work process and the combination of an open 
CNC system, big data, and cloud computing.

The next part of this paper introduces the intelligent applica-
tion of a CPS model of a CNC machine tool work process with 
two specific case studies. As research in this field progresses, 
the applications are expected to expand to more cases.

3 A case study on machining parameter- 
optimization technology based on instruction- 
domain electronic data analysis
Electronic data may be acquired during the initial NC ma-
chining of a part. By analyzing electronic data in the instruc-
tion domain, instruction sequential numbers corresponding 
to the abnormal operation status can be found, enabling the 
optimization of the instruction process parameters. In this 
study, two experiments are performed to optimize the pro-
cess parameters in the rough machining.

3.1 Experiment I
The manufacturing resources used in this experiment in-
clude the slant bed CNC machine tool CK4055 with the 
Huazhong HNC-818A/T CNC system as shown in Figure 8, 
and the experimental conditions are shown in Table 1.

Figure 8. A CK4055 machine tool.

The work task WT of the experiment is to lathe the three-
step shaft shown in Figure 5. The spindle current during the 
lathing process is acquired as the operation status data Y. The 
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Table 1. Experimental conditions.

Cutter insert type Cutter bar type Part material Stock diameter Pre-determined machining parameter Sampling frequency

CNMG120408 MCLNL2525M12 Steel 45     ϕ60 mm F0 = 260 mm.min–1 × S = 1000 r.min–1            1 kHz

Figure 9. A comparison of the parameters of the three-step part (a) before 
and (b) after optimization.

Figure 10. A comparison of G codes before and after optimization.

Table 2. Optimization analysis.

Optimization 
experiment

Maximum 
current (A)

Minimum 
current (A)

Machining 
time (s)

Before optimization 7.1 4.9 14.8

After optimization 6.3 6.2 13.7

As shown in Table 2, the statistical analysis is conducted 
to current values corresponding to the G-code instructions  
N11, N13, and N15 in Figure 9. Before and after optimization, 
the maximum spindle current is reduced from 7.1 A to 6.3 A, 
and the minimum spindle current is increased from 4.9 A to 
6.2 A. As a result, the cutting force becomes balanced and the 
machining time is shortened from 14.8 s to 13.7 s, which leads 
to an improvement of the machining efficiency.

Experiment I explains the application of the lathing param-
eters optimization using the electronic data analysis method 
based on the instruction domain. Experiment II will show the 
capability of milling parameter optimization on the machin-
ing of a mobile phone shell.

3.2  Experiment II
The manufacturing resources used in this experiment include 
a Z-540B drilling and tapping center with the Huazhong 
HNC-818A CNC system as shown in Figure 11(a). The work 
task WT is the rough milling of a mobile phone shell as 
shown in Figure 11(b). The experimental conditions are given 
in Table 3. The tool path and the corresponding G code of the 
part are shown in Figure 12.

The spindle current in the cutting process is acquired as 
the operation status data Y. According to the actual current 
corresponding to each instruction before optimization, the 
G code is optimized by recalculating the feedrate. When the 
mean current of an instruction is relatively higher before op-
timization, the feedrate of the instruction is decreased. How-
ever, when the mean current of an instruction is relatively 
lower before optimization, the feedrate of the instruction 
is increased. The resulting instruction domain waveform is 
shown in Figure 13.

In Figure 13(a), the red and blue lines indicate the spindle 

mapping relationship between Y and WT is established with 
the electronic data analysis method based on instruction 
domain, as shown in Figure 9. The feedrate parameters corre-
sponding to the three-step lathing are modified respectively 
to obtain the balance of cutting force according to the aver-
age value of the spindle current.

Figure 9(a) shows the instruction-domain waveform of the 
spindle current before optimization. The spindle currents of 
the three-step shaft are inconsistency for the reason of the 
constant feedrate value 260 mm.min–1 as shown in the left 
part of Figure 10. In order to achieve the balance of spindle 
current for machining the three-step shaft, the feedrate val-
ues are adjusted respectively to 200 mm.min–1, 300 mm.min–1, 
and 600 mm.min–1 as shown in the right part of Figure 10. 
The correspondent instruction domain waveform of the spin-
dle current after optimization is shown in Figure 9(b).
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Table 4. Optimization effect analysis.

Optimization experiment Maximum 
current (A)

Minimum 
current (A)

Peak-to-valley 
value (A)

Average 
value (A)

Variance 
value (A) Time (s) Effect-raising 

percentage (%)

Before optimization 3.57 1.08 2.49 2.12 0.0545 210   0

After optimization 3.23 1.61 1.62 2.15 0.0494 162 22.9

current before and after optimization, respectively. Com-
pared with the red lines, the maximum value of the op-
timized blue lines is reduced and its minimum value is 
increased. Figure 13(b) is the details of the current data 
waveform in an enlarged scale from line 380 to line 490, 
and Figure 13(c) means the correspondent feedrate data. It 
can be seen that the feedrate (red lines) is a constant value 
equal to the pre-determined value F5000 before optimiza-
tion and it is adjusted according to the spindle current after 
optimization. For example, ① a higher feedrate can increase 
the spindle current in machining at position and ② a lower 
feedrate can decrease the current in machining at position. 
Table 4 is a statistical analysis of machining parameters in 
Figure 13(a). Compared with the data before and after opti-
mization, the maximum value, the peak-to-valley value, and 
the variance value of the spindle current are respectively 
reduced from 3.57 A, 2.49 A, and 0.0545 A to 3.23 A, 1.62 A, 
and 0.0494 A. The minimum value is increased from 1.08 A 

Figure 11. (a) The Z540-B drilling and tapping center; (b) the test part.

Table 3. Experimental conditions.

Cutter size Part material Stock size Pre-determined 
machining parameter

Sampling 
frequency

ϕ10 mm Aluminum alloy 120 × 50 mm F0 = 5000 mm.min–1

S = 18 000 r.min–1
1 kHz

Figure 12. The tool path and the G code of the test part.

to 1.61 A. The optimized result shows that the effect of the 
balancing cutting load is significant by modified the fee-
drate. Although there is no obvious change in the average 
value, the machining time is shortened from 210 s to 162 s, 
and the machining efficiency is improved by 22.9%.

Figure 13. (a) The instruction-domain waveform of the spindle current; (b) a 
partially enlarged drawling of spindle current; (c) a partially enlarged drawing of 
feedrate.

The electronic data analysis method based on the instruc-
tion domain is adopted in both experiments above. The fee-
drate is optimized according to the change of the operation 
status data (the spindle current), so that both the load balance 
of cutter and the machining efficiency are significantly im-
proved.

The optimization technology of machining process param-
eters based on the analysis of electronic data in the instruc-
tion domain has been described in detail in Section 2.6. The 
main applications of this method include the optimization of 
process parameters for the control of a constant cutting force 
by adjusting the feedrate and for the vibration abatement 
by modifying the spindle speed. The two applications may 
be further realized using the methods of online and offline 
process parameter optimization in the rough and finish ma-
chining. The second application may be further divided into 
online and offline process parameter optimization. In addi-
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Figure 14. The testing environment for the assembly experiment. Figure 15. The feed axis mechanism of X axis.

Table 5. Experimental parameters.

Pitch of lead screw Travel range of X axis Feedrate Number of pole pair of motor Number of tooth slot of motor Sampling frequency

        10 mm 800 mm F1000 3 36 1 kHz

tion, the data collected during the whole life cycle of the CNC 
machine tool may be stored to create a self-learning cutting 
process database.

4 A case study on machine tool health assurance 
technology based on instruction-domain electronic 
data analysis
Acquiring the operation status data when a CNC machine 
tool works according to a pre-determined work task, the 
electronic data analysis method is used to diagnose the 
fault of machine by analyzing the anomaly of the acquired 
data. Comparing the operation status data collected at dif-
ferent time over the whole life cycle of a machine tool, the 
health degradation of the machine tool and its compo-
nents can be found. The following machine tool assembly 

4.1.1  Analysis of feed axis current
Before a specific analysis is conducted on the assembly quali-
ty, a component analysis is performed on the load current ac-
quired. As shown in Figure 16, the current is acquired when 
X axis moves in a straight line at the feedrate 1000 mm.min–1 
for the entire travel distance. In this study, the fast Fourier 
transformation method is also used for the current analysis 
in the frequency domain.

In Figure 16(a), the current of X axis is fairly uniform and 
consistent over the entire travel range, which indicates the 
good assembly quality.

The high-frequency current fluctuation shown in Figure 
16(b) is the intrinsic fluctuation property of the motor. In Fig-
ure 16(c), the frequency at 5 Hz (3/r) indicates the fluctuation 
of the motor related to the number of pole pairs, representing 
the low frequency component in Figure 16(b). The frequency 
at 60 Hz (36/r) indicates the current fluctuation caused by the 
cogging effect, representing the high frequency component 
in Figure 16(b). Further analysis shows that the frequency at 
5 Hz is caused by the non-uniform distribution of the mag-
netic field as the result of the manual winding of the mo-
tor, while the frequency at 60 Hz is caused by an improper 

design of the cog slot of motor. Therefore, this method of 
electronic data analysis based on the instruction domain can 
realize both the assembly quality diagnosis of the machine 
tool and the motor.

4.1.2  A comparison of current analysis when the lead screw 
is not parallel to the guide rail
In Figure 17, the red curve represents the measured current 
after the moving average acquired when X axis moves in a 
straight line at the feedrate 1000 mm.min–1 for the entire trav-
el range. The degree of bending of the curve near the right 
end is greater, so an abnormal installation of the bearing seat 
of the lead screw at the end may be diagnosed. Abnormal 
installation of the bearing seat leads directly to non-parallel 
alignment of the lead screw and the guide rail. Based on 
the analysis, the bearing seat at the bending end is adjusted 
several times, so that the lead screw is aligned parallel to the 
guide rail as much as possible. The blue curve in Figure 17 
indicates the measured current data after adjustments, which 
significantly decreases near the right end, and for which 
slight bending is observed at both ends. In summary, the red 
curve, which represents the current from a non-parallel as-

quality diagnosis and machine tool health assurance ex-
periment are conducted to explain the method mentioned  
above.

4.1 An experimental study on the diagnosis of machine tool  
assembly quality
The manufacturing resources MR used in this experi-
ment include a vertical machining center XHK715 with the 
Huazhong HNC-818B/M CNC system as shown in Figure 14. 
The work task WT is to make X axis move in a straight line 
at constant speed. The load current of X axis is acquired as 
the operation status data Y. As shown in Figure 15, the drive 
mechanism of X axis is a ball screw nut pair. The lead screw 
is connected with the servo motor via a bellows coupling. 
The servo motor is a GK6081-6AC61-J20B permanent magnet 
synchronous motor. Table 5 lists other parameters.
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Figure 18. Changes in the operation condition of a machine tool.

is to keep a single feed axis move at constant speed. The 
manufacturing resources MR is the experimenting machine 
tool for diagnosing the assembly quality, as shown in Figure 
14. The feed axis current is acquired as the operation status 
data Y. By comparing data from the first and second spanned 
for halves of the year, the changes in the condition of the feed 
axis system are analyzed.

In Figure 18, the red curve represents the measured current 
on April 29, 2015 after the moving average acquired when X 
axis moves in a straight line at the feedrate of 1000 mm.min–1 
over the entire travel range. The blue curve represents the 
counterpart data on October 28, 2014. The change of two lines 
shows the health degradation of the X axis. The initial flat 
blue curve changed into a red curve with bending ends, and 
the overall average of the current decreased. The reduction 
of the overall average value of the current indicates less pre-
tensioning force of the lead screw, while the bending ends of 
the current curve indicate non-parallel alignment of the lead 
screw and the guide rail. Proper maintenance strategies may 
be put forward based on the above degradation situation. For 
example, a maintenance strategy may involve aligning the 
lead screw, adjusting the guide rail, and properly increasing 
the pre-tensioning force of the lead screw to prevent further 
deterioration of the situation and to maintain the machine 
tool in a good condition.

The application of the health assurance system based on 
the electronic data analysis method in the instruction domain 

Figure 16. An analysis of the X axis current. (a) Diagram of the original 
current in the time domain; (b) a partial enlarged drawing; (c) the global 
amplitude spectrum.

sembly of the lead screw and the guide rail, is consistent with 
the diagnosis.

In the above diagnostic experiment, the electronic data 
analysis method based on the instruction domain is fully uti-
lized. This method can quantitatively and uniquely provide 
information about the work task, including the instruction 
sequence, motion track, operating location, and feedrate; it 
can also diagnose the assembly quality by analyzing the CPS 
model of the machine tool.

4.2 A CNC machine tool health assurance system
The health assurance system based on historical data moni-
tors the condition of a CNC machine tool and its critical 
functional components. The work task WT of this experiment 

Figure 17. A comparison of the currents acquired in a normal condition 
(blue) and when the lead screw is not parallel to the guide rail (red).
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and the CPS model of machine tool has been described in 
detail in Section 2.6. The main applications of this system in-
clude the checking and diagnosis of the work quality of man-
ufacturing resources based on the current operation status 
(e.g., a quality diagnosis of the feed axis assembly and of the 
spindle assembly), the checking and diagnosis of the health 
of manufacturing resources based on the history operation 
status (e.g., the health check and diagnosis of a CNC machine 
tool and the monitoring of the stability of the machine tool 
process system).

In addition, by acquiring electronic big data during the 
whole life cycle of a CNC machine tool, a set of unified meth-
ods to assure the good health of the machine can be applied. 
These methods will define the health assurance standard 
of the CNC machine tool based on the analysis of electronic 
data in the instruction domain, and will establish a health 
assurance system that consists of a regular and thorough ex-
amination as well as long-term monitoring.

5 Conclusions
In this paper, a method is proposed to build a CPS model 
of a CNC machine tool work process based on instruction-
domain electronic data analysis. Several case studies of intel-
ligent-machining application are conducted. The method has 
the following features.

(1) The CPS model of a CNC machine tool work process es-
tablishes the relationship among work task WT, manu-
facturing resources MR, and operation status data Y in 
CS: Y = f (WT, MR).

(2) Due to the complexity of CNC machine tools and their 
work processes, it is difficult to obtain an exact math-
ematical expression for the function Y = f (WT, MR). It 
is more effective to establish and use feature variables 
instead. With continuous accumulation and updating of 
the feature variable data for a CNC machine tool over 
its whole life cycle, a dynamic and evolving CPS model 
that combined with the theoretical model can be im-
proved over time.

(3) Large amount of electronic data from CNC systems is 
the main data source for and are important to the CPS 
model of a machine tool work process. The data re-
quired for the CPS modeling of the CNC machine tool 
may be acquired from external sensors or directly from 
the CNC system. CNC systems are not only important 
physical resources in PS, but also important informa-
tion resources in CS.

(4) By collecting and analyzing the work task data, manu-
facturing resources data, and operation status data in 
the instruction domain, it is possible to express the re-
lationship between input and output variables in a CPS 
model of a CNC machine tool work process in a real-
time and accurate manner. The G-code programs con-
tain massive amount of data and information, which 
can be used to derive workpiece features, sizes, machin-
ing processes, and machining strategies that quantita-
tively describe the work tasks WT of the NC machining 
processes.

(5) Via the instruction-domain electronic data analysis, us-
ing the anomalies and quality of the operation status 
data Y, it is feasible to realize the following intelligent 
tasks: the optimization of work processes, the health 
assurance of manufacturing resources, and the optimal 
design and manufacturing of CNC machine tools. In 
the future, an ecosystem supported by an open intel-
ligent-manufacturing environment based on this CPS 
model will be established and applied extensively.
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