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3D Printing—Review

ABSTRACT A growing number of three-dimensional (3D)-print- 
   ing processes have been applied to tissue engineering. 
This paper presents a state-of-the-art study of 3D-printing 
technologies for tissue-engineering applications, with 
particular focus on the development of a computer-aided 
scaffold design system; the direct 3D printing of functionally 
graded scaffolds; the modeling of selective laser sintering 
(SLS) and fused deposition modeling (FDM) processes; the 
indirect additive manufacturing of scaffolds, with both micro 
and macro features; the development of a bioreactor; and 
3D/4D bioprinting. Technological limitations will be discussed 
so as to highlight the possibility of future improvements for 
new 3D-printing methodologies for tissue engineering.

KEYWORDS rapid prototyping, 3D printing, additive manu-
fac turing, tissue engineering, bioprinting

1 Introduction
The concept of tissue engineering was formalized in 1993 
when Langer and Vacanti published a historical milestone 
paper in Science, in which the characteristics and applications 
of biodegradable three-dimensional (3D) scaffolds were first 
detailed [1]. Ideally, 3D scaffolds should be highly porous, 
have well-interconnected pore networks, and have consistent 
and adequate pore size for cell migration and infiltration [2]. 
In the decade following the publication of this paper (1993–
2002), a number of conventional manufacturing techniques 
were applied to fabricating porous 3D scaffolds, such as fiber 
bonding, phase separation, solvent casting, particulate leach-
ing, membrane lamination, molding, and foaming [3]. How-
ever, all these methods share a major drawback: They do not 
permit enough control of scaffold architecture, pore network, 
and pore size, giving rise to inconsistent and less-than-ideal 
3D scaffolds. To overcome this problem, researchers pro-
posed the use of 3D-printing methods (also known as rapid 
prototyping, solid free-form fabrication, or additive manufac-
turing) to fabricate customized scaffolds with controlled pore 
size and pore structure [4–6]. Out of more than 40 different 
3D-printing techniques in development, fused deposition 

modeling (FDM), stereolithography, inkjet printing, selective 
laser sintering (SLS), and colorjet printing appeared to be the 
most popular, due to their ability to process plastics [7, 8]. 
As a result, in the second decade of this field (2003–2012), the 
number of studies in the arena of 3D printing for tissue en-
gineering rapidly multiplied. These studies covered scaffold 
design, process modeling and optimization, comparisons of 
3D-printing methods, post-processing and characterization 
of 3D printed scaffolds, in vitro and in vivo applications of 3D 
printed scaffolds, new scaffold materials for 3D printing, new 
3D-printing methods for scaffold fabrication, and even the 
branching out of an entirely new field—3D bioprinting, or 
organ printing. Our research group has been extensively in-
volved in this vast wave of research. In this paper, we present 
our past and current work in this field, and give our perspec-
tive on the future of this area as it moves into its third decade 
(2013–2022).

2 Scaffold architecture design

2.1 Scaffold library
Scaffold architecture design can significantly influence 
both mechanical property and cell behaviors [9]. We have 
adopted a bottom-up approach when constructing a 3D 
scaffold; that is, first making unit cells, and then assem-
bling them into a 3D scaffold. Using this approach, we can 
fine-tune the mechanical property, based on the porous 
structure design. We have developed in-house a computer-
aided system for tissue scaffolds (CASTS) that can auto-
matically create a highly porous 3D scaffold model with 
controlled architecture, and precisely match the external 
surface profile of a native anatomic structure such as 
bone [10–12]. In this system, nearly 20 polyhedral shapes 
are selected to form the basic geometry of a unit cell. 
The scaffold library and the parameters of each unit cell, 
such as pore size and strut size, can be adjusted, and each 
polyhedral unit can be repeated automatically in a spa-
tial arrangement and sized to form a block that suits the 
intended scaffold application (Figure 1). An anatomically 
shaped porous scaffold can then be created through Bool-
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ean operation between the scaffold 
block and the actual surface model of 
the defect tissue. A detailed deriva-
tion of the mathematical formulae of 
the CASTS system for designing and 
fabricating tissue engineering scaf-
folds is contained in Ref. [13].

2.3 Design for vascularization
In addition to mechanical performance, vascularization is a major limitation in tis-
sue engineering, especially when engineering thick or bulk tissues. Researchers 
have proposed various strategies to enhance or accelerate vascularization, in which 
scaffold design plays a crucial role [20]. Results show that a designed pore size of 
250 μm or above favors the growth of blood vessels more than smaller pore sizes [21]. 
Also, a high porosity does not necessarily lead to more vascularization, because 
cell migration and vascularization could be inhibited if there is little interconnec-
tivity between pores [22]. Recently, researchers have developed a tool box for eval-
uating 3D porous scaffolds [23]. This tool box is based on modular scaffold design, 
and allows the fine-tuning of scaffold pore size and porosity for vascularization 
study. Our group is exploring a new concept of hybrid scaffold design to address 
the vascularization issue. This new approach involves thin porous membranes and 
filament meshes that alternate in layers to form a 3D scaffold (Figure 3) [24]. 

Figure 1. An example of five polyhedral units 
and their resultant blocks, generated in the 
CASTS scaffold library. 

2.2 Functionally graded scaffold
Natural tissues such as bone usually 
have a gradient porous structure, so 
matching mechanical strength and 
stiffness between porous scaffold de-
sign and the target tissue structure is 
important [14]. There are two types of 
stiffness gradient in bones: radial gra-
dients in long bones, and linear gradi-
ents in short and irregular bones. We 
have achieved radial gradient design 
by arranging cylindrical unit cells in 
a concentric manner so that the poros-
ity decreases linearly from the center 
to the periphery. This linear gradient 
occurs as a result of varying the strut 
diameter along the gradient direction. 
Therefore, we can tailor the stiffness 
variation for CASTS scaffolds by adjust-
ing the porosity-stiffness relationship 
[15]. After modifying and improving 
the CASTS system, our group success-
fully fabricated a human mandibular 
cancellous bone scaffold and a femur 
bone segment, both with functional 
gradients [16, 17]. An example of a func-
tionally graded femur bone segment is 
shown in Figure 2. This process is high-
ly accurate and reproducible. Another 
method of designing gradient structure 
is based on shape function and on an 
all-hexahedral mesh refinement [18]. In 
this method, a truncated bone is subdi-
vided and represented using various ir-
regular hexahedral elements, which are 
then converted into various irregular 
pore elements based on shape function. 
The entire pore model is obtained after 
a union operation among the irregular 
pores, and then the resulting bone scaf-

Figure 2. Virtual and physical prototypes of the functionally graded porous scaffold of a femur bone 
segment.

fold is obtained by performing a difference operation between the contour model 
and the pore model. Using this method, a well-defined pore size distribution can 
be achieved for gradient bone-scaffold design. Recently, a new method based on 
sigmoid function and Gaussian radial basis function has been developed to gene-
rate functionally graded structures, and the resulting models can be exported as 
STL-files and be 3D printed [19].

3 Direct 3D printing

3.1  Specific forms of materials
At room temperature, the primary forms of materials used for 3D printing are 
solidifiable fluid, non-brittle filament, laminated thin sheet, and fine powder (see 
Table 1) [25]. Each form is specific for certain 3D-printing processes. If a material 

Figure 3. A proposed hybrid scaffold design for vascularization.
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is deemed suitable for a particular application but cannot be 
easily prepared in the specific form required by the desired 
3D-printing process, printing this material would be a chal-
lenge. Even if a material can be prepared in a specific form, 
this does not guarantee that the material is 3D printable, be-
cause successful printing in the vertical dimension also relies 
on the bonding strength between layers. Therefore, when 
exploring a material for 3D scaffold applications, it is im-
portant to consider the available forms of the material at the 
very first stage. Furthermore, in order to increase the range 

of 3D printable biomaterials, future development should 
include the invention of new methods to transform existing 
biomaterials into suitable forms for 3D printing. For example, 
gelatin gel is solidifiable upon a decrease in temperature, 
but this low-temperature environment conflicts with what is 
favorable for cell survival. Therefore, future research may in-
volve the development of a new mechanism of solidification 
for gelatin, such as solidification by enzymatic crosslinking 
[26], or the development of a new hybrid mechanism for low-
temperature deposition of hydrogels and cells [27].

Table 1. Specific forms of materials and suitable 3D-printing processes.

Form  Examples Suitable 3D-printing processes Refs.

Solidifiable fluid Photopolymer resins, temperature sensitive 
polymers, ion cross-linkable hydrogels, ceramic 
paste, etc.

Stereolithography (SLA) [28]

Polyjet [29, 30]

Digital light processing (DLP) [31]

Micro-extrusion [32]

Non-brittle filament Thermoplastics, e.g., ABS, PLA, and PCL Fused deposition modeling (FDM) [33]

Laminated thin sheet Paper, plastic sheet, metal foil Paper lamination technology (PLT) [34]

Laminated object manufacturing (LOM) [35]

Ultrasonic consolidation (UC) [36]

Fine powder Plastic fine powder, ceramic powder, metal 
powder

Selective laser sintering/melting (SLS/SLM) [17, 37, 38]

Electron beam melting (EBM) [39]

Laser engineered net shaping (LENS) [40]

Direct metal deposition (DMD) [41]

Colorjet printing (CJP) [42–44]

Notes: ABS—acrylonitrile-butadiene-styrene; PLA—polylactic acid; PCL—polycaprolactone.

3.2  Process parameters and limitations
Our group investigated a range of materials using the SLS 
process for fabricating tissue-engineering scaffolds. Table 2 
summarizes the main process parameters for SLS, namely 
part-bed temperature, laser power, and scan speed. In par-
ticular, in the polyetheretherketone/hydroxyapatite (PEEK/
HA) system, results show that HA should be kept at 40 wt.% 
or below in order to ensure structural integrity. In the polyvi-
nyl alcohol/hydroxyapatite (PVA/HA) and polycaprolactone/

hydroxyapatite (PCL/HA) systems, HA should be kept at 30 
wt.% or below in order to yield successful scaffold specimens 
with well-defined pore interconnectivity and good structural 
integrity. When developing composite material systems, 
although the addition of HA initially improved mechanical 
properties and bioactivity, it compromised material proper-
ties during the hydrolytic degradation process [45]. In ad-
dition to scaffolds, we investigated laser sintering of drug 
delivery devices and their microfeatures [46–48].

Table 2. SLS process parameters for different types of polymers.

Polymer type Composition (wt.%) Part-bed temperature (ºC) Laser powder (W) Scan speed (mm·s–1) Refs.

PCL 100 30–55 1–7 3810–5080 [49]

PLLA 100 60 10–15 1270 [49]

PVA 100 60–65 10–15 1270–5080 [49]

PLGA 100 70 10 1651 [50]

PEEK 100 110–140 9–28 5080 [49]

PEEK/HA > 60/40 140 16 5080 [51, 52]

PVA/HA > 70/30 65–80 13–15 1270–1778 [53, 54]

PCL/HA > 70/30 40 3 1270–2540 [55]

Notes: PLLA—poly-L-lactic acid; PLGA—poly(lactic-co-glycolic acid).

One limitation in the SLS process is material wastage 
when building small prototypes such as tissue-engineering 
scaffolds. However, this problem can be overcome by in-
corporating a compact adaptation system into the SLS part 
bed, allowing the adaptor to transfer the motion of the SLS 

part bed onto its own small part bed [56]. Up to 6.5 times 
the amount of powder can be saved by using this device. A 
second limitation of SLS-made scaffolds is the low retention 
of cells during cell seeding. One reason is that the materials 
used for SLS are synthetic and do not favor initial cell at-
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tachment. The other reason is that the pores are much larger 
than cells due to SLS resolution issue, as a result, cells fall 
through the pores during the seeding process. However, the 
use of a hybrid 3D scaffold that consists of alternate elec-
trospun nanofibers and 3D printed scaffold layers will pre-
vent cells from falling through, due to the small size of the 
nanofiber pores [57, 58]. An alternative solution is to inject 
cell-laden collagen hydrogel into the porous structure [59]. 
An unresolved limitation in SLS scaffolds does exist, for 
example, the entrapment of powder in the interior region of 
the porous scaffold. It is difficult to remove the entrapped 
powder manually, especially for pore sizes below 500 μm. 
Researchers have explored ultrasonic cleaning with only 
limited success [60]. 

3.3 Modeling for FDM and SLS
In 3D printing, it is important to understand the process it-
self, as well as the science behind it, in order to improve the 
process further (Figure 4). PCL is a representative biomaterial 
for the FDM process. The results from modeling and finite 
element analysis indicate that the pressure drop and the 
velocity of the PCL melt flow depend on the flow channel 
parameters [61]. The temperature gradient of the PCL melt 
shows that it liquefies within 35% of the channel length [61]. 

Similarly, we modeled the heat-transfer phenomena during 
the SLS process. By incorporating material properties such as 
thermal conductivity, thermal diffusivity, surface reflectiv-
ity, and absorption coefficient, our model helped to identify 
the biomaterial and laser-beam properties that are critical 
to the sintering result [62]. It is also important to understand 
the relationship between mechanical properties and scaffold 
porosity in 3D printing (Figure 5). We obtained such a plot 
for FDM, based on experimental data from ABS samples [63, 
64]. In addition, we found a feasible porosity and compressive 
stiffness range for our CASTS-designed PCL scaffolds via 
the testing of physical prototypes [65]. This stiffness range 
fairly matches the stiffness gradient of cancellous bone in the 
maxillofacial region, which varies gradually from 35.55 MPa 
in the molar region to 67.48 MPa in the incisor and canine re-
gion [66]. 

4 Indirect 3D printing
Natural polymers usually have very good biocompatibility, 
and can provide a favorable micro-environment for cells as 
compared to synthetic polymers. However, the 3D printabil-
ity of natural polymers is generally poor. Indirect 3D print-
ing was developed in order to produce a 3D porous scaffold 

Figure 4. Process modelling. (a) Temperature distribution and Gaussian contour in the laser sintering process: 1), 3) are temperature distributions; 2), 4) are 
Gaussian contours. (b) Velocity profiles at different zones along the melt flow channel.

Figure 5. Scaffold porosity and mechanical property. (a) Relationship between porosity and modulus 
in FDM scaffolds; (b) the feasible porosity and compressive stiffness range (gray band) in SLS-made PCL 
scaffolds.

using natural polymers such as colla-
gen or gelatin. In contrast to direct 3D 
printing, which produces a scaffold di-
rectly from the model material, indirect 
3D printing creates a negative mold, 
usually from a support material, and 
then casts the desired polymer scaffold 
out of the mold via a drying method [6, 
67, 68]. Collagen scaffolds with 3D net-
works of internal channels can be pro-
duced using this approach [69]. More-
over, freeze-drying was found to be the 
most suitable drying method in indirect 
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3D printing, as it induced less shrinkage than critical-point drying, and accurately 
reproduced the design morphology of the channels [69]. Furthermore, indirect fab-
rication can be combined with a foaming process to produce highly and uniformly 
porous gelatin scaffolds with complex channel architectures [29, 70], as shown in 
Figure 6(a–d). The order of this structure can be improved further by incorporating 
monodispersed microspheres into the casting process [71], as shown in Figure 6(e, f).  
In addition to collagen and gelatin, our group has successfully produced porous 
scaffolds from silk fibroin protein with both macro- and micro-morphological fea-
tures [30, 72].

5 Bioreactor
A bioreactor is an important post-processing tool in tissue engineering, as it pro-
vides a dynamic environment for cell-scaffold construct, and facilitates the matu-
ration of the construct. More importantly, a bioreactor is a part of the automation 
line in industry-scale tissue engineering [73]. A recent study reports that scaffold 
architecture could influence cell differentiation in a bioreactor, but not in static 
culture [74], further evidencing the importance of a bioreactor’s role. Surprisingly, 
by taking the advantage of the air-liquid interface commonly found in a rotating 
bioreactor, induced pluripotent stem (iPS) cells can be induced toward the differ-
entiation of alveolar epithelium, offering a new role for a bioreactor in resolving a 
cell-source problem [75]. The most recent bioreactor design is a dual-flow bioreac-
tor coupled with mechanical stimulation [76]. This novel design allows nutrients, 
anabolic or catabolic factors to diffuse from one side of the construct, enabling the 
creation of gradients; as a result, this bioreactor design is well suited for engineer-
ing interface tissues. Our group has focused particularly on the effect of interstitial 
flow on fibroblast responses [77]. Through a computational fluid dynamics study, 
we found that dynamic flow, even a flow rate as low as 0.002 cm.s–1, can support 
much better mass exchange, higher cell number, and more even cell and nutrient 
distribution than static culture [78]. We have also developed a dual-window dual-
bandwidth spectroscopic optical-coherence tomography (DWDB-SOCT) technique 
to monitor fibroblast cell proliferation in scaffolds. Fibroblasts and their distribu-
tion in scaffolds are clearly differentiable in the spectroscopic images [79]. In fu-
ture, we expect that bioreactors will play more biological roles and take on a more 
integrated design by combining various types of stimulation and non-invasive 
monitoring techniques.

6 3D bioprinting and beyond
One of the major advances in tissue engineering is the emergence of a new 

Figure 6. Highly and uniformly porous interconnected network via the combination of indirect 3D 
printing and foaming processes

field: 3D bioprinting [80]. Mironov  
et al. [81] originally proposed the concept 
of 3D bioprinting as “organ printing,” 
and defined it as the computer-aided, 
jet-based 3D tissue-engineering of living 
human organs. This organ printing pro-
cess exactly follows the typical process 
chain of 3D printing; that is, starting with 
a computer-aided design (CAD) model, 
converting to a STL file, slicing and then 
printing. The major advantages of organ 
printing are automation and high cell 
density, compared to a traditional scaf-
fold-based approach [82]. The materials 
used for organ printing are microtissues, 
usually in the form of spheroids. These 
closely placed spheroids can undergo 
self-assembly and fuse together [83], 
forming the foundation of 3D printability 
in organ printing. Organ printing carries 
the imminent potential to address orga-
nization and complexity issues in engi-
neered tissues [84]. It also carries great 
potential to foster the establishment of an 
industry-scale robotic tissue-fabrication 
line [73]. Nevertheless, current applica-
tion of organ printing is limited to in vitro 
drug testing. According to Mironov, the 
first bioprinted organ transplant in the 
world is likely to be the thyroid gland of 
a mouse, in 2015 [85].

Besides organ printing, other elegant 
bioprinting approaches and method-
ologies exist, such as inkjet printing, 
micro-extrusion and laser-assisted 
forward transfer, which are compre-
hensively reviewed in Ref. [86]. It is a 
major challenge in these approaches 
to position and culture multiple types 
of cells in a single process at a defined 
location. Although researchers have 
obtained initial success in printing het-
erogeneous tissues [87, 88], these were 
printed in separate compartments and 
did not replicate the microstructure of 
the native tissue. To address this chal-
lenge, our group plans to focus on a 
fundamental study of the bioprinting 
process, such as developing a time-
pressure model to precisely control ex-
truded material [89]. 

One interesting derivation of 3D bio-
printing is the integration of microelec-
tronic and mechatronic components. 
For example, a bio-bot is a walking robot 
powered by the contraction of a strip of 
mammalian skeletal muscle cells [90]. 
Another interesting derivation of 3D 
bioprinting is the concept of 4D bio-
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printing. 4D printing refers to the 3D printing of program-
mable materials; since the printed part gradually transforms 
in shape over the post-printing period, the fourth dimension 
refers to time [91]. One physical demonstration of 4D print-
ing involved intelligent active hinges that enabled origami 
folding [92], and this concept has been extended further to 
make light-responsive windows that open and close auto-
matically in response to the amount of sunshine. Therefore, 
the research community considers 4D printing to be a new 
and emerging field [93]. Our group is currently collaborating 
with Stratasys (www.stratasys.com) to work on 4D-printable 
shape-memory polymers [94]. In terms of 4D bioprinting, 
the development of programmable biomaterials appears to 
be crucial in realizing time-dependent shape change. The 
term “4D bioprinting” is currently less defined than that of 
4D printing, and the shape it will take in the future is largely 
unknown, but well worth watching.

7 Future prospects
In the second decade after the birth of tissue engineering, 3D 
printing gradually became a definite part of this field, due 
to its controllability and manufacturing capability. Looking 
into the future, even once the technical challenges described 
above are overcome, it will still be a long way from trans-
forming academic know-how into clinical products that 
benefit society. Researchers’ current tasks in the field are to 
accelerate the standardization and certification of 3D printed 
medical devices. A prolonged delay in this standardization 
would make regulatory work even more complicated, espe-
cially with the currently trending and transforming 3D bio-
printing technologies, because the definition of “medical de-
vice” may soon be redefined. Another future trend may come 
in the legal landscape [95], as the infringement and protec-
tion of intellectual properties around 3D printing interweave 
more intensely. Thus, an early and informed exploration of 
various legal approaches could be the best preparation to 
cope with tomorrow’s changes. 
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