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ABSTRACT High-speed and precision positioning are fun-
d  a mental requirements for high-acceleration low-load mec-
hanisms in integrated circuit (IC) packaging equipment. 
In this paper, we derive the transient nonlinear dynamic-
response equations of high-acceleration mechanisms, 
which reveal that stiff ness, frequency, damping, and driving 
frequency are the primary factors. Therefore, we propose a 
new structural optimization and velocity-planning method for 
the precision positioning of a high-acceleration mechanism 
based on optimal spatial and temporal distribution of inertial 
energy. For structural optimization, we first reviewed the 
commonly flexible multibody dynamic optimization using 
equivalent static loads method (ESLM), and then we selected 
the modifi ed ESLM for optimal spatial distribution of inertial 
energy; hence, not only the stiff ness but also the inertia and 
frequency of the real modal shapes are considered. For 
velocity planning, we developed a new velocity-planning 
method based on nonlinear dynamic-response optimization 
with varying motion conditions. Our method was verifi ed on 
a high-acceleration die bonder. The amplitude of residual 
vibration could be decreased by more than 20% via structural 
optimization and the positioning time could be reduced by 
more than 40% via asymmetric variable veloci ty planning. 
This method provides an effective theoretical support for 
the precision positioning of high-acceleration low-load 
mechanisms.

KEYWORDS high-acceleration low-load mechanism, preci-
s ion positioning, spatial and temporal distribution, inertial 
energy, equivalent static loads method (ESLM), velocity 
planning

1 Introduction
With the rapid development of electronic manufacturing 
technology and the electronic market, the demand for high-

acceleration and high-precision mechanisms are increasing. 
For example, some manipulators in packaging equipment 
run at the speed of 20 000–24 000 cycle times per hour, with 
peak acceleration of 12g–15g and a positioning precision of 2–5 
µm. High-acceleration and short-cycling-time mechanisms 
are inevitably subjected to elastic deformation and vibrations 
caused by the inertial force. It is very diffi cult to achieve high 
positioning accuracy in a very short deceleration phase. Fre-
quent but short acceleration-deceleration cycles could result 
in abrasion or even failure of the mechanisms [1]. Hence, it 
is necessary to fi nd a new approach to optimize this type of 
mechanism.

When a mechanism moves at high speed, its components 
should be regarded as flexible bodies, so the whole mecha-
nism becomes a fl exible multibody dynamic system, in which 
the rigid-body motion is coupled with the elastic deforma-
tion. Therefore, the resulting dynamic model is a set of high-
dimensional differential equations with time-varying coef-
ficients and non-smooth nonlinear terms, which is difficult 
to model, analyze, and optimize [2]. For the last two decades, 
though tremendous progress has been achieved in the analy-
sis of kinematics and the dynamics of flexible multibody 
dynamic systems [3], the optimization of fl exible multibody 
dynamic systems is not completely solved.

The equivalent static loads method (ESLM) [4–10] proposed 
by Park et al. is the most effective method for the dynamic op-
timization of fl exible multibody dynamic systems. It has been 
implemented into the commercial software HyperWorks. The 
ESLM has been successfully used in the optimization of auto-
motive collision dynamics, Boeing aircraft wing structure [9], 
and so forth. The main idea of this method is to convert the 
nonlinear dynamic response, by discretizing the time vari-
able, into response equations of a series of equivalent static 
loads [4–10]. As the current dynamic topology optimization 
methods only consider some natural frequencies, but the 
corresponding mode shapes may not refl ect the real deforma-
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tion. Another important factor is the motion profi le. At pres-
ent, velocity-planning methods mainly consider geometric 
smoothing while ignoring the infl uence of curve parameters 
on the dynamic response. The S curve has a smoother varia-
tion in acceleration compared to the trapezoidal profi le, so it 
can reduce the residual vibration to some extent [11, 12]. Input 
shaping, such as a digital filter, not only causes time delay, 
but also is diffi cult to apply to the nonlinear dynamic system, 
where both stiffness and frequencies vary with position [13]. 
Therefore, a dynamic-response optimization for the velocity 
planning is necessary. Some scholars have an equivalent mo-
tion stage system as a single-degree-of-freedom system to ob-
tain optimal parameters of the S-type motion curve to reduce 
residual vibration [14]. However, because of high-acceleration 
low-load mechanism is three dimensional and frequently 
starts and stops, its velocity planning is a much more compli-
cated problem.

In this paper, the nonlinear dynamic response of a high-
acceleration low-load mechanism is discussed. We derive the 
transient nonlinear dynamic-response equations of high ac-
celeration mechanisms, which reveal that stiffness, frequen-
cies, and damping (related to the layout of material, i.e., the 
spatial distribution of inertial energy), as well as the driving 
frequency (related to the motion profile, i.e., the temporal 
distribution of inertial energy), are the primary factors. 
Therefore, we propose a new structural optimization and 
velocity-planning method for the precision positioning of 
a high acceleration mechanism based on optimal spatial 
and temporal distribution of inertial energy. For structural 
optimization, the ESLM-based fl exible multibody dynamic 
optimization is reviewed and modified for high-accelera-
tion low-load mechanisms by means of the Rayleigh-Ritz 
method, which has been done in our previous work [15, 16]. 
For velocity planning, a new asymmetric velocity profi le is 
proposed based on nonlinear dynamic optimization with 
varying boundary conditions. Finally, a practical example 
of a high-speed die bonder is studied, which shows that 
the residual vibration can be reduced by more than 20% by 
structural optimization and the positioning time can be 
reduced by more than 40% by asymmetric variable velocity 
planning. Numerical tests show that the proposed method 
is effi cient for structural design and velocity planning for a 
high-acceleration low-load mechanism.

2 Technical background
For mechanisms operating at very high speed, the vibration 
of the structures must be considered. When the deformation 
is large, the absolute nodal coordinate formulation (ANCF) is 
more effi cient [16]. Within the ANCF for highly fl exible bod-
ies, the absolute coordinates are represented by a vector y, 
characterizing the material points of the bodies by an appro-
priate shape function. The motion equation is

                      ( ) ( ) ( ) ( )t t t t+ + =M y C y K y q     (1)

where M( t ), C( t ) and K( t ) are mass, damping, and stiffness 
matrices at time t, respectively. The motion equation for fl exi-
ble bodies has the same format as that of structural vibration.

The displacement y consists of rigid motion yR and elastic 
modes yE. If we consider when the mechanism moves at a po-
sition, the mechanism can be regarded as a structure with ki-
netic degrees of freedom. Let uR and uE be the displacements 
of the rigid modes and elastic modes, respectively. Therefore, 
the total displacement of the fl exible multibody is

                ( ) ( ) ( ) ( ) ( )R E R R E Et t t t t= + = +u u u Φ η Φ η   (2)

where ΦR and ΦE are the matrices of the modal shapes of the 
rigid modes and elastic modes; and ηR and ηE are the corre-
sponding coordinates. The modal shape of the whole system 
is the combination of ΦR and ΦE:

                                     [ ]R E=Φ Φ Φ                 (3)

For the rigid modes, there exists

                                   ( )T
R R R t=M η Φ q            (4)

And for the elastic modes, the following equation is satis-
fi ed:

                         ( )T
E E E E E E E t+ + =M η C η K η Φ q            (5)

where MR = ΦT
RMΦR denotes the modal mass of the rigid 

modes; ME = ΦT
EMΦE, CE = ΦT

ECΦE, KE = ΦT
EKΦE = MEΛE are the 

modal mass, modal damping, and modal stiffness of the elas-
tic modes, respectively; and ΦT

Rq(t) is the modal load. Assum-
ing that CE = ΦT

ECΦE = MEΓE, the eigenvalues of the damped 
elastic modes are
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se of a one-degree-of-freedom system.
Assume that the input force is a harmonic excitation:

                                    ( ) ( )E E cosq t F t= Ω      (8)
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considered, the modal velocity is
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Usually, if we transfer the high-speed motion profile to 
the frequency domain using a fast Fourier transformation 
(Figure 1), the input force can be regarded as a series of har-
monic excitations:

                              ( ) ( )E E
1

cos
m

j j
j

q t F t
=

Ω= ∑       (11)

So the corresponding modal velocity should be
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Eq. (12) shows that the vibration response of the high-

speed mechanism is affected by the stiffness, damping, 
and frequencies of elastic modes, and also by the excitation 
frequencies. The former is related to the structural design 
and the latter is related to the motion profi le, so the optimal 
spatial and temporal distribution of inertial energy would be 
an effi cient way to minimize the vibration at the end of the 
manipulator and the fi nal stage of the motion.

However, as the vibration response is difficult to obtain 
due to the variation in stiffness, inertia, and motion condi-
tions, numerical methods such as the nonlinear fi nite element 
method of fl exible multibody dynamics are needed to solve 
the dynamic-response analysis and optimization.

3 Optimal structural design using ESLM 
The motion equation for an equivalent structural response 
under a dynamic load at position yR can be written as

                      ( ) ( ) ( )R E R E R , t+ =M y y K y y q y      (13)

where vectors yR and yE represent the displacement of the rig-
id body and elastic deformation, respectively, and the damp-
ing effect is ignored.

With the ESLM [10], we can derive the equivalent static 
loads using the fi nite element method. Rearranging Eq. (13) 
leads to

                          ( ) ( ) ( )R E E R E, t= −K y y q y M y y          (14)

or
                                         ( )R E eq=K y y f   (15)

                                   
( ) ( )eq R R E, t= −f q y M y y   (16)

where Eq. (16) represents the equivalent static loads at time t [10].
For optimization, the number of the equivalent static loads 

(Figure 2) can be treated as multiple loading conditions. Thus, 
the equivalent load set can regenerate dynamic properties 
such as time-dependent displacement or stress.

In fact, the ESLM is an interface between nonlinear re-
sponse analysis and linear static optimization (Figure 3), and 
analysis is performed in the analysis domain, where equiva-
lent loads are calculated. Linear-response optimization is 
performed using the equivalent static loads in the design do-
main. The process proceeds in a cyclic manner.
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Figure 1. The series of harmonic motions in the frequency domain.
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Figure 2. Equivalent static loads in the number of time points.
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Figure 3. The analysis and design domain using the ESLM.

In high-acceleration low-load mechanisms, the principal 
loads are the inertial forces induced by accelerations. Hence, 
mechanical design should consider light-weight structures to 
minimize such loads. However, the linear static optimization 
cannot handle dynamic features such as inertial property 
and dynamic stiffness, even within the ESLM. Linear static 
optimization needs to be modified with only one iteration 
in linear static optimization, so that the change of material 
can be refl ected on the inertial forces. Moreover, we have to 
modify the sensitivity analysis of the ESLM to meet the re-
quirements of a high-acceleration low-load mechanism.

4 A new structural-design method based on 
optimal spatial distribution of inertial energy
In the original ESLM, only the stiffness changes are consid-
ered when removing an element, so the element sensitivity 
is defined by the element strain energy [10, 15]. However, 
the modifi cation of elements also changes the inertial force, 
resulting in a change to the strain energy [16]. Assuming that 
the ith element is removed from the reference structure at the 
jth position, the change in strain energy is

( ) ( )S T T T 1
, , , ,

T T

T e T

, ,
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2 2
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y K y y M y

  (17)

where superscripts T, e, and S refer to transposition, element, 
and strain, respectively; Δ is the increment; and E is energy. 

In addition, in a high-acceleration low-load mechanism, the 
inertial force is the main load, so the inertial property should 
be considered. Like the strain energy, the inertial property 
can be measured by the kinetic energy. Accordingly, when an 
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element i is removed from the reference structure at position j, 
the change in kinematic energy is

  
                  ( )2K 2

, , ,
1 1
2 2i j i i j j i i jE m r m yω∆ = − = −            (18)

where the superscript K means kinematic; mi is the mass of 
the ith element; ωj is the rotational velocity at the jth position; 
and ri, j and y

.
i, j are the gyro radius and velocity of the center 

of the ith element in the jth position, respectively.
For high-acceleration mechanisms, we need to maximize 

the stiffness while minimizing the inertia. As with the to 
Rayleigh-Ritz analysis, we can divide the strain energy by the 
kinematic energy to quantify the sensitivity of an element:
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       (19)

Assuming that the number of discreet positions is m, and 
that ΔSmax, j is the maximum sensitivity at the jth position, the 
comprehensive sensitivity is defi ned by
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=1 max,
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i j
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m S
∆
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∆∑      (20)

Evolution structural optimization (ESO) is employed 
to perform the modification. If the ΔSi is less than a given 
threshold, the material property is set as a deleted material 
density, the elastic modulus of which is very low, only 1%–10% 
of that of the normal material.

If we normalize the total ES by the scalar product of displace-
ment and the total EK by the scalar product of velocity, we form 
the S and K, respectively. Then the ratio of S to K should 
reach a maximum regardless of the deformation and speed:
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   (21)

The optimization problem of high-acceleration low-load 
mechanisms becomes

                                         *s.t.  
Max S

U U
         (22)

where U is the residual vibration amplitude within a required 
stationary time and U* is the positioning precision requirement.

We made a stand-alone program for sensitivity analysis 
and generated the command to modify the model. It can be 
integrated with the commercial software I-DEAS and AD-
AMS to perform an optimization design for a high accelera-
tion mechanism.

5 Motion profi le based on temporal optimal 
distribution of inertial energy
As high-acceleration low-load mechanisms start and stop 
frequently, the primary motion-control policy is open-loop 
control with a prescribed motion profi le, and the performance 
is mainly dependent on the parameter of the given motion 

The optimization model can be described as

 (23)
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The following equation is used to determine when the po-

sitioning accuracy is reached:

                                  ( ) ( )abs +abs <s s v− ε*           (24)

Let the objective position s* be Q. Then the time segment 
for each motion is

                           ( )
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Figure 4. The parameters of the asymmetric S curve.

curve. As we can see in Section 2, the motion profile can be 
transformed to a series of harmonic excitations in the fre-
quency domain, which causes diffi culty in calculations of the 
nonlinear dynamic response. However, if we can parameterize 
the motion profi le as variable motion boundary conditions, we 
can achieve optimum parameters for the motion profi le using 
nonlinear dynamic-response optimization. In particular, when 
the machine moves at very high speed, such as during die 
bonding and wire bonding, the input signal consists of pulses 
or jumps with sudden changes. Since the S curve is widely 
used in industrial situations, we take the asymmetric S curve 
as an example. The parameters are four jerks for each section 
(Figure 4), namely G1–G4.
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Using the variable motion boundary condition nonlinear 
dynamic-optimization method, the procedure is shown as 
follows:

(1) Defi ne the design variables, G1, G2, G3, G4, and the posi-
tion objective Q. Define the time variables T1, T2, T3, T4, 
and evaluate them using Eqs. (25)–(28), respectively. De-
fi ne the time interval T12 = T1 + T2, T123 = T12 + T3, and T1234 = 
T123 + T4.

(2) Build the geometry of the mechanism, assign materi-
als, build joints, and apply motion, using the following 
function:

IF(T < T1: G1, –G2, IF(T < T12: –G2, G3, IF(T < T123: G3, –G4, 
IF(T < T1234: –G4, 0, 0))))

(3) Mesh the key parts, assign element properties, and cre-
ate the degrees of freedom of the connection; defi ne the 
solution type as super element creation, and solve and 
output the modal neutral fi le.

(4) Replace the rigid body with the corresponding fl exible 
multibody, and define the measurement of displace-
ment and the velocity of the positioning point.

(5) Defi ne the measurement of time and the sensor to trig-
ger the event when the position accuracy is met.

(6) Select G1, G2, G3, and G4 as design variables, defi ne the 
total positioning time as the objective function, and use 
the global optimization method to get the optimal re-
sult.

By using the above variable motion boundary condition 
nonlinear dynamic-response optimization, the parameters 
likely to cause resonance will be excluded from the optimi-
zation of feasible solutions; thus, velocity planning is ob-
tained in which the temporal distribution of inertial energy 
is optimal. Moreover, the presented velocity-planning meth-

The material used is aluminum alloy 7075, with elas-
tic modulus, mass density, and Poisson ratio of 79.9 GPa, 
2700 kg.m–3, and 0.35, respectively. The radius of gyration is 
80 mm, and the required positioning accuracy is ± 0.5 µm 
(after vibration attenuation). The size of the base structure 
is 105 mm × 30 mm × 5 mm, while the total mass is 0.3 kg, 
and the inertia property is 0.97 kg.mm2. The loads are the 
inertial force and the unit force applied to the tip of the 
capillary.

6.1 Optimal structural design
We have compared the structural optimization with three 
different methods, namely the traditional structural opti-
mization, the ESLM with only one iteration in each cycle, 
and the modified ESLM. The nonlinear dynamic simula-
tions of the optimal structures from the above methods are 
performed under the same motion profile with different 
parameters, where the motion period of the bonder is 100 ms 
(normal acceleration), 10 ms (high acceleration), and 1 ms (very 
high acceleration). The maximum amplitude of the residual 
vibrations is listed in Table 1. For the sake of comparison, the 
optimal structure using traditional structural optimization is 
set as the reference, and the vibration amplitude of the other 
two are compared with it. The results show that when the die 
bonder moves with a normal acceleration, the ESLM is nearly 
the same as the structural optimization (with a reduction of 
only 1.66%), and the data of the modified ESLM also gives 
similar results (with a decrease of only 3.09%). When the 
bonder arm moves with high acceleration, the ESLM is more 
effi cient (dropping by 11.41%), and the modifi ed ESLM with 
the vibration amplitude is reduced by 22.66%. It can be seen 
that the influence of inertial force is significant. When the 
bonder moves with very high acceleration, both the vibration 
amplitudes are very large, whilst the modifi ed ESLM (21.11%) 
is still more effi cient than the ESLM (less than 0.002%).

 
Motor shaft

Position 1 Position 2 

Die

Capillary Capillary

Bonder arm Bonder arm

DieLeadframeWafer

Figure 5. The working principle of the die bonder.

od can also be applied to any other parameterized motion 
curves, as well as to the parameter optimization of control 
systems.

6 Numerical examples
Consider the structural optimization and velocity planning 
of a high-acceleration low-load die bonder for an integrated 
circuit (IC) packaging device, with a production rate of 36 000 
dies per hour. The motion time for the bonder to move from 
the wafer to the lead frame (Figure 5) is only 50 ms. The ex-
ternal load is the inertial force of the die, which is negligible 
when compared with that of the die bonder.
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Table 2. The iteration of nonlinear response optimization of the parameterized motion profi le.

Iteration T1234 (ms) Ts (ms) G1 (°·s
–3) G2 (°·s

–3) G3 (°·s
–3) G4 (°·s

–3)

0 18.045 0.115 1.0000E+9 1.0000E+9 1.0000E+9 1.0000E+9

1 16.048 0.533 2.4312E+9 8.7876E+8 8.7876E+8 3.8280E+9

2 13.549 0.120 2.9124E+9 8.8347E+8 2.7710E+9 4.9866E+9

3 13.261 0.936 2.2908E+9 2.3951E+9 3.6078E+9 3.9223E+9

4 11.153 0.115 8.5732eE+9 2.4061E+10 2.8029E+9 3.0347E+9

0.0050.000 0.010
Time (s)

0.015 0.020

40 000
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6.2 Motion profi le planning
Furthermore, the parameters of the motion profile have been 
optimized using the nonlinear response optimization (Figure 6), 
and after four iterations (Table 2), convergence was achieved.

In order to show the effi ciency of the asymmetric S curve, 
the vibration response is compared with the symmetric S 
curve. If the let G1 = G2 = G3 = G4 = G in Eqs. (25)–(28), then 
the jerk of the symmetric S curve with an equivalent drive is 
the same, and both S curves being compared have the same 
driven time (Figure 7). We can see that the positioning time 
changes from 19.40 ms to 11.15 ms at positioning accuracy ± 
0.5 µm, a reduction of 42.5%.

Figure 6. The angular acceleration during optimization.

7.1 Optimal structural design
The presented method is based on the fi nite element model, 
with 13 146 elements (6046 elements in the design domain). 
The material used is aluminum, with a Young’s modulus of 
79 GPa, Poisson ratio of 0.33, and mass density of 2700 kg.m–3.

After four iterations, the optimal result was found by delet-
ing 2000 elements (Figure 8(c)). The fi nal design is shown in 
Figure 8(d). The vibration amplitude dropped by 94.00%, and 
the power consumption was also reduced by 38.46% (Table 3). 
The final design was selected as the engineering design 
(Figure 9).

7.2 Motion profi le planning
In order to show the effi ciency of the proposed motion profi le 
based on the temporal optimal distribution of inertial energy, 
the same procedure is applied to the parameter optimization 
of a proportion-integration-differentiation (PID) control sys-
tem (Figure 10).
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Figure 7. The residual vibration of asymmetric and symmetric S curves 
with the same driven time.

(a) (b)

(c) (d)

Figure 8. The structure of a die bonder. (a) Base structure; (b) design area; (c) 
optimal design; (d) fi nal design.

Table 1. Residual vibration of the capillary for different angular velocities [16].

Optimization method

Normal acceleration
(motion time 100 ms)

High acceleration
(motion time 10 ms)

Very high acceleration
(motion time 1 ms)

Vibration amplitude 
(mm)

Improvement 
(%)

Vibration amplitude 
(mm)

Improvement 
(%)

Vibration amplitude 
(mm)

Improvement 
(%)

Traditional structural 
optimization 0.00421 — 0.0587 — 5.2688 —

ESLM(1 iteration) 0.00414 1.66 0.0520 11.41 5.2687 0.002

Modifi ed ESLM 0.00408 3.09 0.0454 22.66 4.1565 21.11

7 Engineering application
In order to show its practical significance in engineering, 
the presented method is applied to the development of a die 
bonder. The bonder is a swing arm that is directly driven by 
a servo moto. The original design is shown in Figure 8(a).
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Figure 10. The control model.
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The initial values of the three vari-
ables Kp, Ki, and Kd are set as 1.00. The 
original positioning time is 6.3215 s. 
Using parameter optimization based 
on nonlinear dynamic simulation using 
fi nite element analysis, after four itera-
tions (Table 4), the optimal results are 
found with Kp, Ki, and Kd at the values 
of 694.20, 14.225, and 340.41, respective-
ly. This procedure also shows the effi-
ciency of the two presented methods.

acceleration low-load mechanisms and reduces the residual vibration by 20%; while 
the nonlinear dynamic response for the asymmetric S curve is decreased by more 
than 40%. The presented method was also applied to a design of a die bonder and 
to an optimal design of the PID parameters of a control system; both procedures 
showed the effi ciency of the metnod. The method has also been tested on a variety 
of high-acceleration low-load mechanisms in IC packaging equipment design (such 
as die bonders, wire bonders, surface mount technology (SMT), and high-accelera-
tion robotics, etc.), and a signifi cant achievement has been accomplished.
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