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The most common approaches to prevent and treat graft-versus-host disease (GVHD) are intended to
deplete or suppress the T cells capable of mediating or supporting alloresponses; however, this renders
the recipients functionally T cell deficient and hence highly susceptible to infections and tumor recur-
rence. Depletion is often accomplished through the use of broadly reactive antibodies, while functional
impairment is typically achieved by pharmacological agents that require long-term administration (usu-
ally six months or more), have significant side effects, and may not result in tolerance (i.e., non-
responsiveness) of donor T cells to conditioning regimen-resistant host alloantigen-bearing cells. As
our knowledge of immune system homeostasis has increased, cell populations with immune regulatory
function have been identified and characterized. Although such cell populations are typically present in
low frequencies, methods to isolate and expand these cells have permitted their supplementation to the
donor graft or infusion late post-transplant in order to stifle GVHD. This review discusses the biology and
preclinical proof of concept of GVHD models, along with GVHD outcomes that focus exclusively on
immune regulatory cell therapies that have progressed to clinical testing.

� 2019 THE AUTHOR. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The first successful bone marrow transplant (BMT) to correct
immune deficiency was reported in 1968 [1]. Today, more than
1 million patients have received hematopoietic stem cell trans-
plants [2]. However, despite extensive preclinical research and
clinical trials over the past five decades, graft-versus-host disease
(GVHD) remains a leading cause of morbidity and mortality
(�20%) after allogeneic hematopoietic stem cell transplant (HSCT),
even taking into account improvements that have been made over
the years in the frequency (20%–70% of allogeneic patients) and
severity of acute GVHD [3].
2. GVHD biology, prevention, and therapy

2.1. GVHD etiopathogenesis

GVHD is an iatrogenic complication caused by the reaction of
donor T cells to host target tissues, especially epithelial rich organs
and those that are in direct contact with or scavenge foreign envi-
ronmental antigens and pathogens. These predominantly include
the skin, gut, liver, and lung. During acute GVHD, tissue infiltration
and destruction by pathogenic cytolytic donor T cells occurs, most
often but not always in the early (1–3 months) post-transplant
time period [3]. Acute GVHD, which is known as secondary or runt-
ing disease in mice, was first reported by Barnes and Loutit in 1955
[4]. Acute GVHD generation, as has been eloquently stated by
Billingham [5], has three principle requirements: ① The graft must
contain immunologically competent cells; ② the recipient must
express tissue antigens that are not present in the transplant
donor; and ③ the recipient must be incapable of eliminating the
transplanted cells.
2.2. Prevention of acute GVHD by donor graft T cell depletion

Mouse BMT studies have indicated that donor T cells are pri-
marily responsible for acute GVHD [6]. This led to a series of trials
beginning about 40 years ago using soybean lectins, sheep red
blood cell (erythrocyte) rosettes, antibody and complement deple-
tion, and antibody conjugated to toxins [6]. In aggregate, these
studies demonstrated that ex vivo graft-depleting regimens
achieving 2–4 log10 T cells significantly lowered acute GVHD rates.
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However, complications recognized in the 1980s included host
anti-donor mediated graft rejection with a high mortality rate,
infectious complications caused by the slow recovery of donor T
cells in the periphery due to thymus and lymphoid organ injury,
and—especially for myeloid leukemia—increased relapse rates [6].
Other techniques have included physical separation of T cells from
the donor graft based on binding to lectins or reaction with cells
expressing T cell ligands, or ex vivo exposure to T cell cytolytic
drugs [6].

2.3. Pharmacological approaches to prevent acute GVHD

Methotrexate, a dihydrofolate antagonist, became a mainstay of
acute GVHD prevention in the mid-1970s, and continues to be so
today. In vivo anti-T cell antibodies (e.g., antithymocyte or antilym-
phocyte globulin; anti-cluster of differentiation (CD)52 mono-
clonal antibody (mAb)) and prednisone, given alone or in
combination, have been popular for preventing acute GVHD.
Beginning in the early 1980s, a calcineurin inhibitor, cyclosporine,
entered the scene and has remained as an often-used preventive
therapy [7]. FK506, another calcineurin inhibitor, yielded an out-
come similar to that of cyclosporine in allogeneic HSCT patients
[8]. More recently, the antiproliferative mycophenolate mofetil,
when given in combination with calcineurin inhibitors (cyclospor-
ine A; FK506, tacrolimus) or rapamycin (sirolimus), has become
one of the preferred drug regimens [9]. Lastly, cyclophosphamide
(Cytoxan) given in two doses in the first week post-allogeneic
HSCT has substantially reduced the rate of severe acute and
chronic GVHD in recipients of haploidentical T cell-replete grafts
and other graft sources [10–13]. Although overall acute GVHD
severity has been reduced by incorporating these combinatorial
drug regimens, toxicities are frequently observed, and uniform effi-
cacy has not been achieved.

2.4. Rationale for immune cell therapies for acute GVHD prevention

In the 1980s, studies using mixed donor and host sources of
bone marrow (BM) in mice showed that the host marrow compo-
nent suppressed the otherwise immune competent grafts from
causing acute GVHD [14], and that elimination of the grafted host
cells later, post-BMT, restored a GVHD response [15]. In other stud-
ies, donor anti-host alloreactive T cells were found to be sup-
pressed by interleukin (IL)-10-producing CD4 T cells in recipients
of haploidentical or fetal liver stem cell transplants [16]. These
suppressor cells were subsequently identified as type 1 regulatory
T (Tr1) cells [17]. Together, these data provide the foundational
information that a lack of GVHD and tolerance induction in
patients may not be dependent upon the deletion of donor anti-
host alloreactive T cells, but may rather be an active, ongoing cel-
lular immune regulatory process.

In addition, in some patients receiving human leukocyte anti-
gen (HLA) mismatch or fractionated total lymphoid irradiation,
regulatory cell populations (invariant natural killer T cells, iNKTs)
were identified that could suppress donor anti-host alloreactive T
cells, leading to acute GVHD prevention [18,19]. The implications
of these studies are twofold: ① The persistence of donor anti-
host alloreactive T cells makes it possible that inciting triggers
(e.g., viral infection or ultraviolet light) may increase their fre-
quency and result in acute GVHD; and ② cellular immune mecha-
nisms are powerful and provide continuous protection against
detrimental alloresponses without requiring global suppression
or the depletion of donor T cells. Such cellular mechanisms of tol-
erance induction allow for the greater possibility of anti-tumor and
anti-pathogen responses and for the avoidance of the frequent side
effects that are seen with most drugs in this high-risk patient
population.
3. Adaptive immune system regulatory cell products in the
clinic

Although the rationale for cell therapies to prevent or treat
GVHD has been based upon their immune regulatory properties,
several of these products have the dual function of immune regu-
lation and tissue repair. For example, adaptive immune system
cells such as regulatory T cells (Tregs) that inhibit productive
alloresponses also secrete a protein, amphiregulin, which is mito-
genic for epidermal growth factor (EGF) receptor-expressing
epithelial cells, and thus stimulates their repair from conditioning
and GVHD-induced tissue injury, especially in the gut [20]. In con-
trast, Tr1 cells are believed to suppress GVHD by IL-10 and trans-
forming growth factor beta (TGF-b) secretion, rather than by
direct tissue repair [17]. Non-hematopoietic cells, such as mes-
enchymal stromal cells (MSCs), also have immune regulatory and
tissue-reparative properties [21].
3.1. Thymus-derived regulatory T cells

One of the most significant discoveries in the field of immunol-
ogy in the last 25 years has been the identification and character-
ization of specific CD4+ T cell subsets that are critical for
regulating immune responses [22]. Also known as natural Tregs,
thymus-derived Tregs (tTregs) co-express CD4, CD25, and the mas-
ter regulator, forkhead box P3 (FOXP3) transcription factor, which
encodes scurfin, a protein belonging to the forkhead/winged-helix
family [23]. These CD4+CD25+ Tregs are necessary in order to sup-
press the activation of self-reactive lymphocytes and autoimmu-
nity [24], and limit the immune response to chronic pathogens
and commensal bacteria in the gut [25]. Tregs are essential in
maintaining immune homeostasis; the adoptive transfer of Tregs
is able to restore immune homeostasis in rodent models in which
tolerance to self-antigens has been broken and autoimmune dis-
ease occurs. These seminal studies have led to the testing of Tregs
in murine models of transplantation tolerance.

Tregs regulate T cell responses to alloantigens, and are critical
for ex vivo tolerance induction [26]. Mechanisms by which Tregs
may attenuate GVHD include the release of regenerative cytokines
(e.g., amphiregulin) [20], antigen-presenting cell (APC) function
inhibition (e.g., via cytotoxic T-lymphocyte-associated protein 4
(CTLA4)), and the inhibition of T-conventional cells (Tcons) by
the release of inhibitory molecules (e.g., adenosine, TGF-b, IL-35,
and IL-10) [27] and/or by IL-2 consumption [28] and homeostasis
[28]. Three reports appeared in 2002 showing that the infusion
of ex vivo expanded, isolated, and infused Tregs could suppress
GVHD in mice [29–31]. In two studies, freshly purified donor Tregs
given at the time of BMT modestly inhibited GVHD when adminis-
tered in equal numbers with T cells, while large numbers of Tregs
could be obtained by ex vivo activation and expansion, which
increased not only Treg numbers, but also suppressor function
[29,31]. When administered in equal numbers with T cells, a signif-
icant inhibition of rapidly lethal GVHD was observed [29]. Alterna-
tively, Treg activation and expansion could take place in vivo in
allogeneic murine BMT recipients by Treg infusion after condition-
ing induced lymphopenia and several days prior to BMT [30].

Challenges in the isolation of extremely pure Tregs created a
practical problem that precluded a more rapid clinical develop-
ment of Treg cell therapy. A large and overlapping population of
CD25dim effector/memory T cells exists in humans; thus, tTregs iso-
lated from peripheral blood (PB) using CD4 and CD25 antibody
conjugated immunomagnetic beads also contained CD4+CD25+

FOXP3� cells, and did not consistently maintain FOXP3 expression
or suppressive function when expanded in vitro [32,33]. In contrast
to magnetic-bead-purified PB Tregs, tTregs can be readily purified
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from umbilical cord blood (UCB) due to the relative paucity of
CD25dim non-Tregs in UCB, as a fetus is exposed to fewer environ-
mental antigens than an adult [32,34]. Cells purified from UCB con-
tained fewer CD4+CD25dim cells and could be expanded ex vivo
using anti-CD3/CD28 mAb-beads and IL-2, while maintaining
FOXP3 expression and suppressive function [32,33].

In 2009, initial clinical studies reported that Tregs, which were
isolated from family donors by flow cytometry sorting as CD4+

CD25+CD127� and ex vivo expanded for 2–4 weeks, were given to
a patient with severe, treatment refractory acute GVHD. The
patient was stated to have had a transient and moderate improve-
ment of his clinical condition, despite ultimately succumbing to
GVHD [35]. Our clinical trial, which started in 2007, included 23
patients who received a double UCB transplant to provide allo-
geneic hematopoietic stem cells and mature T cells, as well as
tTregs expanded from a third UCB unit [36] in doses from
1 � 105 to 3 � 106 kg�1. This resulted in a ratio of 1 Treg to about
6 T cells, which was far below the optimal 1:1 ratio that is needed
to protect mice against lethal GVHD. UCB tTregs from a separate
unit were tracked in vivo in seven patients [36], and were detected
in circulation for only about 14d, with the highest frequency being
observed on day 2 after UCB transplant. No infusional toxicity, the
primary endpoint, was observed. The secondary endpoints sug-
gested that the outcome results in patients with tTreg infusion(s)
were superior to historical controls, as they reduced the incidence
of steroid-requiring acute GVHD (43% versus 61%, P = 0.05) com-
pared with 108 historical controls that were treated identically
except without supplemental Tregs. There was no increased risk
of infection, relapse, or early mortality [36].

In subsequent studies, changes in tTreg expansion, which
included the time of re-stimulation of the cultures and the use of
KT64/86-expanded UCB Tregs instead of anti-CD3/CD28 bead-
based artificial APCs, increased the yields dramatically to a mean
of greater than 13000-fold expansion, versus 200–400-fold expan-
sion with beads [37]. In a trial of 12 double UCB transplant patients
who received a rapamycin-containing GVHD preventive regimen
and a single supplemental dose of tTregs, where the doses ranged
from 3 � 106 to 1 � 108 kg�1, there was a significant reduction in
acute GVHD. Only one patient had possible acute GVHD (the
biopsy was inconclusive and the patient was treated for only three
weeks), in contrast to the 48% incidence in 19 contemporary con-
trols who received the same conditioning and GVHD prophylaxis
regimen without tTregs.

Using fresh, bead-purified tTregs, investigators in Italy [38]
assessed the effect of adding tTreg pre-transplant on GVHD pre-
vention and immunologic reconstitution in allogeneic HSCT recip-
ients. The tTregs were infused into patients 3d prior to HLA-
haploidentical CD34+ cells supplemented with frozen/thawed
mature donor T cells in the absence of any post-transplant
immunosuppression. Purification was very consistent, and only
two of the 28 patients enrolled in the study did not receive tTregs
due to low purity (� 50% FOXP3+). These studies confirmed the
safety of ex vivo purified tTregs, and found that they promoted
lymphoid reconstitution and did not overtly weaken the graft-
versus-leukemia effect of the co-transferred mature T cells [38].
Indeed, in a follow-up study in myelodysplastic and acute myeloid
leukemia patients, the relapse rates were significantly lower, likely
due to the absence of GVHD- and treatment-induced immune sup-
pression. While no GVHD was observed for doses of 5 � 105 or
1 � 106 T cells�kg�1 plus 2 � 106 tTregs�kg�1, two of the five
patients receiving 2 � 106 T cells�kg�1 plus 4 � 106 tTregs�kg�1

developed GVHD. This finding indicates that 1 � 106 T cells�kg�1

is the maximum dose, unless increased numbers of Tregs are given
[39].

Clinical testing is likely to begin in the relatively near future on
new approaches to better target IL-2 to Tregs using mutated IL-2
receptor beta chains expressing Tregs and mutated IL-2 protein
[40], or IL-2/anti-IL-2 complexes that preferentially bind the IL-2
receptor beta chain [41] and hence stimulate the high-affinity IL-
2 receptor complex expressed on Tregs. A second approach, involv-
ing tumor necrosis factor (TNF) receptor-2 agonists, has been
shown to expand recipient rather than donor Tregs in order to
attenuate acute GVHD [42]. An approach involving inhibition of
cytokines that subvert Treg differentiation [43] (e.g., IL-6) is cur-
rently in clinical trials [44]. Although future randomized trials
are required to assess tTreg efficacy and the effects on anti-
pathogen and anti-tumor responses, these studies in aggregate
hold promise for the future.

3.2. Induced regulatory T cells

Induced Tregs (iTregs) are named as such because they exit the
thymus as naïve T cells; FOXP3 expression and suppressive func-
tion are then induced in the periphery. iTregs are required not only
for peripheral tolerance, but also to prevent lymphoproliferative
disease [25]. Two types of iTregs exist. One type of iTregs is CD8+

and HLA class I-restricted [45], and does not express FOXP3 at
the steady state but can do so after stimulation in vivo [46,47] or
in vitro in the presence of IL-2 and TGF-b [45]. Although these
CD8 iTregs can suppress effector T cell (Teff) responses in vitro,
they are inherently unstable and can revert to Teffs to exacerbate
murine GVHD [45]. However, since these iTregs are not yet in
the clinic, they will not be further discussed here. The second type
comprises Tregs that can be induced and expanded in vitro by stim-
ulating CD4+CD25� T cells in the presence of TGF-b or all-trans reti-
noic acid (ATRA); like tTregs, the adoptive transfer of these iTregs
suppresses disease [48,49]. TGF-b or ATRA also induce FOXP3
expression after the stimulation of naïve human T cells; however,
while one study showed these cells to be suppressive [50], other
studies have observed modest or no suppression [51–53], although
CD4+CD25�CD45RA+ T cells stimulated in the presence of TGF-b
plus ATRA acquired stable suppressive function [54]. Similarly,
rapamycin enhanced TGF-b-dependent FOXP3 expression, induced
potent suppressor function in naïve T cells [55], and induced sup-
pressive function in unfractionated T cells, which is therapeutically
advantageous because it increases yield and decreases cost.
Rapamycin/TGF-b iTregs express CD25 at levels that are equal to
or higher than expanded tTregs; furthermore, they contain few
IL-2, interferon gamma (IFNc), or IL-17 secreting cells, and sup-
press disease in a xenogeneic model of GVHD, in a manner that
is comparable to that of tTregs [55].

Due to the higher abundance of the starting CD4+CD25� T cell
population in a non-mobilized PB apheresis unit, and the fact that
PB contains far more cells than UCB, iTregs should permit the infu-
sion of large numbers of Tregs that would achieve the desired Treg:
T cell ratios of 1:1 or higher, which are especially useful for recip-
ients of PB stem cell (PBSC) transplants that contain high non-Treg
T cell numbers [56]. Large-scale experiments have shown that
about 2.2 � 1011 iTregs can be generated from a single apheresis
product, which is more than 50 times more than available in initial
tTreg clinical trials. Similar to how tTreg expands in the presence of
rapamycin, less than 4% of the cells in rapamycin/TGF-b iTreg cul-
tures secrete IFNc or IL-17. A concern in the field has been whether
tTregs—and iTregs in particular—can become unstable and be
reprogrammed to become Teffs with loss of suppressor function
[57]. In some disease models, tTregs can produce pathogenic Teff
cytokines such as IFNc or IL-17, and have a methylated Treg-
specific demethylation region associated with tTreg but not with
iTreg or with peripheral Treg suppressor function [58–60]. Instabil-
ity likely requires a highly inflammatory local environment, Treg
persistence that is sufficiently long and in the right environment
to become unstable, and strong indications that the effector
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cytokines that are produced are pathogenic and that suppressor
function is reduced or lost, which is not a uniform finding [61].
For iTregs generated from CD4+CD25� T cells and expanded to high
numbers in vitro, no evidence for conversion into Teff has been
found, despite the postulated higher likelihood compared with
tTregs due to methylation of the Treg-specific demethylation
region in the xenogeneic GVHD model throughout the 82-day
assay [56]. With this efficacy data in hand, we recently completed
and are currently analyzing an iTreg phase I dose escalation
(3 � 108–1 � 109 kg�1) study in 14 non-myeloablated recipients
of matched sibling donor granulocyte-colony stimulating factor
(G-CSF) mobilized PBSCs who received iTregs and mycophenolate
mofetil plus cyclosporine prophylaxis (the standard of care for
GVHD prevention at our institution for this patient population).y
3.3. Type 1 regulatory T cells

Tr1 cells arise in the periphery and do not require FOXP3
expression for suppression. Phenotypically, Tr1 cells have now
been characterized as co-expressing integrin alpha-2 (CD49b)
and lymphocyte-activating gene-3 (LAG-3) [62]. Tr1 cells produce
IL-10, TGF-b, and IFNc, and suppression has been shown to be con-
ferred by IL-10 and TGF-b secretion; this secretion is highest in
CD49b+LAG-3+ cells, which also are the most suppressive [63].
Tr1 cells are triggered via engagement of the antigen-specific T cell
receptor, and can be generated in response to potent alloantigen
stimulation by recipient dendritic cells (DCs) in the presence of
IL-27, which is secreted mostly from donor monocytes/
macrophages in mice [64]. The stable persistence of Tr1 cells is
dependent on the transcription factor Eomesodermin [64]. Mecha-
nistically, Tr1 cells can directly suppress T helper (Th)17 and Th1
effector cells in an antigen-specific fashion as well as via contact-
dependent processes, CD8 T cell proliferation, and IFNc production.
Tr1 cells also can indirectly suppress Teffs by modulating or killing
APCs (DCs or macrophages) that are key in priming GVHD-causing
T cell response. Alternatively, Tr1 cells can render DCs tolerogenic
and skew macrophages toward anti-inflammatory M2 macro-
phages that themselves support in vivo Tr1 cell and peripheral Treg
generation [63].

In acute GVHD, donor tTregs are profoundly deficient, and Tr1
cells are the dominant Treg population post-transplant in mice
[64]. Moreover, Tr1 deficiency exacerbates GVHD [64]. These data
and the findings described in Section 2.4 demonstrate the capacity
of Tr1 cells to suppress donor anti-host alloreactive T cells in
patients. A clinical trial of Tr1 cell infusion was performed in
high-risk malignancy patients who were given haploidentical
transplants of a high median CD34-enriched graft dose with a
low number of supplemental T cells (104 kg�1) isolated from a fam-
ily donor G-CSF mobilized apheresis product [65]. To generate Tr1
cells, recipient monocyte-derived DCs obtained from a non-
mobilized apheresis unit were treated with exogenous IL-10 in
order to induce DCs that produce IL-10, which were then co-
cultured with donor PB mononuclear cells for 10 d [65]. At that
time, phenotypically about 1/7 of the culture is CD49b+LAG+ and
is effective in suppressing donor anti-host but not anti-third-
party T cell responses in vitro. Tr1-containing cultured cells were
given as fresh or frozen products in escalating doses from
1 � 105 to 3 � 106 kg�1 in a semi-log fashion not earlier than
1 month post-transplant and only after neutrophil engraftment.
Of the 19 patients enrolled, 17 received an allogeneic HSCT and
12 received the Tr1-containing product. Of the 11 patients receiv-
ing 1 � 105 kg�1, four had relapse or graft rejection, three were not
immune reconstituted and succumbed to infections, and four were
y See clinicaltrials.gov study NCT01634217.
immune reconstituted and were alive and well at the time of pub-
lication. The single patient who received 3 � 105 kg�1 was immune
reconstituted but developed severe GVHD. The five patients in total
who were immune reconstituted had T cells that were proliferative
but poorly responsive to host alloantigen-bearing stimulators. An
ongoing trial is testing the safety and tolerability of this approach
to prevent GVHD in adult and pediatric patients receiving mis-
matched related or mismatched unrelated unmanipulated donor
HSCT for hematological malignancies.
4. Non-hematopoietic system immune regulatory cell products
in the clinic

The first cellular product that was successfully used to treat
severe acute GVHD in the clinic was MSCs. Multi-potent adult pro-
genitor cells (MAPCs) are distinct from MSCs, but have commonal-
ity with them and have higher proliferation capacity [66]. Both are
adherent BM-derived progenitor cells with stromal cell features
that fall within the consensus definition of MSCs and that possess
immune modulatory and tissue repair properties. However, MAPCs
have a wider range of differentiation potential encompassing all
three germ cell layers [66].
4.1. Mesenchymal stromal cells

Under appropriate inductive conditions, MSCs can differentiate
into mesenchymal lineage cells including chondrocytes, osteo-
blasts, and adipocytes [67,68]. The consensus definition includes
their adherence, their capacity to differentiate into several mes-
enchymal lineages (e.g., bone, cartilage, muscle, adipocytes, ten-
don, and stroma), and their phenotyping (CD105+, CD166+,
CD73+, CD90+, and CD29+ and, without expression of hematopoi-
etic antigens, CD34, CD45, and CD14) [69]. MSCs reside in a
differentiated state in most tissues, albeit at low frequency (about
1:10000 cells in BM) [70]. Their widespread distribution (e.g., BM,
fat, fetal tissues) and rapid proliferation suggest that these cells can
be called upon to protect the tissue, organ, or organism from
injury.

MSCs are immunosuppressive, rather than immunostimulatory,
and therefore may function to prevent rather than support an
overly aggressive immune response that might be detrimental to
the organism. For example, MSCs express low levels of class I
and low/absent major histocompatibility complex (MHC) class II
and costimulatory molecules. Multiple mechanisms have been pro-
posed to suppress adaptive and innate immune responses, and
have been summarized in a recent review [21]. These include
upregulation of the inhibitory enzyme indoleamine 2,3-
dioxygenase (IDO), which metabolizes the essential amino acid
tryptophan; upregulation of nitric oxide, which suppresses T, B,
and NK cell function; and the elaboration and secretion of inhibi-
tory molecules including TGF-b, soluble HLA-G, and prostaglandin
E2 (PGE2) [71], which also participate in supporting Treg genera-
tion, and which inhibit Th17 generation with IL-10 [72–74]. IL-6
works in conjunction with PGE2 to generate anti-inflammatory
M2 macrophages [75] and inhibit DC maturation [76,77]. MSCs
express co-inhibitory molecules such as the IFNc-inducible pro-
grammed cell death ligand-1 (PD-L1), and also produce soluble
PD-L1 and PD-L2 [78,79]. MSCs limit Teff migration into target tis-
sues by downregulating chemokines and chemokine receptor
expression on T cells and monocytes/macrophages [80].

MSC exosomes, which are small (50–200 nm) in size and are
derived from endosomes, contain cytokines, growth factors, signal-
ing lipids, messenger RNAs (mRNAs), and regulatory microRNAs
that can influence cell signaling, communication, and metabolism
[81]. MSC exosomes exert immunosuppressive effects on T, B,
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and NK cells through their CD73, which has been shown to sup-
press human/mouse xenogeneic GVHD by increasing CD39+ Th1
cell apoptosis, PD-L1, and IL-10 mRNA, among other inhibitory
molecules [82–85]. Investigators have also observed that donor
CD8+ cytotoxic T cells induce apoptotic MSCs, the frequency of
which correlates with acute GVHD response [86]. The result is
recipient phagocytic engulfment of apoptotic MSCs, IDO produc-
tion, and host immune suppression. Together, such data may
explain how GVHD amelioration can take place, even though it is
challenging to find MSCs in the tissues. MSCs can contribute to tis-
sue repair through regeneration, remodeling, and angiogenesis via
connective tissue growth factor, vascular endothelial growth factor
(VEGF)-a, keratinocyte growth factor, angiopoietin-1, and stromal
derived factor-1 [87–89].

Le Blanc et al. [90] were the first to administer haploidentical
MSCs to a pediatric patient with severe steroid-refractory acute
GVHD, which resulted in a rapid and significant decrease in GVHD
symptoms. This finding led to a plethora of clinical studies and
reports using autologous, haploidentical, or third-party HLA
mismatched MSCs for steroid-refractory acute GVHD [91–98].
The results have been mixed. For example, in a large collaborative
European phase II study, in which 49 adult and pediatric patients
received one or two doses and six received 3–5 doses as adjunctive
therapy, an overall response rate of 70.9% was reported, including
complete responses and the disappearance of all symptoms in
54.5% [93]. The Prochymal made by Osiris Therapeutics, Inc. has
been approved for GVHD therapy in pediatric patients [99] in the
United States, Canada, and New Zealand. In addition, a phase III
trial treating children with steroid-refractory acute GVHD with
MSCs (100 million cells per dose) met the primary day 28 endpoint
of overall response that was higher than the historical controls.y

However, a different phase III randomized double-blind study� using
the Prochymal product showed no significant difference in clinical
outcomes between the control and allogeneic MSC groups. An
ongoing double-blind placebo-controlled multi-center phase III trial
is ongoing in Europe on the use of MSCs for the treatment of steroid-
refractory acute GVHD. A recent meta-analysis of MSC treatment
studies favored MSCs for overall survival in patients with steroid-
refractory acute GVHD [100].

Finally, it is notable that in the BM itself, the stromal cell
features of MSCs suggest a role in supporting hematopoiesis, as
confirmed by the co-transplantation of MSCs, which can enhance
the engraftment of human cord blood hematopoietic cells in
immunodeficient mice [101]. These findings have led to several
clinical trials testing the in vivo capacity of MSCs in speeding
hematopoietic recovery. Depending on the context, graft rejection
has appeared to be reduced and hematopoietic or lymphocyte
recovery has been augmented in settings of parental haploidentical
CD34+ PB stem cell grafts [101]. Such benefits were not seen in one
study, which involved parental haploidentical MSCs in the recipi-
ents of UCB, although severe acute GVHDwas significantly reduced
[102]; however, in another study, the median time to neutrophil
recovery appeared to be faster [103]. Both studies had small num-
bers of patients (13 and 8, respectively). The contrasting results
have been ascribed to differences in the mechanisms of graft
rejection.
4.2. Multi-potent adult progenitor cells

MAPCs are CD45 negative cells isolated from adult sources and
cultured in low serum and supplemental growth factors (e.g., EGF,
platelet-derived growth factor (PDGF), leukemia inhibitory factor
y See clinicaltrials.gov study NCT00366145.
� See clinicaltrials.gov study NCT02652130.
(LIF)). Their reported phenotype is negative for CD34 and c-kit,
low/absent for MHC classes I and II, and positive for Oct4 and
Rex1. MAPCs are non-immunogenic expanded BM-derived adult
stem cells with immunomodulatory, immunosuppressive, and
tissue-regenerative capacity that exhibit a broader differentiation
capacity than MSCs, including mesenchymal, endothelial, and
endodermal lineages [104,105], and that have a greater expansion
potential. Thus, they permit the development of large-scale off-
the-shelf products from a single donor, which reduces product
variability [106,107]. MAPCs are able to suppress allogeneic T cell
response contact-independent mechanisms through PGE2 and
IDO-mediated suppression of proliferation and pathogenic
cytokine-producing cells [75,108,109] and the production of IL-
10 or TGF-b, leading to Treg generation [75,108]. In a phase I dose
escalation study (1 � 106–1 � 107 cells�kg�1 for 1, 3, or 5 doses)
using MultiStem, a commercial MAPC product (Athersys, Inc.), fea-
sibility and safety were established. Furthermore, encouraging
GVHD outcomes were reported, with 37% for grades II–IV GVHD
(n = 36), 14% for severe GVHD, and even lower rates for the highest
doses (11% and 0, respectively; n = 9) [110].
5. Concluding statements

Less than 15 years have passed since the first-reported cell
therapy—non-hematopoietic cell product MSCs for treating
steroid-refractory acute GVHD [90]. At the present time, three dis-
tinct Treg products (tTregs, iTregs, and Tr1 cells) have completed
phase I studies, along with a second non-hematopoietic cell pro-
duct, MAPCs. Collectively, these trials highlight the possibility of
using the body’s natural immune regulatory mechanisms to pro-
vide a source of cells that can be isolated, expanded, and differen-
tiated as needed. Intriguing similarities between these varied
products are the low frequency (for iTregs, we consider peripheral
Tregs as the in vivo counterpart) and the dual function of immune
suppression/regulation and tissue repair. Moreover, after infusion,
there have been challenges in detecting long-term persistence
within the blood in GVHD patients.

Using Tregs for the purpose of illustration, current limitations to
broader applications include access to Current Good Manufactur-
ing Practices (CGMPs) to produce cells for clinical trials or use as
treatment [111]; the requirement for personalized products that
require patient-specific generation [112]; manufacturing costs;
short-term persistence of infused cells in PB, along with the inabil-
ity to accurately track infused cells in GVHD tissue sites precluding
selection of the precise timing for multiple infusions using infused
cell nadir as the trigger [36]; and unknown risks for relapse and
infection. For non-hematopoietic cells, there is also the theoretical
potential for oncogenic conversion with prolonged culture, as seen
in rodents [113]. At the same time, the BMT community is deeply
engaged in the development and testing of additional immune reg-
ulatory/reparative products that have already shown efficacy in
preclinical acute GVHD models, and have recently been reviewed
[114]. These products include CD8 Tregs [45,47,115–117];
myeloid-derived suppressor cells (MDSCs) [118–120]; invariant
NK T cells [18,19,121], which rapidly release anti-inflammatory
and immune modulatory cytokines and can stimulate MDSCs
[122] and Tregs [19,123]; innate lymphoid cells (e.g., type 2 innate
lymphoid cells, which have been shown to both prevent and treat
gut GVHD) [124]; tolerogenic DCs [125–128]; and monocytes/
macrophages [129].

The immediate goals in the field of cell therapy of acute GVHD
are to determine the therapeutic index, patient population(s), and
venues that may benefit by cell infusion. Intermediate goals would
include optimizing cell distribution to key GVHD target organs,
extending longevity while maintaining lineage fidelity and
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function, and augmenting immune regulatory potency and tissue-
reparative properties. Longer-term goals would include creating
off-the-shelf, exportable, and less costly products; assessing effi-
cacy and long-term outcomes; developing products that have sup-
pressor functions specific for the desired target antigen(s); and
defining the best setting to harness the power of these cells in
treating patients with the otherwise poor prognosis of steroid-
refractory acute GVHD. In closing, much progress has been made.
The future is now bright, with proof of concept for the utility of cell
therapies in patients who are in desperate need of new treatments
after failing drug and antibody therapy.
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