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The alkali–silica reaction (ASR) is one of the major long-term deterioration mechanisms occurring in con-
crete structures subjected to high humidity levels, such as bridges and dams. ASR is a chemical reaction
between the silica existing inside the aggregate pieces and the alkali ions from the cement paste. This
chemical reaction produces ASR gel, which imbibes additional water, leading to gel swelling. Damage
and cracking are subsequently generated in concrete, resulting in degradation of its mechanical proper-
ties. In this study, ASR damage in concrete is considered within the lattice discrete particle model (LDPM),
a mesoscale mechanical model that simulates concrete at the scale of the coarse aggregate pieces. The
authors have already modeled successfully ASR within the LDPM framework and they have calibrated
and validated the resulting model, entitled ASR-LDPM, against several experimental data sets. In the pre-
sent work, a recently developed multiscale homogenization framework is employed to simulate the
macroscale effects of ASR, while ASR-LDPM is utilized as the mesoscale model. First, the homogenized
behavior of the representative volume element (RVE) of concrete simulated by ASR-LDPM is studied
under both tension and compression, and the degradation of effective mechanical properties due to
ASR over time is investigated. Next, the developed homogenization framework is utilized to reproduce
experimental data reported on the free volumetric expansion of concrete prisms. Finally, the strength
degradation of prisms in compression and four-point bending beams is evaluated by both the mesoscale
model and the proposed multiscale approach in order to analyze the accuracy and computational effi-
ciency of the latter. In all the numerical analyses, different RVE sizes with different inner particle realiza-
tions are considered in order to explore their effects on the homogenized response.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction Stanton [3] was the first to study the ASR effect: He investigated
The alkali–silica reaction (ASR), which takes place in concrete
material, is a mechanism that can be explained as a chemical reac-
tion between the alkali ions contained in cement paste and the sil-
ica existing in aggregate pieces in the presence of water. The ASR
results in an expansive gel, generally called ‘‘ASR gel,” which
causes damage and cracking in concrete over time [1]. As a result
of this long-term material deterioration, both the stiffness and
the strength of concrete decay. The key factor in ASR occurrence
is the existence of water, which is why the ASR mostly affects con-
crete structures that are located in environments with high humid-
ity (usually above 60%). Temperature is another crucial factor
controlling the driving force of the ASR [2].
the chemistry of the reaction and the effect of the ASR at the mate-
rial and structural levels, developed experimental techniques to
assess the effect of concrete mix and aggregate distribution on
ASR, and devised new solutions to mitigate ASR damage. Since
then, numerous research efforts, including experimental, analyti-
cal, and numerical studies, have scrutinized ASR and considered
various aspects of its effect on structural deterioration.

Laboratory ASR experiments are predominantly performed on
small-scale specimens in accelerated ASR situations. The acceler-
ated mortar bar test (AMBT) [4] is a popular experimental method
that is performed over a period of approximately 16 d. In AMBT
experiments, specimens cast from crushed aggregate pieces are
immersed in alkali-rich solutions, and the temperature is increased
to 80 �C. Another ASR experimental protocol is the concrete prism
test (CPT) [5], which provides more comprehensive data on the
influence of the ASR on concrete structures. The CPT is generally
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conducted on concrete samples cast from aggregates used in
industrial applications without any adjustment. In addition, sam-
ples are kept in near-saturation humidity conditions (97% or
above) in totally sealed containers to provide maximum moisture
content and minimize possible leaching. CPTs fall into two cate-
gories with respect to experiment time duration: accelerated tests
that occur over a period of 6 months are often performed at 60 �C,
whereas longer tests that occur over a period of 1–2 years are per-
formed at 38 �C.

Many researchers have explored numerical modeling of the ASR
effect at various length scales and with different accuracy levels.
Bažant et al. [6] first explored ASR damage and deterioration
through a fracture mechanics approach and predicted the pessi-
mum aggregate size.

The literature contains several macroscale continuum models
that were developed to investigate the ASR mechanism and its
relation to the degradation of concrete mechanical properties; of
these, one of the earliest is a phenomenological model developed
by Charlwood et al. [7] and Thompson et al. [8]. More detailed
models, such as that portrayed in Ref. [9], along with others that
take creep effect into account [10], were developed later on, and
can be used to successfully predict stress and deformation history
throughout the structure. In addition, researchers formulated com-
putational models based on the kinetics of ASR and implemented
them into various finite-element software programs using the
crack band approach [11,12]. These models successfully replicated
some of the experimental data available on ASR expansion [13].
The stress-state effect on ASR deterioration mechanism was incor-
porated into the models developed by Saouma and Perotti [14] and
Multon et al. [15]. Comi et al. [16,17] developed a damage model
that took into account certain mechanical and chemical aspects
of the ASR process in a consistent thermodynamic fashion. Tem-
perature and humidity factors were integrated into the kinetics
of the ASR by Poyet et al. [18]. Finally, Bažant et al. [19] and
Rahimi-Aghdam et al. [20] formulated a microplane model for
ASR degradation in which the main degradation mechanism is
the pressure induced by ASR gel flow. While all of the aforemen-
tioned models were deterministic, Capra and Sellier [21] proposed
a probabilistic approach to study ASR, built upon the key parame-
ters of ASR and on the mechanical behavior of concrete.

The mechanical models listed above share a common drawback
that is the inability to accurately reproduce the ASR-induced crack
pattern and damage distributions. This restricts the realistic pre-
diction of the ASR degradation of concrete mechanical properties
and necessitates the use of phenomenological formulations relat-
ing concrete mechanical properties to ASR gel expansion. These
models also require phenomenological relationships to couple
the applied stress state to the ASR gel expansion in order to repro-
duce the ASR effect in concrete under confinement. These restric-
tions are mainly due to the assumption that considers concrete
as a homogeneous and isotropic material [22]. The first mechanical
model able to successfully overcome these limitations is ASR-
LDPM [23], which is employed in the present work. In this model,
ASR effect is combined with the lattice discrete-particle model
(LDPM) [24,25]. LDPM is a discrete mechanical model that simu-
lates concrete as an ensemble of three-dimensional (3D) rigid poly-
hedral cells, each of which represents a spherical aggregate piece
and the surrounding mortar. These cells are linked through lattice
struts, whose mechanical behavior is formulated in a vectorial
form. In previous studies, it was shown that ASR-LDPM could suc-
cessfully replicate the crack distribution and pattern in ASR-free
expansion experiments, as well as multi-uniaxial compression
experiments [23]. Furthermore, ASR-LDPM successfully repro-
duced the degradation of concrete mechanical properties in rela-
tion to the effect of temperature and the level of alkali content. It
must be noted that in the ASR-LDPM formulation, no phenomeno-
logical relationship exists between the ASR expansion and the
degradation of concrete mechanical properties. Recently, creep
and shrinkage effects have also been incorporated into the model,
as these are necessary to improve the model prediction under vari-
able temperature and humidity [26,27].

Despite the significant capabilities of the ASR-LDPM framework,
this model carries a major limitation: the immense computational
cost of the simulation of large concrete structural members. Thus,
in order to solve practical problems, it is imperative to develop a
multiscale framework to decrease the computational cost of the
analysis, while preserving the accuracy of the results. Wu et al.
[28] established a homogenization framework based on the aver-
aging theorem to analyze the ASR effect in concrete structures.
However, no two-scale homogenization analysis was performed
in their work, and the numerical accuracy and computational effi-
ciency of the multiscale model was not studied. In the present
work, a recently developed multiscale homogenization framework
[29–32] is employed to investigate the ASR effect on concrete
structures. The homogenization of an ASR-LDPM representative
volume element (RVE) into a macroscopic tensorial constitutive
law allows the simulation of macroscopic problems by means of
the classical finite-element method, and leads to a significant
reduction of the computational cost required to solve these
problems.
2. Review of the ASR-LDPM model

The ASR-LDPMmodel [23] is formulated by introducing an ASR-
induced mesoscale strain into the concrete mesoscale mechanical
interaction modeled by LDPM. The evolution of the ASR strain over
space and time is related to the chemo-physics of the problem, and
the degradation induced is left solely to the LDPM constitutive
behavior. The following subsections review the formulations of
both the LDPM and ASR models, and then explain how they are
coupled.
2.1. The lattice discrete-particle model

By using the mix design of concrete as input (i.e., cement con-
tent c, water-to-cement ratio w/c, and aggregate-to-cement ratio
a/c), the mesoscale geometry of a generic LDPM system is con-
structed through the following steps:

(1) Coarse aggregate pieces, which are assumed to have a spher-
ical shape, are inserted into the concrete sample volume through a
trial-and-error procedure. The largest aggregates are placed in the
sample first, and the aggregate sizes are calculated by sampling a
Fuller curve F(d) = (d/da)n, in which d is the aggregate nominal
diameter, da is the maximum aggregate nominal diameter, and n
is the Fuller curve exponent. A certain minimum aggregate nomi-
nal diameter d0 is chosen as a lower threshold defining the model
resolution. Following this procedure, a dogbone specimen filled
with spherical aggregate particles can be generated, as shown in
Fig. 1(a).

(2) Computational nodes with zero radius are placed on the
outer surfaces of the sample; these are the entities used to apply
the boundary condition.

(3) A Delaunay tetrahedralization is performed based on the
centers of the generated aggregates and the external nodes in order
to generate a system of tetrahedra. A subsequent 3D tessellation of
this tetrahedral system builds a network of triangular facets inside
each tetrahedron, as depicted in Fig. 1(b). As a result of the tessel-
lation, each tetrahedral element is divided into four segments, and
each segment is connected to one node. The combination of the
tessellation subdomains connected to a generic node yields a poly-
hedral cell that encloses that node and the corresponding spherical



Fig. 1. (a) Dogbone specimen including distributed spherical aggregates; (b) generic LDPM tetrahedron with four aggregate particles and its related tessellation;
(c) tetrahedron segment related to node PI; (d) two adjacent LDPM polyhedral cells encompassing the associated spherical aggregates; (e) dogbone specimen generated from
polyhedral cells.
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aggregate. Fig. 1(c) shows the subdomain associated to the node PI.
The triangular facets are the locations where a vectorial constitu-
tive equation is defined in terms strain to stress vectors. These
facets are the potential planes on which cracking and damage
can form in concrete, and are the locations through which two
adjacent polyhedral cells interact, as shown in Fig. 1(d). Fig. 1(e)
reports the polyhedral cell representation of the dogbone specimen
depicted in Fig. 1(a). It should be noted that the spherical aggre-
gates are only created to construct a geometry resembling the real
mesoscale material structure of concrete, and they do not play a
role in the numerical solution procedure. On the other hand, the
centroid of the spherical particles and the associated polyhedral
cells, which are respectively referred to as the ‘‘node” and ‘‘cells”
hereinafter, are the geometrical entities that are used in the
numerical analysis. In this paper, the cells and nodes are symbol-
ized as CI and PI, respectively, where I = 1, . . ., N, and N is equal to
the total number of particles.

2.1.1. Facet strain vector definition
Considering a generic facet shared between two neighboring

polyhedral cells with nodes PI and PJ (Fig. 1(b)), the displacement

jump vector sutIJ can be computed at the centroid of the facet on
the basis of the rigid-body kinematics describing the deformation
of the system of cells. sutIJ is then used to define the facet strain
vector as follows:

�a ¼ ‘�1sutIJ � eIJ
a ¼ ‘�1 UJ þHJ � cJ � UI �HI � cI

� �
� eIJ

a ð1Þ

where a = N, M, L, as shown in Fig. 1(c). The facet strain vector for-
mulation in Eq. (1) is written by assuming small displacements,
rotations, and strains. In the rest of this paper, as in Eq. (1), the
superscript IJ is written only if the sign of that quantity changes
by interchanging I and J, such as for facet normal or tangential vec-
tors eIJ

a ¼ �eJI
a . As explained in Ref. [24], the local system of refer-
ence defining the normal and tangential orientations is relevant to
the triangular facet projected orthogonally to the lattice line con-
necting the two cells’ nodes, as opposed to the original facet orien-
tation. It is worth mentioning that the strain vector definition in Eq.
(1) is consistent with the projection of the continuum micropolar
strain tensor onto a generic orientation in space [33].

In Eq. (1), given that a = N, M, L, �N is the normal component of
the facet strain, and �M and �L are the tangential components of the
facet strain. As shown in Fig. 1(b), ‘ is the distance between the
centers of two adjacent particles PI and PJ, and it can be calculated
as ‘ ¼ xIJ

�� �� ¼ xJ � xI
�� �� of the facet. eIJ

a are the unit vectors describing

the facet local Cartesian reference system: eIJ
N is the unit vector

orthogonal to the projected facet, such that eIJ
N � xIJ > 0, and eM

and eL are the unit vectors in the tangential direction to the facet.
The vectors that connect the two nodes PI and PJ to the centroid of
the facet are denoted by cI and cJ, respectively. Figs. 1(b) and (c) can
be referred to for all these geometrical entities. UI and UJ are the
displacement vectors of the nodes PI and PJ, and HI and HJ are
the rotation vectors of the nodes PI and PJ.
2.1.2. Facet constitutive equations
A constitutive equation, formulated at each facet centroid,

describes the material behavior and relates the facet strain vector
to the facet stress vector. The LDPM constitutive equation is briefly
summarized below but reader is referred to previous work [24,34]
for additional details. To simulate the elastic behavior, the facet
normal and shear stress components are directly proportional to
the corresponding facet normal and shear strain components.

To simulate fracture under tension and shear-tension (�N > 0),

an effective strain � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2N þ a �2M þ �2L

� �q
and an effective stress

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2N þ t2M þ t2L

� �
=a

q
are calculated to define the normal and shear

stresses on the facet as tN = �N (t/�), tM ¼ a�M t=�ð Þ, and
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tL ¼ a�L t=�ð Þ. The effective stress t is incrementally elastic (_t ¼ E0 _�)
and it is bounded by the inequality 0 � t � rbt �;xð Þ. The stress
boundary is rbt ¼ r0 xð Þexp �H0 xð Þ �max � �0 xð Þh i=r0 xð Þ½ �, in
which xh i ¼ max x;0f g, �0 xð Þ ¼ r0 xð Þ=E0, and tan xð Þ ¼
�N=

ffiffiffi
a

p
�T ¼ tN

ffiffiffi
a

p
=tT , where �T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2M þ �2L

q
and tT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2M þ t2L

q
. x is

the parameter that governs the coupling degree between the

normal and the shear loading. �max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2N;max þ a�2T;max

q
is the max-

imum effective strain experienced by the facet, which is �max ¼ �
when there is no unloading. The softening modulus for the post-
peak behavior H0 xð Þ ¼ Ht 2x=pð Þnt , in which nt is the softening
exponent and Ht is the softening modulus in pure tension
(when x = p/2), formulated as Ht ¼ 2E0= ‘t=‘� 1ð Þ. ‘t ¼ 2E0Gt=r2

t

is the tensile characteristic length and Gt is the mesoscale
fracture energy. The transition between pure shear (x = 0)
to pure tension occurs through a smooth function over
which the strength varies in a parabolic form given by

r0 xð Þ ¼ rtr2st �sin xð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 xð Þ þ 4acos2 xð Þ=r2st

q� 	
= 2acos2 xð Þ
 �

,

where rst = rs/rt is the shear-to-tensile strength ratio.
On the contrary, when the facet is in compression (�N < 0),

the normal stress is calculated considering the inequality
�rbc �D; �Vð Þ � tN ¼ E0�N � 0, where rbc is the boundary stress
function that depends on the element volumetric strain, �V , and
the facet deviatoric strain, �D ¼ �N � �V . The volumetric strain is
calculated by the volume change of the tetrahedral element as
�V ¼ DV=3V0, which is considered to be equal for all facets
belonging to that tetrahedral element. The function rbc �D; �Vð Þ,
describing pore collapse and rehardening under high confinement,
is defined as follows: rbc = rc0 for ��V � �c0 ¼ rc0=E0;
rbc ¼ rc0 þ ��V � �c0h iHc rDVð Þ and Hc ¼ Hc0= 1þ jc2 rDV � jc1h ið Þ
for �c0 � ��V � �c1 ¼ jc0�c0; rbc ¼ rc1 rDVð Þexp ��V � �c1ð ÞHc rDVð Þ=½
rc1 rDVð Þ� and rc1 rDVð Þ ¼ rc0 þ �c1 � �c0ð ÞHc rDVð Þ for ��V � �c1. In
the previous equations, rDV ¼ 10 �Dj j=�c0 for �V > 0 and
rDV ¼ � �Dj j= �V � 0:1�c0ð Þ for �V < 0; rc0, Hc0, jc0, jc1, and jc2 are
material parameters.

For facets in compression, the shear stresses are calculated
incrementally as _tM ¼ ET _�M � _�pM

� �
and _tL ¼ ET _�L � _�pL

� �
, where

_�pM ¼ _k@w=@tM and _�pL ¼ _k@w=@tL; k is the plastic multiplier for
which the loading and unloading conditions are u _k � 0 and
_k � 0. The yielding surface and the plastic potential are

written as u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2M þ t2L

q
� rbs tNð Þ with rbs ¼ rs þ l0 � l1

� ��
rN0 1� exp tN=rN0ð Þ½ � � l1tN and w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2M þ t2L

q
, respectively. rN0 is

the transitional normal stress, l0 is the initial internal coefficient
of friction, and l1 is the final internal coefficient of friction.
2.1.3. Cell equilibrium equations
Finally, the translational and rotational equilibrium equations

of a generic LDPM cell CI can be written as:X
F I

AtIJ þ VIb0 ¼ 0;
X
F I

AcI � tIJ ¼ 0 ð2Þ

where F I is the series of facets that cell CI is composed of; A is the
area of the projected facet; VI is the cell volume; b0 is the body force
vector, which is considered to be uniform over the cell; and
tIJ ¼ tae

IJ
a ¼ tNe

IJ
N þ tMe

IJ
M þ tLe

IJ
L is the resultant stress vector acting

on the triangular facet.
LDPM is a part of a computational package named MARS [35]

and has been widely used for the simulation of concrete mechan-
ical behavior [25]. In addition, LDPM has shown great success in
the simulation of concrete response in a dynamic regime [36,37],
fracture modeling of concrete reinforced by fiber-reinforced poly-
mer (FRP) and steel [34], simulation of fiber-reinforced concrete
[38,39], and concrete perforation response [40].

2.2. ASR governing equations

Over the past few decades, researchers have broadly investi-
gated the chemical and physical processes that occur during ASR
progression. It has been shown that those processes significantly
depend on aggregate mineralogy and chemistry, cement composi-
tion, cement replacement products, and other additives. Further-
more, it has been reported that silica is not uniformly distributed
over each aggregate piece; rather, it appears in the form of discrete
inclusions, pockets, and veins [41,42]. Various types of alkali ions,
such as Na+, K+, and Ca2+, which exist in the cement paste [43,44],
react with the silica inside the aggregate pieces in the presence of
hydroxide ions (OH�) and water (H2O) [45-47], mainly later in the
concrete lifetime [48,49]. The ASR results in an amorphous expan-
sive gel that varies widely in chemical composition due to different
aggregate mineralogies and available alkali ions [50,51]. In addi-
tion, researchers advise that the ASR gel flowability and expansive
characteristics significantly depend on the calcium and water con-
tent [52–54], and that further chemical reactions take place at later
stages [55]. The produced ASR gel shows a considerable expansive
characteristic, which results in significant cracking and damage in
the aggregates and cement paste [56,57]. Experimental inspections
have clearly demonstrated the presence of ASR gel, particularly on
the outer surface of aggregates, inside aggregate pieces, and inside
the cracks in the case of very reactive aggregates. It should be
noted that this does not necessarily indicate gel flow, since it
may be related to the fact that cracks facilitate the transport of
water and ions, which would later produce more gel inside the
crack [52,53,58].

Nevertheless, during the ASR, the alkali ions available in the
cement paste must permeate into the aggregate in order to react
and form ASR gel; furthermore, additional water must be trans-
ported to the gel in order for it to imbibe water and subsequently
expand. The aforementioned statements clearly indicate that a
mesoscale diffusion process must occur. Therefore, in previous
research, a mesoscale concrete model was selected that can cap-
ture the major ASR phenomena and the averaged subscale ones
[23]. In this approach, the overall average expansion rate of a single
aggregate piece, which depends on basic gel formation and water
imbibition, is converted into an inhomogeneous gel strain and
applied as an eigenstrain on the concrete meso-structure within
the LDPM framework. ASR-LDPMwas originally formulated for sat-
urated conditions and uniform alkali concentration [23], and it has
recently been generalized for the case of variable environmental
conditions and variable alkali ion concentration [26].

As mentioned earlier, in order to generate the ASR gel, alkali
ions and water must reach the silica available in the aggregates
by means of a diffusion process through the volume of aggregates.
Therefore, the mass of the gelMg produced around a generic aggre-
gate piece of diameter d is calculated by solving a steady-state
mass balance of the radial diffusion process into the aggregate
body. A schematic of the diffusion process that takes place during
the ASR is plotted in Figs. 2(a) and (b), in which z is the position of
the diffusion front calculated from the aggregate center, which is
equal to the radius of the unreacted segment of the aggregate.
Thus, the produced ASR gel mass Mg can be formulated as follows:

Mg ¼ jajg
p
6

d3 � 8z3
� �

ð3Þ

where ja ¼ min ca � ca0h i= ca1 � ca0ð Þ;1½ � is a parameter that
accounts for the level of alkali content in the cement paste. ca0 is
the lower bound of the alkali content, at which little or no ASR
expansion is recorded, and ca1 is the saturation alkali content



Fig. 2. (a) A generic aggregate piece and the surrounding cement paste; (b) ASR gel created around a generic aggregate piece; (c) the triangular element generated by three
aggregate pieces in a 2D model under the ASR effect.
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sufficient for a complete ASR. jg is a free parameter used for the
silica-to-gel conversion. The speed of the ASR diffusion front can
be written as follows:

_z ¼ �wwas0exp Eag= RT0ð Þ � Eag= RTð Þ
 �
z 1� 2z=dð Þ ð4Þ

where T0 and T are the reference and current temperatures, respec-
tively; Eag is the diffusion process activation energy; and R is the
universal gas constant. ww is the water content density in the
cement paste in the vicinity of the aggregate pieces, which can be
estimated as ww ¼ c w=c � 0:188a1

c

� �
at saturation [59]; here,

a1
c ¼ 1:031w=cð Þ= 0:194þw=cð Þ is the asymptotic hydration degree.

as0 is the permeability of alkali-rich water into the aggregate at
room temperature (296 K).

Once created, ASR gel tends to absorb water and expand as a
result, thus applying an expansive pressure to the surrounding
material that leads to damage and cracks. The process of water
imbibition is formulated by the following evolution law, as pre-
sented in Ref. [26]:

_Mi ¼ C0
i

d2
exp �nMið Þ jiMg �Mi


 �
exp

Eai

RT0
� Eai

RT

� 
ð5Þ

where Mi is the mass of imbibed water, ji is the ratio between the
maximum amount of imbibed water and the mass of gel, C0

i is the
initial micro-diffusivity of the water in the vicinity of the aggregate
surface, and d is the effective distance for water to travel from the
concrete surrounding an aggregate into the ASR gel. The exponen-
tial term reflects the fact that the diffusivity of the ASR gel decreases
as the water imbibition process proceeds. Finally, the temperature-
dependence of the imbibition process is formulated in the form of
an Arrhenius-type equation expressed in terms of the imbibition
process activation energy Eai.

The calculation of the mass of imbibed water permits then the
calculation of an average expansion of the corresponding aggregate
piece, whose radius becomes

ri ¼
3 Mi �M0

i

D E
4pqw

þ r3

0
@

1
A

1=3

ð6Þ

where the brackets h i extract the positive value of the enclosed

expression. In Eq. (6), M0
i ¼ 4pqw=3ð Þ r þ dcð Þ3 � r3

h i
is the imbibed

water associated to a gel expansion that can be accommodated in
the interfacial transition zone (ITZ) pores without generating any
pressure, r = D/2 is the initial radius of the aggregate piece, dc char-
acterizes the available pore space in the ITZ, and qw is the mass den-
sity of water.
Considering Eq. (6), the time rate of the radius of a generic
aggregate piece can be written as follows:

_ri ¼ dri
dt

¼ dri
dMi

dMi

dt
¼ _Mi

dri
dMi

¼
_Mi

4pqw

3 Mi �M0
i

D E
4pqw

þ r3

0
@

1
A

�2=3

ð7Þ

Therefore, the normal eigenstrain time rate generated by the

ASR gel expansion _�ASRN on a generic facet in the LDPM mesh is
determined as follows:

_�ASRN ¼ 0 if Mi � M0
i

_riI þ _riJ
� �

=‘ if Mi > M0
i

(
ð8Þ

where _riI and _riJ are the time rate of the radius of aggregate pieces I
and J, which share the facet under consideration, as illustrated in
Fig. 2(c).

It should be noted that the shear eigenstrains generated by the
ASR gel expansion are assumed to be zero, �ASRM ¼ �ASRL ¼ 0, This is
only an approximation of the actual situation due to the irregular
shape of real aggregate pieces.
3. The multiscale homogenization method

This research uses the homogenization technique formulated in
Ref. [30] to calculate the average mechanical response of an LDPM
RVE affected by ASR. This average response is then used to perform
standard finite-element calculations that account for the effect of
concrete heterogeneity at the mesoscale.

With reference to Fig. 3, two coordinate systems, X and x, are
considered in the macroscale; these respectively represent a global
macroscopic coordinate system and a local coordinate system
defining the position within the RVE, as shown in Fig. 1(e). In addi-
tion, a mesoscale coordinate system y is also considered in which
the material heterogeneity is fully resolved. In X and x, the mate-
rial domain is assumed to be homogeneous, with no material
heterogeneity being visible at this scale. According to the scale
separation assumption [60,61], the relation x = gy holds when g
is a small positive scalar, 0 < g� 1. It should be noted that in
Fig. 1(e), the separation of scales assumption is visually violated
in order to provide a clear representation of the two-scale problem.

Two independent field variables, u(x, y) and H(x, y), which
respectively represent the displacement and the rotation vectors
of a generic computational node PI, are considered. These variables
are functions of the macroscale and mesoscale coordinate systems
and they correspond to the mesoscale degrees-of-freedom (DOFs)
when evaluated for x = xI and y = yI, UI = u(xI, yI) and HI = h(xI, yI).



Fig. 3. The two-scale homogenization scheme. (a) Macroscopic material domain; (b) mesoscale domain including the material heterogeneities; (c) two adjacent polyhedral
cells.
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These variables can be expanded in regard to the two separate
scales as follows:

u x; yð Þ 	 u0 x; yð Þ þ gu1 x; yð Þ ð9Þ
h x; yð Þ 	 g�1x0 x; yð Þ þu0 x; yð Þ þx1 x; yð Þ þ gu1 x; yð Þ ð10Þ

where u0(x, y) and u1(x, y) are respectively the macroscale and
fine-scale displacement fields, which are continuous in x and
discontinuous in y. Furthermore, since the rotation vector can be
related to the displacement vector through a curl operator, it is
straightforward to show that x0 and x1 are fine-scale rotation
vectors, while u0 and u1 are macroscale rotation fields [30].

Using the asymptotic expansion of the displacement and rota-
tion vectors in Eq. (1) and considering the rigid body motion of
the fine-scale RVE [30], the asymptotic expression of the LDPM
facet strains is obtained in the following form:

�a ¼ �0a þ g�1a ð11Þ
By neglecting the macroscopic curvatures effect, the following

is obtained:

�0a ¼ ‘�1su1t
IJ � eIJ

a þ Sa 
 e0 þ Aa 
 n0 ¼ �fa þ �ca þ nca ð12Þ
The facet strains of order zero, �0a, consist of three different

terms: �fa are the fine-scale facet strains, which correspond to Eq.
(1), while the second and third terms, �ca and nca, account for the
projections of the symmetric macroscopic strain tensor e0, which

is defined as e0ij ¼ u0
j;i þ u0

i;j

� �
=2, and the antisymmetric part of the

macroscopic strain tensor n0, which is defined as

n0ij ¼ u0
j;i � u0

i;j

� �
=2� v ijkx0

k : The tensor vijk is the Levi–Civita

permutation symbol. Sa and Aa are the projection operators

mathematically derived as Saij ¼ eIJNie
IJ
aj þ eIJNje

IJ
ai

� �
=2 and

Aaij ¼ eIJNie
IJ
aj � eIJNje

IJ
ai

� �
=2. In essence, the second and third terms in

Eq. (12) represent how the macroscopic strain tensors at each
finite-element integration point should be projected onto the cor-
responding LDPM RVE facets in order to solve the RVE problem. A
detailed derivation of the theory can be found in Ref. [30].

The asymptotic expansion of the LDPM facet stresses can be
derived by using the asymptotic form of the facet strains; together
with Eq. (2), this results in the derivation of translational and rota-
tional equilibrium equations for two separate scales: order zero,
which is the RVE problem, and order one, which is the macroscopic
or coarse-scale problem.
The RVE translational and rotational equilibrium equations are
as follows:X
F I

At0ae
IJ
a ¼ 0 and

X
F I

A cI � t0ae
IJ
a

� � ¼ 0 8I � RVE ð13Þ

where the zero-order facet stresses t0a are calculated using the
constitutive equations presented in Section 2.1 and according to
the zero-order facet strains �0a. Eq. (12) can be rewritten as
�0a ¼ �fa � ��ca � nca

� �
, which implies that the projection of the

macroscopic strain tensor is applied in the form of facet eigen-
strains that drive the RVE problem. By solving the RVE equilibrium
equations using the periodic boundary conditions, the zero-order
traction t0a can be obtained; this is then used to calculate the macro-
scopic symmetric and antisymmetric stress tensors as follows:

r0 ¼ 1
2V0

X
I�RVE

X
F I

A‘t0aSa and s0 ¼ 1
2V0

X
I�RVE

X
F I

A‘t0aAa ð14Þ

where V0 is the volume of the RVE. The homogenization theory also
provides the macroscopic couple stress tensor, which, however, is
not reported here because it has been shown to be negligible [62].

Finally, the macroscopic equilibrium equations can be obtained
by averaging the equilibrium equations of order one [30], as
follows:

$T � r0 þ b0 ¼ 0 and s0 ¼ 0 ð15Þ
Since the antisymmetric part of the stress tensor and, as men-

tioned earlier, the couple stress tensor are zero, the antisymmetric
part of the strain tensor must be also zero: n0 = 0. This permits the
numerical implementation of the LDPM-based homogenization
framework with no macroscopic rotational DOFs and with stan-
dard displacement-based finite elements.

Fig. 4 reports an overview of the adopted homogenization
framework, which includes the mesoscale ASR effect according to
the following steps:

(1) The macroscopic material domain is discretized by finite
elements, and an LDPM RVE is assigned to each macroscopic
finite-element Gauss point.

(2) For each macroscopic loading step, an increment of the
macroscopic strain tensor De0 is calculated at every Gauss point
of all the macroscopic finite elements.

(3) At each finite-element Gauss point, the calculated macro-
scopic strain tensor increment De0 is projected onto all the corre-
sponding LDPM RVE facets using each facet orientation using
D�ca ¼ Sa 
 De0 (Eq. (12)).



Fig. 4. General framework of the multiscale homogenization method with the ASR effect. FE: finite-element.
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(4) The increments of the ASR-generated normal strain D�ASRN are
calculated for all facets inside each LDPM RVE.

(5) The RVE problem is solved by applying D�ca and D�ASRN to all
RVE facets under the periodic boundary conditions applied on the
RVE. The ASR-generated normal strains, along with the projected
macroscopic strains, are applied as eigenstrains on all of the
RVE facets, leading to the calculation of the fine-scale solution
governed by the LDPM constitutive equations: D�0a ¼ D�fa�
�D�ca þ D�ASRN

� �
daN , in which daN is 1 if a = N and 0 if a =M or L.

The mesoscale displacement u1 and rotation x1 vectors of all
RVE particles and the traction vectors t0a of all RVE facets are then
calculated.

(6) The macroscopic stress tensor is calculated using Eq. (14),
based on the RVE problem solution.

(7) The RVE homogenized stress tensor is then transferred back
to the corresponding Gauss point in order to update the finite-
element nodal displacements and forces.
4. Numerical results

In this section, the performance of the developed multiscale
framework to assess the ASR effect on concrete in terms of volu-
metric expansion, along with mechanical properties degradation,
is investigated. First, the ASR-LDPM parameters are calibrated
according to the reported experimental data by Shehata and
Thomas [63]. They studied the free expansion of sealed concrete
prisms with the dimensions 75 mm � 75 mm � 265 mm for
320 d. In their work, five different levels of alkali content
(ca = 2.89, 3.15, 3.90, 4.20, and 5.25 kg�m�3) were considered. The
reported aggregate size distribution of the concrete used in the
experiments is as follows: one third of the aggregate particles are
between 4.75 and 9.5 mm, one third are between 9.5 and
12.5 mm, and the last third are between 12.5 and 19 mm. For the
generation of LDPM specimens, the following parameters are used:
minimum aggregate size d0 = 4.75 mm, maximum aggregate size
da = 19 mm, and Fuller curve exponent n = 0.55; and mix composi-
tion parameters with cement content c = 420 kg�m�3, water-to-
cement ratio w/c = 0.45, and aggregate-to-cement ratio a/c = 4.25.
To calibrate the ASR-LDPM parameters, concrete prisms are fully
simulated with LDPM and their volumetric expansion is studied
over time. A cell representation of an LDPM prism is shown in
Fig. 5(a). For each level of alkali content, a full LDPM analysis is per-
formed with three different LDPM particle realizations in order to
investigate the RVE mesh realization effect, and the average behav-
ior is computed. The experimental volumetric strain versus time
and the corresponding full fine-scale LDPM analysis results are
plotted in Fig. 5(b). It can be seen that the numerical simulation
results match well with the experimental data. It is evident that
the volumetric strain rate decreases and plateaus as the ASR con-
tinues. It should be noted that the ASR-LDPM parameters are first
calibrated for an alkali content level of 2.89 kg�m�3, and are then
used to validate the response of the model for other alkali content
values. The calibrated ASR parameters are: c0a = 2.7 kg�m�3,

c1a = 4.37 kg�m�3, as0 = 3.45 � 10�13 m2�s�1, C0
i = 2.8 � 10�10 m2�s�1,

n = 439540 kg�1, kg = 689 kg�m�3, Eag = Ead = 500 J�mol�1, and
dc = 1. The reference temperature T0 and the current temperature
T are considered to be equal, which means that the temperature
effect is neglected. It should be noted that the specimens are
sealed, and that they maintain a high relative humidity close to
100%. The LDPM parameters used in the simulation are: EN = 60
GPa, rt = 4.75 MPa, rc0 = 150 MPa, a = 0.25, nt = 0.2, ‘t = 75 mm,
rst = 2.6, Hc0/E0 = 0.4, l0 = 0.4, l1 = 0, jc1 = 1, jc2 = 5, and
rN0 = 600 MPa. These parameters are those that have been cali-
brated for standard concrete mechanical behavior [23], since no
mechanical properties were reported in Ref. [63].

Since the fine-scale RVE is the principal element of the homog-
enization framework, the LDPM RVE homogenized response under
tension and compression and affected by the ASR is examined first
in the next section. The concrete prism studied experimentally in
Ref. [63] is then modeled using the homogenization method in
order to determine the efficiency of the multiscale framework in
comparison with the full fine-scale simulations and experimental
data. However, it must be noted that the aim of this paper is to



Fig. 5. (a) Polyhedral cell representation of a concrete prism; (b) volumetric expansion of the concrete prism obtained from the full fine-scale LDPM analysis and the
experiment (the values in image (b) are the alkali content with unit of kg�m�3).

1146 R. Rezakhani et al. / Engineering 5 (2019) 1139–1154
scrutinize the efficiency of the multiscale framework in order to
accurately reproduce the results of the full LDPM analysis with a
lower computational cost, rather than validation with respect to
the experimental data. The latter task was already presented in
Refs. [23,27]. In addition, other phenomena such as shrinkage
and creep that occur during the concrete lifetime are neglected
in this study, although their incorporation into the multiscale
model lies within the scope of our future work.
4.1. Analysis of RVE homogenized mechanical properties under the ASR
effect

In this section, LDPM RVEs are generated with the mix compo-
sition parameters presented above. To study the effect of RVE size,
four different RVE sizes of 35, 50, 75, and 100 mm are considered.
The cell and particle distributions of the four RVE sizes are pre-
sented in Figs. 6 and 7. For each RVE size, five different particle dis-
tributions are considered in order to examine the effect of the RVE
mesh realizations. In Fig. 8, five different particle realizations are
presented for a 75 mm LDPM RVE.

The generated RVEs are tested under uniaxial tension at three
different stages of the ASR evolution. First, they are tested with
no ASR effect. Next, the RVEs are tested after 60 and 120 d of
ASR free expansion. The ASR expansion of the RVEs is simulated
using the parameters presented in Section 4, and the alkali content
considered is 2.89 kg�m�3. The ASR expansion of the samples at 60
and 120 d is approximately 0.015% and 0.025%, respectively. It
should be noted that these values are about the same for all RVEs
of four different sizes. The effect of RVE size on the free-expansion
Fig. 6. Polyhedral cell representations of RVEs of different
curves and its comparison with the experimental data are pre-
sented in the next section. The crack-opening contours of the RVEs
due to free expansion after 120 d of the ASR are presented in Fig. 9.
It can be seen that the ASR damage is diffused over the specimen
and the resulting cracks are randomly oriented, which corresponds
to the damage patterns observed in free-expansion experiments.

Damaged RVEs at 60 and 120 d are then subjected to uniaxial
tension, and the obtained stress–strain curves are compared with
that obtained from the specimen with no ASR damage. The tensile
stress–strain curves are averaged for different particle realizations
of each RVE size, as presented in Fig. 10. From each curve, the

Young’s modulus Et and the tensile peak stress rpeak
t are calculated

and plotted versus the specimen ASR-affected time, as shown in
Fig. 11. All curves are slightly shifted along the time axis to provide
a clearer view of the error bars. At each time, it can be seen that the

calculated average Et and rpeak
t for different RVE sizes match very

well. Therefore, it demonstrates that the degradation of the
Young’s modulus and tensile strength of concrete due to ASR are
perfectly captured by the homogenization scheme with a mini-
mum effect of the RVE size. For each RVE size, the error bar shows
the standard deviation of the quantity of interest from five differ-
ent particle realizations. As expected, the standard deviation is
higher for a smaller RVE size, since the ratio of the RVE size to
the maximum aggregate size is smaller. The error bar value is neg-
ligible for the 100 mm RVE size, which implies that particle distri-
bution inside the RVE has no effect on the homogenized quantity.
These results clearly show that smaller RVE sizes can be employed
in multiscale homogenization analysis to successfully capture the
degradation trend of the tensile mechanical properties.
sizes. (a) 35 mm; (b) 50 mm; (c) 75 mm; (d) 100 mm.



Fig. 7. Spherical particle distribution inside RVEs of different sizes. (a) 35 mm; (b) 50 mm; (c) 75 mm; (d) 100 mm.

Fig. 8. Five different particle realizations inside 75 mm RVE.

Fig. 9. Crack-opening contours of the RVEs due to free expansion after 120 d. (a) 35 mm; (b) 50 mm; (c) 75 mm; (d) 100 mm.

Fig. 10. Average curves of RVE nonlinear behavior under tension (a) with no ASR evolution, (b) at 60 d of the ASR evolution, and (c) at 120 d of the ASR evolution for different
RVE sizes.
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Fig. 11. Variation of (a) Young’s modulus in tension and (b) tensile peak stress over time due to ASR.
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The different post-peak responses observed in Fig. 10 for differ-
ent RVE sizes are known as the ‘‘size effect” in the fracture
mechanics of quasi-brittle materials such as concrete. This effect
is due to the fact that damage localization occurs in quasi-brittle
materials under tension, while the elastic energy of the undam-
aged parts of the domain is released. The damage localization pat-
terns for different RVE sizes are plotted in Fig. 12. This issue is a
well-known problem in the multiscale homogenization of soften-
ing materials that requires special treatment in order for the mul-
tiscale framework to correctly capture the dissipated energy [64].

Next, the evolution of the compressive strength and the Young’s
modulus of concrete due to ASR is calculated by means of uniaxial
compression tests performed on RVEs after 182 d and 2 years of
the ASR evolution. The compressive response of the RVEs is com-
pared with that obtained from the RVEs with no ASR effect. All
the LDPM material parameters, as well as the ASR parameters,
are those that were used in the previous section. Since degradation
of the concrete compressive strength due to ASR is less pronounced
than the degradation of the tensile strength [56], the RVEs are sub-
jected to longer periods of ASR evolution compared with those
described in the previous section.

The compressive stress–strain curves are averaged for different
particle realizations of each RVE size, and are presented in Fig. 13
for no ASR, 182 d of ASR free expansion, and 2 years of ASR free
expansion. The evolutions of the Young’s modulus Ec and compres-

sive peak stress rpeak
c due to ASR are plotted in Fig. 14, in which all

curves are slightly shifted along the time axis to provide clear vis-
ibility of the error bars. It can be seen that the homogenized values
Fig. 12. Crack-opening contours in a direct tension test under an axial
of Ec and rpeak
t obtained from the analysis of different RVE sizes

match very well at the three different times. Therefore, smaller
RVE sizes can be used in multiscale homogenization analysis while
maintaining the accuracy of the results. Similar to the previous sec-

tion, the standard deviation of the homogenized Ec and rpeak
t

decreases as the ratio of the RVE size to the maximum aggregate
size is increased. However, the standard deviation of these quanti-
ties is still negligible for even the smallest RVE size. It should be
noted that, as opposed to the tensile behavior, the post-peak
behavior of all RVE sizes under compression match very well, as
shown in Fig. 13. This is due to diffused crack distribution and a
lack of damage localization in the RVEs under uniaxial compres-
sion, as depicted in Fig. 15.
4.2. Two-scale homogenization analysis of an ASR-affected concrete
prism

In this section, the concrete prisms that were studied experi-
mentally in Ref. [63] and presented in Section 4 are simulated by
means of both the full fine-scale LDPM and the two-scale homog-
enization method in order to investigate the ability of the multi-
scale model to reproduce the full fine-scale analysis results. The
ASR-LDPM parameters that were calibrated with respect to the
experimental record of the prisms’ free expansion, as shown in
Fig. 5(b), are employed here for both the fine-scale and multiscale
homogenization analyses. In the homogenization analyses, the
concrete prism is discretized with three single-integration-point
strain of 1 � 10�3. (a) 35 mm; (b) 50 mm; (c) 75 mm; (d) 100 mm.



Fig. 13. Average curves of RVE nonlinear behavior under compression (a) with no ASR evolution, (b) at 182 d of the ASR evolution, and (c) at 2 years of the ASR evolution for
different RVE sizes.

Fig. 14. Variation of (a) the Young’s modulus in compression and (b) the compressive peak stress over time due to ASR.

Fig. 15. Crack-opening contours in an unconfined compression test under an axial strain of 8 � 10�3. (a) 35 mm; (b) 50 mm; (c) 75 mm; (d) 100 mm.
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hexahedral finite elements with an edge length of 75 mm, as
shown in Fig. 16. To investigate the effect of RVE size, the homog-
enization analysis is repeated with three different RVE sizes of 35,
50, and 75 mm, which are assigned to the integration point of each
finite element. In addition, for each RVE size, a two-scale analysis is
carried out for six different particle realizations inside the RVE in
order to examine the effect of the particle distribution inside the
RVE.

The volumetric expansion of the concrete prisms obtained from
the two-scale homogenization analysis is plotted versus time for
the three different assigned RVE sizes in Figs. 17(a)–(c). A free-
expansion analysis is performed for the five different alkali con-
tents, as reported in the experiments [63]. For each RVE size and
alkali content value, six different curves are plotted corresponding
to six different particle distributions inside the RVE. It is clear that
the curves are more scattered for smaller RVE sizes, as was
observed in the previous section. Therefore, for a higher ratio of
RVE size to maximum particle size, the standard deviation of the
results is smaller. Moreover, it can be observed that the expansion
curves are more scattered for greater level of alkali content, since



Fig. 16. Homogenization model of the concrete prism with three solid finite
elements and three different RVE sizes.
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greater alkali content leads to a higher level of ASR damage and to
subsequently enhanced inhomogeneity of damage distribution
inside the RVE.

These curves are averaged for each RVE size and different alkali
contents, and are compared with the full fine-scale LDPM analysis
results in Figs. 17(d)–(f). It can be seen that the homogenization
and full fine-scale analysis results match well for different RVE
sizes and different alkali content values. The homogenization
results agree more closely with the full fine-scale simulations as
the RVE size is increased. This result is expected, since larger RVEs
are better representatives of the homogenized lower-scale mate-
rial structure.

Next, the same prisms are loaded under uniaxial compression
after different periods of ASR evolution in order to investigate
the ability of the multiscale homogenization method to capture
the degradation of the concrete compressive strength in compar-
ison with the full fine-scale LDPM analysis. First, the specimen is
subjected to the ASR effect over a certain time interval, while being
Fig. 17. Volumetric expansion of prisms with differing alkali contents obtained from the h
comparison of the homogenization results using RVE sizes of (d) 35 mm, (e) 50 mm, and
content with unit of kg�m�3).
constrained in the axial direction. Next, the prism is loaded under
uniaxial compression until it reaches failure. To determine the
trend of compressive strength degradation, specimens are sub-
jected to the ASR effect for 0, 122, 243, 365, 488, 610, and 730 d
while being axially constrained. All tests are carried out for ca equal
to 2.89 and 3.15 kg�m�3 in order to examine the effect of alkali con-
tent. Figs. 18(a) and (b) compare the evolution of the concrete
prism compressive strength obtained from the full LDPM simula-
tions with the homogenization analyses for three different RVE
sizes. It can be seen that the results of the homogenization analysis
for different RVE sizes correspond well to the results obtained from
the full fine-scale LDPM analysis. In addition, it is clear that the
degradation of the prism compressive strength is more significant
for greater alkali content, and that this finding is successfully cap-
tured by the homogenization framework, in agreement with the
full LDPM results. Furthermore, the effect of particle realization
decreases for larger RVE sizes, as observed in previous results,
which is shown by the decrease of the scatter on the curves.

The computational cost study is one of the most important
aspects of the multiscale methods, without which the development
of multiscale models has no purpose. In the literature, the compu-
tational cost efficiency of developed multiscale models has not
been investigated as much as their numerical accuracy. The signif-
icant advantage of the current developed homogenization frame-
work is its enormous saving in computational cost, while
retaining the numerical accuracy of the results. Fig. 18(c) compares
the computational cost of the full fine-scale LDPM analysis with
that of the homogenization method for different RVE sizes. The
computational time of the homogenization analysis of the concrete
prism using the 75 mm RVE is approximately 30% greater than that
of the full fine-scale LDPM analysis. This is because the total num-
ber of the computational nodes and LDPM tetrahedral elements in
the homogenization analysis for the 75 mm RVE is greater than in
omogenization framework using RVE sizes of (a) 35 mm, (b) 50 mm, and (c) 75 mm;
(f) 75 mm with the full fine-scale results (the values in images (d)–(f) are the alkali



Fig. 18. Comparison of the compressive strength obtained by the full fine-scale LDPM analysis and the homogenization framework for (a) ca = 2.89 kg�m�3 and
(b) ca = 3.15 kg�m�3; (c) comparison of the computational cost of the full fine-scale LDPM analysis and the homogenization analysis for different RVE sizes.
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the full fine-scale LDPM analysis. In this case, the volume of the
RVE is equal to the macroscopic finite-element size, while the
RVE surface nodes are duplicated for the finite-element internal
surface. On the other hand, the computational time of the multi-
scale analysis for the 50 and 35 mm RVEs is 67% and 23%, respec-
tively, of the full fine-scale LDPM analysis computational time. It
should be noted that only three macroscopic finite elements are
used in the homogenization analysis. Therefore, the computational
cost saving in the analysis of larger structures discretized by a large
number of finite elements will be more substantial. This significant
computational cost saving, which is one of the major purposes of
developing a multiscale framework, is successfully accomplished
by means of the developed homogenization scheme.

Finally, the failure pattern of the prisms obtained from the full
LDPM and homogenization analyses is depicted in Fig. 19 under
both free expansion and uniaxial compression. Since the strain
field is uniform in both the free expansion and uniaxial compres-
sion cases, the damage contour of just one RVE of each size is illus-
trated for both cases. Fig. 19(a) shows the crack-opening contour of
a specimen after 730 d of ASR free expansion (without axial con-
straint) for ca = 3.9 kg�m�3. It can be seen that the damage is dis-
tributed throughout the specimen in a random pattern, and a
similar damage pattern is captured by the homogenization analy-
sis. The crack-opening contour of a prism loaded under uniaxial
compression for 243 d of ASR expansion is illustrated in
Fig. 19(b). It can be observed that both the fine-scale and homog-
enization analyses capture the vertical splitting cracks due to the
specimen lateral expansion that is generated by uniaxial
deformation.
Fig. 19. Crack-opening contours of a concrete prism and RVEs of different sizes
under (a) free expansion due to the ASR effect with ca = 3.9 kg�m�3 and (b) uniaxial
compression after ASR expansion.
4.3. The four-point bending test (4pbt)

In this numerical example, a concrete beamwith a span of 2.5 m
and a height of 0.5 m is simulated by both the full LDPM and the
two-scale homogenization method, as shown in Fig. 20(a). For
the homogenization analysis, the concrete specimen is discretized
by hexahedral finite elements with an edge length of 50 mm and a
single Gauss point, and an LDPM RVE of 35 mm is assigned to each
macroscopic integration point. Both the LDPM RVE and the full
concrete beam LDPM specimens are generated using the parame-
ters presented in Section 4. The concrete beams are tested under
the four-point bending loading condition for three different ASR-
affected times: no ASR, 100 d of ASR free expansion, and 150 d of
ASR free expansion. The ASR-LDPM parameters used in both the
full fine-scale and the homogenization analyses are the same as
those presented in Section 4. An alkali content of 2.89 kg�m�3 is
used in all simulations. The force–displacement (F–u) curves
obtained from the full LDPM and homogenization analyses are
compared in Fig. 20(b). It can be seen that the F–u curves for con-
crete beams with no ASR effect match very well for the full LDPM
and the two-scale homogenization analyses in terms of the force
peak value, elastic branch, and area under the F–u curve. The differ-
ence in the post-peak slope is due to the fact that the RVE size is
smaller than the macroscopic finite-element size in the homoge-
nization analysis. Gitman et al. [64] has shown that the post-
peak branch of the softening response is controlled by the RVE size,
and that it accounts for the correct dissipated energy if the RVE size
is equal to the finite-element size.

In Fig. 20(b), the F–u curves obtained from the four-point bend-
ing test (4pbt) on the specimens after 100 and 150 d of ASR are also
presented. It can be seen that the peak force drop due to the ASR
calculated by the full LDPM analysis is higher than that obtained
from homogenization analysis for both 100 and 150 d of ASR. An
important factor with a significant impact on the mechanical
response is the crack propagation path through the specimen
during failure. The crack-opening contours in LDPM specimens
after 4pbt on the beams with different ASR periods are shown in
Figs. 21(a)–(c). In Figs. 21(b) and (c), distributed microcracks can
be seen throughout the beam volume generated during the pre-
loading ASR free-expansion phase. Fig. 21(d) presents the contour
of the strain tensor component in the direction of the beam length
obtained from the homogenization analysis at failure. This contour
looks similar in all three cases (no ASR, 100 d of ASR, and 150 d of
ASR). It is clear from this figure that in the full LDPM analysis, due
to the fine spatial discretization of the specimen, macrocracks fol-
low the path that minimizes the potential energy. In the homoge-
nization analysis, however, the macrocracks are forced to grow
straight in the vertical direction following the macroscopic finite-



Fig. 20. (a) Concrete beam modeled by full LDPM and finite element for homogenization analysis; (b) force–displacement curves obtained from the full LDPM and the
homogenization analyses after no ASR, 100 d of ASR free expansion, and 150 d of ASR free expansion.

Fig. 21. Crack-opening contours of the 4pbt on the concrete beam after (a) no ASR, (b) 100 d of ASR, and (c) 150 d of ASR; (d) longitudinal strain contour of the
homogenization simulation.
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element discretization. This difference is more important for the
specimens with ASR free expansion before mechanical loading,
because of the existence of distributed microcracks in the speci-
men. Therefore, homogenization constrains the macroscopic crack
path by the macroscopic finite-element discretization, which is the
likely reason for the difference between the full LDPM and multi-
scale F–u curves plotted in Fig. 20(b) for the cases of 100 and
150 d of ASR. Regarding the computational cost, the simulation
time of the homogenization analysis in all three cases is approxi-
mately 40% of the full LDPM analysis run time, which confirms
the significant improvement in computational efficiency provided
by the multiscale analysis.
5. Conclusions

This paper presents the theory and numerical implementation
of a multiscale homogenization analysis of the ASR in concrete.
In the homogenization framework, a mesoscale particle model,
which has shown significant success in modeling the ASR effect
in concrete, is linked to the continuum finite-element model. Dam-
age and cracks in concrete due to mechanical loading, along with
ASR damage, are all simulated in the fine-scale RVE, and no prede-
fined nonlinear behavior is considered at the macroscale. First, it is
shown that RVEs of different sizes are able to reproduce the degra-
dation of the mechanical properties of concrete, both in tension
and compression. Therefore, the size of the RVE can be chosen to
be smaller than the corresponding finite-element size, which leads
to a considerable saving in computational cost. Next, free expan-
sion of a concrete prism due to the ASR is analyzed using the mul-
tiscale homogenization framework.

It is shown that the multiscale framework can accurately repro-
duce the expansion curves obtained from experiments and full
fine-scale LDPM analysis. In addition, degradation of the compres-
sive strength of a concrete prism is evaluated after several ASR-
affected time periods, and it is demonstrated that the results of
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the multiscale homogenization and full fine-scale LDPM analyses
agree well. The superior advantage of this multiscale analysis is
its considerable reduction in computational cost. It is shown that
the computational time of the prism analysis can be significantly
reduced with respect to the full fine-scale LDPM analysis by
decreasing the RVE size, while the numerical accuracy of the
results is greatly preserved. Finally, the numerical accuracy and
computational efficiency of the multiscale framework in compar-
ison with the full fine-scale LDPM analysis are examined and con-
firmed by a simulation of the 4pbt on large concrete beams.
Acknowledgement

This material is based upon work supported by the Nuclear
Regulatory Commission (NRC-HQ-60-14-G-0003).
Compliance with ethics guidelines

Roozbeh Rezakhani, Mohammed Alnaggar, and Gianluca Cusatis
declare that they have no conflict of interest or financial conflicts to
disclose.
References

[1] Giaccio G, Zerbino R, Ponce JM, Batic OR. Mechanical behavior of concretes
damaged by alkali–silica reaction. Cement Concr Res 2008;38(7):993–1004.

[2] Saouma V, Xi Y. Literature review of alkali aggregate reactions in concrete
dams. Technical report. Boulder: Department of Civil, Environmental, and
Architectural Engineering, University of Colorado; 2004. Report No.: CU/SA-XI-
2004/001.

[3] Stanton TE. Expansion of concrete through reaction between cement and
aggregate. Proc Am Soc Civ Eng 1940;66(10):1781–811.

[4] ASTM C1567–13: Standard test method for determining the potential alkali–
silica reactivity of combinations of cementitious materials and aggregate
(accelerated mortar-bar method). ASTM Standard. West Conshohocken: ASTM
International; 2013.

[5] ASTM C1293–18a: Standard test method for determination of length change of
concrete due to alkali–silica reaction. ASTM Standard. West Conshohocken:
ASTM International; 2018.
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