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Artificial intelligence (AI) has been developing rapidly in recent years in terms of software algorithms,
hardware implementation, and applications in a vast number of areas. In this review, we summarize
the latest developments of applications of AI in biomedicine, including disease diagnostics, living assis-
tance, biomedical information processing, and biomedical research. The aim of this review is to keep
track of new scientific accomplishments, to understand the availability of technologies, to appreciate
the tremendous potential of AI in biomedicine, and to provide researchers in related fields with inspira-
tion. It can be asserted that, just like AI itself, the application of AI in biomedicine is still in its early stage.
New progress and breakthroughs will continue to push the frontier and widen the scope of AI application,
and fast developments are envisioned in the near future. Two case studies are provided to illustrate the
prediction of epileptic seizure occurrences and the filling of a dysfunctional urinary bladder.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Artificial intelligence (AI) is defined as the intelligence of machi-
nes, as opposed to the intelligence of humans or other living spe-
cies [1,2]. AI can also be defined as the study of ‘‘intelligent
agents”—that is, any agent or device that can perceive and under-
stand its surroundings and accordingly take appropriate action to
maximize its chances of achieving its objectives [3]. AI also refers
to situations wherein machines can simulate human minds in
learning and analysis, and thus can work in problem solving. This
kind of intelligence is also referred to as machine learning (ML) [4].

Typically, AI involves a system that consists of both software
and hardware. From a software perspective, AI is particularly con-
cerned with algorithms. An artificial neural network (ANN) is a
conceptual framework for executing AI algorithms [5]. It is a mimic
of the human brain—an interconnected network of neurons, in
which there are weighted communication channels between neu-
rons [6]. One neuron can react to multiple stimuli from neighbor-
ing neurons and the whole network can change its state according
to different inputs from the environment [7]. As a result, the neural
network (NN) can generate outputs as its responses to environ-
mental stimuli—just as the human brain reacts to different envi-
ronmental changes. NNs are typically layered structures of
various configurations. Researchers have devised NNs that can do
① supervised learning, where the task is to infer a function that
maps an input to an output based on example pairs of inputs
and outputs; ② unsupervised learning, where the task is to learn
from test data that has not been labeled, classified, or categorized,
in order to identify common features in the data and, rather than
responding to system feedback, to react based on the existence
or inexistence of identified common features in new data; and
③ reinforced learning, where the task is to act within the given
surroundings in order to maximize rewards and minimize penal-
ties, both according to some form of accumulative nature [8]. With
the advancement of computation power, NNs have become
‘‘deeper,” meaning that more layers of neurons are involved in
the network to mimic a human brain and carry out learning. In
addition, more functions can be incorporated into the NN, such
as merging feature extraction and classification functions into a
single deep network—hence the technical term ‘‘deep learning”
[9,10].

From a hardware perspective, AI is mainly concerned with the
implementation of NN algorithms on a physical computation
platform. The most straightforward approach is to implement
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NN algorithm on a general-purpose central processing unit
(CPU), in a multithread or multicore configuration [7]. Further-
more, graphical processing units (GPUs), which are good at con-
volutional computations, have been found to be advantageous
over CPUs for large-scale NNs [11]. CPU and GPU co-processing
has turned out to be more efficient than CPU alone, especially
for spiking NNs [12,13]. Moreover, some programmable or
customizable accelerator hardware platforms, such as field-
programmable gate arrays (FPGAs) and application-specific
integrated circuits (ASICs), can implement NNs toward a
customized application in a more efficient way, in terms of
computation capability, power efficiency, and form factor [14].
Compared with GPU and CPU, these platforms can be customized
for a specific application and thus can be more power efficient
and compact than GPU and CPU platforms. To deploy AI in edge
devices, such as mobile phones in wireless networks or sensor
nodes in the Internet of Things (IoT), further improvements in
power efficiency and form factor are needed. Researchers have
tried to implement AI algorithms using analog integrated circuits
[15,16], spintronics [17], and memristors [18–20]. Some of these
new platforms, such as memristor crossbar circuits [21], can
merge computation with memory and thus avoid the problem
of access to the ‘‘memory wall” of traditional von Neumann
architectures. This access is mandatory in order to update
needed parameters. Recently, researchers have tried to improve
the efficiency of AI implementation by reducing the number of
bits used for data representation. It turns out that the computa-
tion accuracy can be maintained when the data representation
goes from 32 or 16 bits down to 8 bits. The advantage is faster
computation, less power, and smaller form factor [22]. However,
the ‘‘memory wall” limits remain. On the other hand, the adop-
tion of appropriate training methods (e.g., deep training instead
of surface-level training [23] or using pre-training techniques
[24]) and the use of balanced datasets [25], sufficient amounts
of data [26], and constant availability [27] of datasets are impor-
tant factors to consider in order to achieve satisfactory perfor-
mance of ANNs.

Due to the rapid development of AI software and hardware
technologies, AI has been applied in various technical fields, such
as the IoT [28], machine vision [29], autonomous driving [30,31],
natural language processing [32,33], and robotics [34]. Most
interestingly, researchers in the biomedical fields have been
Fig. 1. Growing research interest in the application of AI in biomedicine, as demonstrate
search was done using the Web of Science with the topic of ‘‘AI” or ‘‘ML” and the topic
actively trying to apply AI to help improve analysis and treatment
outcomes and, consequently, increase the efficacy of the overall
healthcare industry [35–37]. Fig. 1 shows the number of publica-
tions in this area in the last 20 years, from 1999 to 2018. The
growth of interest is obvious, especially in the last five years, and
continued growth in future can be forecast. The benefits that AI
can offer to biomedicine were envisioned a couple of decades ear-
lier [38]. In fact, reviews have been published on the role of AI in
biomedical engineering [36,37]. More recently, new progress has
been made in AI and its applications in biomedicine.

This paper reviews recent breakthroughs in the application of AI
in biomedicine, covering the main areas in biomedical engineering
and healthcare.

The goal for healthcare is to become more personal, predictive,
preventative, and participatory, and AI can make major contribu-
tions in these directions. From an overview of the progress made,
we estimate that AI will continue its momentum to develop and
mature as a powerful tool for biomedicine. The remainder of this
paper is oriented toward the main AI applications. Section 2
includes a description of information processing and algorithm
implementation, while Section 3 focuses on disease diagnostics
and prediction. Case studies of the prediction of two medical
diseases are reported in Section 4. Finally, conclusions are summa-
rized in Section 5.
2. Information processing and algorithm implementation

The main applications of AI in biomedicine can be divided into
four categories. The first three categories described in this section
are intended to efficiently treat big data and provide quick access
to data in order to solve issues related to healthcare. These appli-
cations deal with living assistance for elderly and disabled people,
natural language processing techniques, and fundamental research
activities. The last category of AI applications concerns the diagno-
sis and prediction of diseases and will be analyzed in Section 3.
2.1. AI for living assistance

In the area of assisted living for elderly and disabled people, AI
applications using corresponding smart robotic systems are paving
the way for improvements in life quality. An overview of smart
d by the number of publications on this topic during the last 20 years. The literature
of biomedicine” or ‘‘biomedical.”
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home functions and tools offered for people with loss of autonomy
(PLA), and intelligent solution models based on wireless sensor
networks, data mining, and AI was published recently [39].
NNs can be trained with specific image-processing steps to
recognize human facial expressions as commands. Furthermore,
human–machine interfaces (HMIs) based on facial expression anal-
ysis allow people with disabilities to control wheelchairs and robot
assistance vehicles without a joystick or sensors attached to the
body [40].

An ‘‘ambient intelligent system” called RUDO can help people
who are blind to live together with sighted people and work in spe-
cialized fields such as informatics and electronics [41]. People who
are blind can make use of multiple functions of this intelligent
assistant through a single user interface. A ‘‘smart assistant” based
on AI can help pregnant women with dietary and other necessary
advice during crucial stages of maternity. It is capable of providing
suggestions at ‘‘an advanced level” through its own intelligence,
combined with ‘‘cloud-based communication media between all
people concerned” [42].

A fall-detection system based on radar Doppler time–frequency
signatures and a sparse Bayesian classifier can reduce fall risks and
complications for seniors [43]. In fact, ‘‘smart communication
architecture” systems for ‘‘ambient assisted living” (AAL) have
been developed to allow AI processing information to be gathered
from different communication channels or technologies, and thus
to determine the occurrences of events in the network environ-
ment and the assistance needs of elderly people [44]. The ‘‘ambient
intelligence” of smart homes can provide activity awareness and
ensued activity assistance to elderly people such that AAL environ-
ments allow ‘‘aging in place”—that is, aging at home. For example,
the activity-aware screening of activity limitation and safety
awareness (SALSA) intelligent agent can help elders with daily
Fig. 2. The proposed model of AAL for ‘‘aging i
medication activities [45]. ML in motion analysis and gait study
can raise an alarm at hazardous actions and activate preventative
measures [46,47]. Fig. 2 [39] shows the model for AAL.

In this scenario, sensors collect data about the ambient environ-
ment and human behavior, which is then analyzed by cloud com-
puting or edge intelligence. A decision is then made regarding what
actions are necessary, and this decision is used to activate alarms
or preventative measures. An expert system based on AI, in con-
junction with mobile devices and personal digital assistants
(PDAs), can help persons with lasting memory damage by enhanc-
ing their memory capabilities so as to achieve independent daily
living [48]. This is a significant extension of the expert system for
memory rehabilitation (ES-MR) for ‘‘non-expert” users.

2.2. AI in biomedical information processing

Breakthroughs have been made in natural language processing
for biomedical applications. In the area of biomedical question
answering (BioQA), the aim is to find fast and accurate answers
to user-formulated questions from a reservoir of documents and
datasets. Therefore, natural language-processing techniques can
be expected to search for informative answers [49]. To begin with,
the biomedical questions must be classified into different cate-
gories in order to extract appropriate information from the answer.
ML can categorize biomedical questions into four basic types with
an accuracy of nearly 90% [50]. Next, an intelligent biomedical
document retrieval system can efficiently retrieve sections of the
documents that are most likely to contain the answers to the
biomedical questions [51]. One novel scheme for processing one
of the four basic types of BioQA—the yes-or-no answer generator,
which originates from word sentiment analysis—can work effec-
tively toward information extraction from binary answers [52].
n place” [39]. SMS: short message service.
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For biomedical information collected from different sources
over an elongated period of time, many important tasks can
dominate; these are clinical information merging, comparison,
and conflict resolution [53]. These have long been time-
consuming, labor-intensive, and unsatisfying tasks performed by
humans. To improve efficiency and accuracy, AI has been demon-
strated to be capable of performing these tasks with results as
accurate as professional evaluator can do [54]. Also, natural lan-
guage processing of medical narrative data is needed to free
humans from the challenging task of keeping track of temporal
events while simultaneously maintaining structures and reasons
[55]. ML can be used to process high-complexity clinical informa-
tion (e.g., text and various kinds of linked biomedical data), incor-
porate logic reasoning into the dataset, and utilize the learned
knowledge for a myriad of purposes [56].
2.3. AI in biomedical research

In addition to being able to act as an ‘‘eDoctor” for disease diag-
nosis, management, and prognosis, AI has unexplored usage as a
powerful tool in biomedical research [57]. On a global scale, AI
can accelerate the screening and indexing of academic literature
in biomedical research and innovation activities [58,59]. In this
direction, the latest research topics include tumor-suppressor
mechanisms [60], protein–protein interaction information extrac-
tion [61], the generation of genetic association of the human
genome to assist in transferring genome discoveries to healthcare
practices [62], and so forth. Furthermore, biomedical researchers
can efficiently accomplish the demanding task of summarizing
the literature on a given topic of interest with the help of a seman-
tic graph-based AI approach [63]. Moreover, AI can help biomedical
researchers to not only search but also rank the literature of inter-
est when the number of research papers is beyond readability. This
allows researchers to formulate and test to-the-point scientific
Fig. 3. A general perspective of process flow and interactions between a CMA and hum
ordinary differential equation; PDE: partial differential equation; GO: gene oncology; FM
physicochemical process ontology.
hypotheses, which are a very important part of biomedical
research. For example, researchers can screen and rank figures of
interest in the increasing volume of literature [64] with the help
of an AI to formulate and test hypotheses.

Some intelligent medical devices are becoming increasingly
‘‘conscious” [65,66], and this consciousness can be explored in
biomedical research. An intelligent agent called the computational
modeling assistant (CMA) can help biomedical researchers to con-
struct ‘‘executable” simulation models from the conceptual models
they have in mind [67]. Fig. 3 [67] shows a general view of the pro-
cess flow and interactions between a CMA and human researchers.
The CMA is provided with various knowledge, methods, and
databases. The researcher hypothesis is expressed in the form of
biological models, which are supplied as input to the CMA. The
intelligence of the CMA allows it to integrate all this knowledge
and these models, and it transforms the hypothesis of the research-
ers into concrete simulation models. The researcher then reviews
and selects the best models and the CMA generates simulation
codes for the selected models. In this way, the CMA enables a sig-
nificantly accelerated research process and enhanced productivity.
In addition, some intuitive machines could guide scientific
research in fields such as biomedical imaging, oral surgery, and
plastic surgery [68,69]. Human and machine consciousness and
its relevance to biomedical engineering have been discussed in
order to better understand the impact of this development [70].
3. Disease diagnostics and prediction

The most urgent need for AI in biomedicine is in the diagnostics
of diseases. A number of interesting breakthroughs have been
made in this area. AI allows health professionals to give earlier
and more accurate diagnostics for many kinds of diseases [71].
One major class of diagnosis is based on in vitro diagnostics using
biosensors or biochips. For example, gene expression, which is a
an researchers in view of various ontologies and knowledge databases [68]. ODE:
A: foundational model of anatomy ontology; SBO: systems biology ontology; REX:



G. Rong et al. / Engineering 6 (2020) 291–301 295
very important diagnostic tool, can be analyzed by ML, in which AI
interprets microarray data to classify and detect abnormalities
[72,73]. One new application is to classify cancer microarray data
for cancer diagnosis [74].

With integrated AI, biosensors and related point-of-care testing
(POCT) systems can diagnose cardiovascular diseases in the early
stage [75]. In addition to diagnosis, AI can help to predict the sur-
vival rates of cancer patients, such as colon cancer patients [76].
Researchers have also identified some limitations of ML in
biomedical diagnosis and have suggested steps to minimize the
effects of these drawbacks [77]. Thus, there is still much potential
for AI in diagnostics and prognostics.

Another important class of disease diagnostic is based on
medical imaging (two-dimensional) and signal (one-
dimensional) processing. Such techniques have been employed
in the diagnosis, management, and prediction of illnesses. For
one-dimensional signal processing, AI has been applied to
biomedical signal feature extraction [78], such as electroen-
cephalography (EEG) [79], electromyography (EMG) [80], and
electrocardiography (ECG) [81]. An important application of EEG
is epileptic seizure prediction. It is very important to predict sei-
zures so as to minimize their impact on patients [82]. In recent
years, AI has been recognized as one of the key elements of an
accurate and reliable prediction system [83,84]. It is now possible
to predict by means of deep learning [85], and the prediction plat-
form can be deployed in a mobile system [86]. AI can also play an
important role in diagnosis based on biomedical image processing
[87]. AI has been utilized in image segmentation [88], multidi-
mensional imaging [89], and thermal imaging [90] to improve
image quality and analysis efficiency. AI can also be deployed in
portable ultrasonic devices, so that untrained personal can use
ultrasound as a powerful tool to diagnose many kinds of illnesses
in undeveloped regions [91].

In addition to the above applications, AI can assist standard
decision support systems (DSSs) [92,93] to improve diagnostic
accuracy and facilitate disease management in order to reduce
the burden on personnel. For example, AI has been used in the inte-
grated management of cancer [94], to support the diagnosis and
management of tropical diseases [95] and cardiovascular diseases
[96], and to support the decision-making process of diagnostics
[92]. These applications demonstrate that AI can be a powerful tool
for early and accurate diagnostics, management, and even predic-
tion of diseases and patient conditions. Two case studies are illus-
trated below.

4. Healthcare

AI is now covering a wide range of healthcare applications [97].
In particular, it has been used for signal and image processing, and
for predictions of function changes such as in urinary bladder con-
trol [98], epileptic seizures [99], and stroke predictions [100].
Below, we describe two typical case studies: bladder volume pre-
diction and epileptic seizure prediction.

4.1. Bladder volume prediction

When the storage and urination functions of the bladder fail as
a result of spinal cord injury or because of other neurological
diseases, health status, or aging, various complications occur in
the patient’s health conditions. Nowadays, partial restoration of
bladder function in drug-refractory patients can be achieved using
implantable neural stimulators. To improve the efficiency and
safety of neuroprostheses through conditional neurostimulation
[101], a bladder sensor that detects stored urine is required as a
feedback device that applies electrical stimulation only when
needed. The sensor can also be used to notify patients with
impaired sensations in a timely manner when the bladder needs
to be emptied or when an abnormally high residual post-
micturition volume remains after an incomplete voiding.

We have proposed new methods [102] and developed a dedi-
cated digital signal processor (DSP) [103] for sensing both the pres-
sure and its fullness in urine by using afferent neural activities
from the regular neural roots of the bladder (i.e., mechanorecep-
tors), which depicts the changes during filling.

Smart neuroprostheses are typically composed of two units: an
internal unit implanted in the patient and an external unit, which
is usually carried as a wearable device. Both units are typically con-
nected by a wireless link that conveys data and provides power to
the implant. The internal unit performs several functions: neural
signal recording; on-chip processing (to a variable extent, depend-
ing on the application) of the signals conveying sensory informa-
tion; neurostimulation of appropriated nerves using functional
electrical stimulation (FES) techniques; logical control of the
implanted unit functions; and communication with the external
unit. When additional signal processing is needed to execute more
complex algorithms that require extra computing capabilities,
which are not suitable for implantation due to the size, power con-
sumption, temperature rise, electromagnetic emission, and so
forth, the internal unit sends the recorded signal to the external
unit, which executes more complex algorithms and sends back
appropriated neurostimulation commands. The external base
station integrates the implant–user interface and the implant–
computer interface for greater flexibility.

The work presented in this section is aimed at the design of an
effective implantable volume and pressure sensor for the urinary
bladder that is capable of providing the necessary feedback to the
neuroprosthesis. This sensor caneventuallybeused for either imple-
mentinga conditional neurostimulationapproach to restorebladder
functions or for bladder-fullness sensing in patients with impaired
sensations due to the several diseases and conditions mentioned
above. To better meet patients’ needs regarding bladder neuropros-
thetic devices, we chose to implement within the implantable unit
an optimized DSP capable of decoding in real time the bladder pres-
sure and volume. This approach greatly influenced the choice of the
most suitable prediction methods, which are described below.

Qualitative and quantitative monitoring methods based on ML
algorithms were proposed to decode the afferent neural activity
produced by the bladder natural sensors (i.e., mechanoreceptors
responding to bladder wall stretching). To implement these
methods, the neural activity recorded by the implantable unit must
be detected, discriminated (i.e., classified), and then decoded in
real time. The proposed qualitative method decodes the bladder
fullness into just three levels (i.e., low, medium, and high). This
method significantly reduces the number of operations, using
fewer hardware resources, so that the power consumption is
minimized. The quantitative method needs more complex
algorithms to compute the bladder volume or pressure to feedback
the closed-loop system for the neurostimulation, but it is
optimized to run in the implanted unit with minimum power
consumption, thanks to customized hardware.

The monitoring algorithms used for the qualitative and quanti-
tative methods first perform an offline learning phase (also known
as a training phase) in real time. During this phase, the sensor
learns or identifies the parameters intended for real-time monitor-
ing. For the learning phase, we can choose the best algorithms,
regardless of their complexity and execution time, because they
are executed offline in a computer connected to the implant
through the external unit. Thanks to the learning phase, we can
shift the complexity and hardware burden to offline processing,
allowing the real-time monitoring phase to be implemented with
lower complexity yet effective prediction algorithms and opti-
mized power consumption. The learning phase includes:
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(1) Digital data conditioning, which involves band-pass filtering
with a non-causal linear-phase finite impulse response (FIR) filter;

(2) Identification of the afferent neural activity with the best
correlation with bladder volume and/or pressure (Unit 1 in the
example shown in Fig. 4). The Spearman’s rank correlation coeffi-
cient (q) was used instead of the Pearson (linear) correlation coef-
ficient because the former assesses a monotonic dependence,
which is not necessarily linear, which improves the robustness of
our estimation method. Eq. (1) was used to compute the Spear-
man’s rank correlation coefficient:

q
k
¼

Pn
i¼1 FRi;k � FRk

� �
Vi;k � Vk

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 FRi;k � FRk

� �2Pn
i¼1 Vi;k � Vk

� �2q ð1Þ

where qk is the Spearman’s coefficient of the class k unit; k is the
number of classes detected; i is the counter of timeframes; n is
the number of the timeframes used along the recorded signals,
henceforward referred to as bins; FRi,k is the used values of the
units’ firing rate (FR) per second; Vi,k is the mean volume for the
same bin; FRk and Vk are the means of all FRs and volume bins
relative to class k, respectively;

(3) Computing the background neural activity, where the back-
ground baseline is computed by the averaging of the neural FR for
60 s before the bladder is filled with saline;

(4) Volume curve quantization using bins, which results in a
finite number of bins with a properly chosen width, henceforward
defined as the bin width (BW);

(5) FR integration, which involves computing of the FR within
the bins (i.e., the number of spikes detected within the bin for
the selected unit), henceforward called the bin-integrated rate
(BIR);

(6) Volume or pressure prediction, for which, as mentioned
above, we used two algorithms for bladder volume or pressure pre-
diction: a qualitative one to predict three levels of bladder fullness
and another to quantify it. A short description of both algorithms is
presented below.

The qualitative volume or pressure prediction algorithm pre-
dicts three levels representing bladder fullness (low, medium,
Fig. 4. Bladder afferent neural activity recordings (ENG) during a slow filling. The spike’s
with the bladder volume in this example. ENG: electroneurogram; Pves: vesical pressure
and high): low volume (a comfortable level), the need-to-void
medium volume level (within some predefined time), and the
urge-to-void high volume (where there is a risk of urine leaking).
The programmed thresholds correspond to 0.25, 0.5, and 1.0 times
the full capacity of the bladder volume. By using linear-regression-
based algorithms in the learning phase, we computed the BIR for
these three degrees of fullness: BIR0.25, BIR0.5, and BIR1.0. Finally,
the qualitative volume or pressure prediction was realized by find-
ing the minimum distance within the real-time computed BIR and
the stored reference values (BIR0.25, BIR0.5, and BIR1.0). Based on
this method, each bin was assigned to one of the three fullness
levels. To find the optimal bin length, the BW was swept using
different intervals and the length yielding the best (i.e., lowest)
qualitative estimation error (Equal) was adopted using Eq. (2). To
compute Equal in Eq. (2), we calculated the overall success rate
(OSR) [104], which is the ratio of all good classifications of the
states over all performed classifications. The OSR is evaluated by
adding Bi, the number of bins for which the estimated state
matches the actual one, and dividing by the total number of bins
(n).

Equal ¼ 1� OSR ¼ 1�
Pn

i¼1Bi

n
ð2Þ

To implement the quantitative volume and pressure estimation
using a frugal amount of hardware resources, a regression method
model was used, as shown in Eq. (3):

bV ¼
XN
i¼0

ðci � BIRiÞ ð3Þ

where bV is the estimated volume, ci represents the regression
model coefficients. We used the bisquare robust fitting method to
compute ci and minimize the impact of the outlier values [105].
The optimal order (N) for the regression model, shown in Eq. (3),
was found by running simulations (trials) with real neural record-
ings from animal models. By running several simulation trials, we
selected the minimal N and the shortest BW, which yielded the
lowest estimation error.
raster of three units identified is shown. Unit 1 activity exhibited the best correlation
; U1: Unit 1; U2: Unit 2; U3: Unit 3; 1 cmH2O = 98.0655Pa.
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Eq. (3) can also be used to estimate the pressure by substituting
bV by bP . The parameters needed for pressure estimation can also be
computed during the learning phase.

We used the root mean square error (RMSE), which is computed
using Eq. (4), for the validation of the algorithms in real-time-like
test runs. In Eq. (4), Vi is the present volume (or pressure, VP) of the

bin i, bV i (or bPi) is the estimated bin of the volume (or pressure)
value computed using Eq. (3) for the same bin i, and n is the total
number of bins.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Vi � bV i

� �2

n

vuut
ð4Þ

The real-time monitoring phase runs the following steps:
① digital non-causal filtering; ② on-the-fly spike classification;
③ BIR computing using the optimal BW; ④ comparing the BIR to
the baseline and setting the volume to 0 for lower values; and, if
the BIR is higher, ⑤ proceeding to compute the bladder volume
or pressure using Eq. (3). Several test runs were executed to test
and validate our algorithms, as shown in the example in Fig. 5
[106].

Finally, all the proposed algorithms were validated using data
recorded from anesthetized rats during acute experiments. More
details about these experiments and prediction algorithms are
given in Ref. [102].

We succeeded in qualitatively predicting the three states of
bladder fullness in 100% of the trials when the recorded afferent
neural activities exhibited a Spearman’s correlation coefficient of
0.6 or better. We also succeeded in quantitatively predicting the
bladder volume and pressure employing time windows of
appropriately chosen durations.

We implemented a dedicated DSP, shown in Fig. 6 [106], to
monitor the bladder volume or pressure, running the algorithms
described above. The DSP runs the on-the-fly spike sorting and
sensory decoding of the afferent neural activity of the bladder in
real time to predict the volume or pressure value, as described in
this section. The dedicated DSP was validated using synthetic data
(with known a priori ground truth), and with signals recorded from
acute experiments from the bladder afferent nerves.

The on-the-fly spike-sorting algorithm runs on the dedicated
DSP and compares advantageously with other works reported in
the literature [103]. We achieved a higher accuracy (92%) even
when using difficult synthetic signals composed of highly
correlated spike waveforms and low signal-to-noise ratios. The
volume or pressure prediction module showed an accuracy of 94%
and 97% for quantitative and qualitative estimations, respectively.
Fig. 5. Quantitative volume estimation in simulated real-time data-processing experimen
consecutive cycles where the volume was computed from the training phase. The optima
the first cycle and the estimation errors of the following two cycles were very low, as s
4.2. Epileptic seizure prediction

Epilepsy, a neurodegenerative disease, is one of the most com-
mon neurological conditions and is characterized by spontaneous,
unpredictable, and recurrent seizures [107,108]. While first lines of
treatment consist of long-term medications-based therapy, more
than one third of patients are refractory.

On the other hand, recourse to epilepsy surgery is still rela-
tively low due to very modest success rates and fear of compli-
cations. An interesting research direction is to explore the
possibility of predicting seizures, which, if made possible, could
result in the development of alternative interventional strategies
[83]. Although early seizure-forecasting investigations date back
to the 1970s [109], the limited number of seizure events, the
paucity of intracranial electroencephalography (iEEG) recordings,
and the limited extent of interictal epochs have been major hur-
dles toward an adequate evaluation of seizure prediction
performances.

Interestingly, iEEG signals acquired from naturally epileptic
canines implanted with the ambulatory monitoring device (Neuro-
Vista) have been made accessible through the ieeg.org online por-
tal [110]. However, the seizure onset zone was not disclosed/
available. Our group investigated the possibility of forecasting sei-
zures using the aforementioned canine data. Subsequently, we per-
formed a directed transfer function (DTF)-based, quantitative
identification of electrodes located within the epileptic network
[111]. A genetic algorithm was employed to select the features
most discriminative of the preictal state. We proposed a new fit-
ness function that is insensitive to skewed data distributions. An
average sensitivity of 84.82% at a time-in-warning of 10% was
reported on the held-out dataset, improving previous seizure pre-
diction performances [111].

Trying to find new opportunities for seizure prediction, we also
explored novel features to track the preictal state based on higher
order spectral analysis. Extracted features were then used as inputs
to a multilayer perceptron for classification. Our preliminary find-
ings revealed significant differences between interictal and preictal
states using each of three bispectrum-extracted characteristics
(p < 0.05). Test accuracies of 73.26%, 72.64%, and 78.11% were
achieved for the mean of magnitudes, normalized bispectral
entropy, and normalized squared entropy, respectively. In addition,
we demonstrated the existence of consistent differences between
the epileptic preictal and interictal states in mean phase–
amplitude coupling on the same bilateral canine iEEG recordings
[112].

In contrast, we also explored the possibility of using quantita-
tive effective connectivity measures to determine the network of
ts [106]. The first measurement cycle was used as a training phase, followed by two
l BW for this fiber was 47 s, using a regression model of order six. The fitting error of
hown by the RMSEall of each cycle: 2%, 3.9%, and 4.1%, respectively.
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Fig. 6. Dedicated DSP intended for bladder volume or pressure monitoring [106]. FSM: finite state machine; C1–C7: clusters of data classifications.
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seizure activity in high-density recordings. The ability of the DTF to
quantify causal relations between iEEG recordings has been
previously validated. However, quasi-stationarity of the analyzed
signals remains a must to avoid spurious connections between
iEEG contacts [113]. Although the identification of stationary
epochs is possible when dealing with a relatively small number
of contacts, it becomes more challenging when analyzing high-
density iEEG signals. Recently, a time-varying version of the DTF
was proposed: the spectrum-weighted adaptive directed transfer
function (swADTF). The swADTF is able to cope with non-
stationarity issues and automatically identify frequency ranges of
interest [113]. Subsequently, we validated the possibility of finding
seizure activity generators and sinks by employing the swADTF on
high-density recordings [114]. The database consisted of patients
with refractory epilepsy admitted for pre-surgical evaluation at
the University of Montreal Hospital Center. Interestingly, the iden-
tified seizure activity sources were within the epileptic focus and
resected volume for patients who went seizure-free after surgical
resection. In contrast, additional or different generators were iden-
tified in non-seizure-free patients. Our findings highlighted the
feasibility of accurately identifying seizure generators and sinks
using the swADTF. Electrode selection methods based on effective
connectivity measures are thus recommended in future seizure-
forecasting investigations.

Recent findings highlight the feasibility of predicting seizures
using iEEG recordings; the transition from interictal into ictal
states consists of a ‘‘buildup” that can be tracked using advanced
feature extraction and AI techniques. Nevertheless, before current
approaches can be translated into actual clinical devices, further
research is needed on feature extraction, electrode selection, hard-
ware implementation, and deep learning algorithm.

5. Conclusion

In this paper, we reviewed the latest developments in the
application of AI in biomedicine, including disease diagnostics
and prediction, living assistance, biomedical information process-
ing, and biomedical research. AI has interesting applications in
many other biomedical areas as well. It can be seen that AI plays
an increasingly important role in biomedicine, not only because
of the continuous progress of AI itself, but also because of the
innate complex nature of biomedical problems and the suitability
of AI to solve such problems. New AI capabilities provide novel
solutions for biomedicine, and the development of biomedicine
demands new levels of capability from AI. This match of supply
and demand and coupled developments will enable both fields to
advance significantly in the foreseeable future, which will ulti-
mately benefit the quality of life of people in need.
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