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1. Introduction

In our daily life, we expect smart devices to help us with differ-
ent kinds of tasks. For this reason, it is necessary to design a variety
of robots and related algorithms specifically for different tasks and
scenarios. However, such a methodology results in smart devices
with limited intelligence that fall far below our expectations and
fail to adapt to different real-life task scenarios. In contrast, if we
regard humans as ‘‘intelligent agents,” such an agent, given appro-
priate tools, can perform different manipulation tasks in various
scenarios. Inspired by this idea, we perceive a need for a general-
purpose intelligent agent (GIA), such that most tasks can be
executed by the same agent, which will significantly accelerate
the development of intelligent industries and increase the conve-
nience of human lifestyles. We also believe that, in order to
approach the goal of artificial general intelligence [1], a powerful
and standard GIA is necessary.

This paper discusses the architecture of the GIA, starting from
two perspectives. The first perspective is a GIA that is humanlike:
We hope that the GIA can have the full range of humanlike per-
ception [2], decision-making [3], and knowledge and learning [4].
We also hope to achieve a GIA with the ability to adapt existing
knowledge and experiences to new situations, and then drive the
body to implement all kinds of manipulations correctly, thus
eventually accomplishing tasks. The second perspective is a GIA
that is computer-like: We hope that the design of the GIA archi-
tecture can refer to the idea of computer design [5]—for example,
where clear protocols are defined among the modules, the mod-
ule itself can be upgraded, and the user can describe the task
through high-level semantic programming language without put-
ting effort into the bottom-level design of the system. After fully
considering these two perspectives, we propose a primitive flow
model to extract the manipulation-primitive commonalities
across tasks and targeting objects in order to complete as many
tasks as possible. Based on the primitive flow model, this paper
suggests a GIA that is equipped with five basic modules: an
execution module, a perception module, a task compiler, a
knowledge engine, and a central GIA processor. In this paper,
we will discuss how these modules can be functionally compared
with human beings (i.e., in terms of being intelligent), while
simultaneously aligning with the concepts of computer design
(i.e., in terms of being workable). We expect a GIA with this
architecture to have three characteristics:

(1) Transferability: For most tasks, the user only needs to pro-
vide a simple task description; there is no need to change the agent
or redesign the bottom-level common hardware, protocols, or
operating system.

(2) Scalability: Every basic module is relatively independent
and can be upgraded, like the central processing unit (CPU) and
random access memory (RAM) in general computers.

(3) Knowledge expansion: Knowledge can be gained and expe-
rience can be shared among numerous GIA units. With the accu-
mulation of completed tasks within a group of GIAs, the
knowledge system will be expanded, and the time required to
learn new tasks will be significantly reduced.

We further discuss how to quantify the intelligence capability
of an agent. It is our opinion that task transferability is the most
important index for evaluating the intelligence capability of an
agent. Therefore, we propose the agent–human cost ratio (AHCR)
index, which is the ratio of the time required by an agent to learn
a new task to that required by a human to learn the same task.
This indicator can well evaluate the comprehensive ability of an
agent in terms of general intelligence. It must be noted that the
concept of the GIA presented in this paper is not intended to be
that of an agent that can complete all human manipulation tasks;
rather, it is the concept of an agent that can pursue as many tasks
as possible that can be completed by a unified and standard
agent. In certain scenarios, special robots can be more efficient
than a GIA according to the need, such as floor-sweeping robots.
This is similar to the relationship between general computers and
special computers; although the vast majority of people use gen-
eral computers with a general-purpose architecture, computers
with a special architecture are still required to run certain special
calculations.

In the remainder of this paper, we will introduce the idea of
the primitive flow model, the basic architecture of the GIA, the
benchmark design, the community building, and the impact of
the GIA on intelligent science. We will then discuss the applica-
tions of the GIA in various industries. Finally, we draw a
conclusion.
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2. The primitive flow model

Many manipulation tasks need to be completed in a variety of
industries and in daily life. The core of the GIA is to describe these
nearly infinite tasks using a simple model. In this paper, we pro-
pose the idea of the primitive flow model. Basically, any human
manipulation can be broken down into multiple steps; for exam-
ple, the task of unscrewing a screw can be divided into ① grabbing
the screwdriver, ② moving the screwdriver to align with the
screw, ③ twisting the screwdriver, and ④ moving the screwdriver
away from the screw.

Following this thinking, we explore how to break down a com-
plicated manipulation task into several micro-tasks. To clarify the
decomposition of one task, we define ‘‘general manipulation that
cannot be further decomposed” as the manipulation primitive;
examples include grasping, twisting, inserting, and kneading. By
‘‘general,” we mean that the manipulation primitives are required
to have a wide range of transferring commonalities, which are
cross-task and cross-object.

For example, there is a strong commonality between twisting
open the cap of a chemical reagent bottle (e.g., in the pharmaceu-
tical industry) and twisting open the cap of a salad dressing bottle
(e.g., in the household industry). Moreover, it can be assumed that
a human’s manipulation-primitive set is finite. Therefore, after the
manipulation-primitive set is defined, any human manipulation
task can be parsed as a primitive flow—that is, as a sequence of
manipulation primitives. Next, we will present an in-depth discus-
sion about the complete definition of manipulation primitives and
the construction of primitive flows.

2.1. Three elements of a manipulation primitive

A complete definition of a manipulation primitive includes
three components: the manipulation-primitive type P (e.g., grasp-
ing, twisting, and inserting); the situation of the targeting object O
(including manipulated objects and tools), which indicates the
visual, force, and sound semantics; and the set of the final state S
of the targeting object after the task has been accomplished. There
are many possibilities for the object’s final state in some tasks; for
example, breaking glass may result in the common broken state of
normal glass or in the granular crushed state of tempered glass.
Hence, we consider S as a set, and after the successful execution
of the task on the object O by the manipulation-primitive type P,
the final state changes to be a member of set S. These components
are called the three elements of the adaptive manipulation-primi-
tive triplet {P, O, S}.

When the agent acquires the triplet {P, O, S}, it activates the
knowledge of the manipulation-primitive type P, extracts the state
and property of object O (i.e., appearance, force sense, materials,
functionality, and affordance), and executes adaptive manipulation
Fig. 1. The proposed GIA architec
to achieve the state S. This process also relies on a powerful knowl-
edge engine, which will be introduced later. As explained above,
we conceptually define the set S, however, from a practical stand-
point, if S is too large to enumerate, we will design (or train) a dis-
crimination function to output a binary state indicating whether
the primitive is completed or not.

2.2. Primitive-based task parsing

After confirming the manipulation-primitive set, it becomes an
open problem of how to parse a targeted task into a series of
primitives—namely, a primitives flow. In addition, the environ-
ment of the GIA is always dynamically changing. Thus, a dynamic
task-parser function Z() is needed to sequentially select the manip-
ulation primitive dynamically according to the environmental
changes.

Discussion: The manipulation-primitive flow model can sim-
plify the description of various complex manipulation tasks. Con-
sidering the limited types of human manipulation primitives, any
task can be converted into a primitive sequence. Manipulations
under the same primitive operation have strong commonality even
when addressing different objects, which makes it possible to
extract common knowledge to achieve powerful task
transferability.

3. The architecture of the GIA

As shown in Fig. 1, we now discuss the basic modules of the
GIA: the execution module, perception module, task compiler,
knowledge engine, and central GIA processor. These modules work
together to complete a variety of tasks under a unified protocol,
with no need to redesign the software and hardware architecture.

Taking the primitive flow model as the task-understanding
principle, we introduce the five basic modules below.

Execution module. This part mainly consists of the mobile
platform and the manipulation platform.

(1) Mobile platform. By the spatial movement of the mobile
platform, the manipulated object is located in the working space
of a manipulation platform. Common mobile platforms include
systems that are wheeled, four-legged, two-legged, or with slide
rails, the mobility limitations and flexibility of which are reduced
in turn, while the control difficulty is increased in turn. The ques-
tion of how to improve the control stability, flexibility, and effi-
ciency is still an important research topic in the field of robotics.

(2) Manipulation platform. By applying the force of different
positions and dimensions to the objects, the ideal result is
achieved, as planned. Common manipulation platforms include
robotic arms of the parallel or series type and their end-effectors,
as well as driving methods such as the electric, pneumatic, and
hydraulic drive. How to balance the accuracy and flexibility of
ture with five basic modules.



C. Lu, S. Wang / Engineering 6 (2020) 221–226 223
the manipulating force, together with the speed, stability, load, and
energy efficiency of the manipulation platform, is a key issue for
the further evolution of the execution module.

Perception module. The perception module receives external
signals, which includes collecting visual signals, force signals, and
sound signals, and simultaneously analyzes the vision, force, and
auditory semantics in the environment. Among them, the analysis
of visual and auditory semantics requires the application of com-
puter vision and speech-recognition technology.

Technology prospect: Visual and auditory signal acquisition is a
relatively mature technique in which visual information may
include accurate three-dimensional (3D) and thermal information.
At present, computer vision technology based on deep learning has
limited capability to recognize objects that are not present in the
training set. How to fuse interactions to environments and improve
the recognition of new objects is also an open academic issue.
The feedback information of the force sensor may include
low-frequency six-dimensional force (3D contact force and 3D
contact torque) signals, high-frequency tactile signals (i.e., the
vibration state of the contacting surface, which can be used to
identify the physical and manipulation-state characteristics of the
contacted object), and tactile spatial information (i.e., the spatial
distribution of force signals, typically obtained by sensors in the
form of arrays and/or class-like image features). At present,
research on the design and analysis methods of force sensors is still
evolving. How to obtain more accurate and comprehensive force
information at lower cost and how to integrate force information
with other sensing dimensions are also open academic subjects at
present.

Task compiler. The task compiler is the interface for users to
assign tasks to the GIA. We propose to develop a task-oriented
high-level programming language to translate task descriptions
from a user into a primitive flow in real-world applications. To
be specific, the task compiler is responsible for compiling a task
into an executable dynamic task-parser function Z(). The function
can select the current optimal manipulation primitive from a
pre-built manipulation-primitive library based on the information
given by the perception module and the knowledge from the
knowledge engine. Unlike traditional computer programming lan-
guages, users can implement a task description besides by program
coding, and can also through other various methods such as teach-
ing by demonstration or natural languages.

Open questions: A new scientific problem will be how a task
(especially a complex manipulation task) can be described in order
to generate (or learn) a dynamic task-parser function Z() of the
manipulation primitive, which machines can execute. Demonstra-
tion is intuitive, and has been studied for a long time [6], but it is
usually robotic-specific and cost-prohibitive to record every possi-
ble successful path for a complex task. Natural language is promis-
ing, as natural language processing (NLP) techniques have made
considerable progress lately [7]; however, the open-set feature of
a natural language prevents the language from being learned effec-
tively, and types of closed-set vocabulary that can be used for
robotics instruction are rarely explored. A closed-set vocabulary
is also needed for program coding.

Furthermore, it is necessary to think about ‘‘machine teaching,”
and not just about machine learning. Most researchers focus on
machine learning because machine teaching is relatively simple
due to the only requirement of sample labeling; nevertheless, a
more challenging problem is how to teach a machine to under-
stand the task.

Technology prospect: For tasks with fixed steps (e.g., industrial
scenarios), we can program the manipulation-primitive sequence
directly. For tasks requiring a dynamic decision-making process,
in which decisions on what kind of manipulation primitives should
be used are needed for each step, a relatively more achievable
method is to observe human decision-making behavior and adopt
imitation learning. In this process, ‘‘future prediction” is also a key
technical point. Humans do not need large-scale trial and error to
select a primitive; rather, we rely on basic predictions of the future,
which greatly enhances the possibility of successful decision-
making.

Knowledge engine. Under a unified protocol, different users
can edit the knowledge of objects and manipulations, and can
expand the knowledge base. For example, microwave oven manu-
facturers can edit their manipulation knowledge, and this knowl-
edge will be uploaded to the central GIA knowledge engine in
the cloud by the same protocol. The GIAs analyze the task and envi-
ronment, and then access the corresponding knowledge in the base
or the most similar knowledge set, to enable decision-making.

Open questions: ① How can the object knowledge protocol be
defined for object-manipulation? ② How can human–machine
(or human-in-loop) interaction be used to capture dynamic task-
parsing knowledge for function Z()? ③ When there is no matching
knowledge in the knowledge base, how can similar knowledge be
relied on for reasoning?

Technology prospect: We want to build a comprehensive
knowledge base, including:

(1) A knowledge engine based on object attributes. This would
collect a large amount of 3D object information and edit object
attributes, including the functionality, affordance, and physical
attributes of every part of the object. At present, no object database
exists with all the annotation information. The current largest
object dataset, ShapeNet [8] annotates some attributes with an
incomplete coverage of both the objects and the attributes. How-
ever, the problem of how to establish an effective protocol for
annotating object attributes is crucial. For example, when setting
up space for object attributes, the understanding of the object will
be further generalized. When encountering unknown objects, it is
still possible to understand the object well after obtaining its attri-
butes through physical interactions, and these understandings can
then be applied to the manipulation. Such settings cannot be met
with ShapeNet.

(2) An adaptive manipulation-primitive knowledge engine.
For each specific manipulation primitive, there is a certain
commonality in dealing with different objects, and this commonality
is cross-task. We hope to extract common manipulation knowl-
edge under the same manipulation primitive in order to achieve
manipulation tasks very well for different objects. Specifically, for
the ith primitive, given the set of operation objects O (possibly
including objects, tools, etc.) and the final state S, Mi outputs an
executable instruction agent action u to complete the manipula-
tion primitive, which can be mathematically written as u = Mi(O,
S). The construction of the function Mi needs to combine real-time
force, vision, and other perception information and related knowl-
edge in the engine. It should be noted that the manipulation of O
strongly relies on object attribute knowledge. Taking grasping as
an example, we need to know which part of the targeting object
can be grasped. The concept of the manipulation primitive has
been developed in two streams: explicitly (i.e., rule-based) [9]
and implicitly (i.e., data-driven) [10]. Traditionally, the explicit
stream has never attempted to unite all the everyday manipula-
tions and focus on several specific small tasks, such as grasping,
moving, and sweeping [11]. It is difficult to combine the primitives
defined by rules into a fairly complex task. In contrast, the implicit
stream aims to learn manipulation patterns entirely through data.
Given the complexity of the task topology, the appropriate amount
of required data could be prohibitive to collect. Our idea is closely
related to the explicit stream, as we assign each primitive a
human-recognizable name.

(3) A task-parsing knowledge engine. When we set up and
improve the manipulation-primitive knowledge engine, we need
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to determine the combined steps of the manipulation primitive
according to the tasks, including many tasks with unfixed steps.
At present, human behaviors are recorded by massive videos; thus,
we can analyze the sequence of the manipulation primitive of
these behaviors under various environments [12] and manipulated
objects to obtain the task knowledge engine [13]. This can greatly
improve the efficiency of the users using the task compiler to
describe the task. Task parsing is challenging because the task
can often be achieved through different routines. In other words,
the task topology of a regular task is complex, and the model
parameters cannot capture such a huge space. This is the main rea-
son why the data-driven approach is infeasible for such a problem
[14]. However, our manipulation-primitive knowledge engine will
give a strong priority to the task-parsing problem.

Central GIA processor. After parsing the task of the task com-
piler, the central GIA processor reads the sensor module signal
and invokes knowledge in the knowledge engine to make a com-
prehensive decision and issue instructions to the execution mod-
ule. This module is the central computing module of the whole
system, which quickly accesses the cloud knowledge engine and
performs real-time decision-making. This module puts forward
certain requirements for the computing design.

This architecture has three desirable characteristics:
(1) Task-oriented semantic editing. Users can issue task descrip-

tions to the GIA through the task compiler by means of the high-
level programming language for tasks, and do not need to design
the underlying structure. This is similar to a situation in which
when we use a high-level computer programming language; there
is no need to design or handle various details such as the computer
CPU, memory, and so on.

(2) Scalable modules under the standard protocol. The percep-
tion module, execution module, and central GIA processor have a
unified operating protocol and communication protocol among
the modules, under which hardware or software can be indepen-
dently upgraded.

(3) Knowledge and experience can grow. After establishing cer-
tain editing protocols for objects and knowledge, the knowledge
engine will be open to all. Users can submit knowledge modules
of objects, manipulation primitives, and task knowledge under uni-
fied specifications to achieve never-ending knowledge growth.

Discussion: We propose that the GIA should not only be analo-
gous to humans in terms of its intelligent function, but also be
analogous to the design of a computer (Table 1):

Analogous to humans. The execution module is similar to
human hands and feet; the perception module can be compared
to the eyes, ears, and tactile nerves, which are used to perceive
information from the environment; the task compiler when under-
standing the task description is similar to the area in the brain that
understands language; the knowledge engine can be compared to
the brain memory area; and the central GIA processor’s function
of comprehensive processing can be compared to the specific part
of the brain that is responsible for logic.

Analogous to computers. A computer cannot directly affect the
external physical world, so the execution module does not have a
corresponding computer analog. Similarly, the perception module
Table 1
Comparison of the GIA’s five modules with human organs (function) and computer
modules (design).

GIA modules Comparable human organs Comparable
computer modules

Execution module Hands, feet —
Perception module Eyes, ears, tactile nerves Keyboard, mouse
Task compiler Brain language section Compiler
Knowledge engine Brain memory section Memory
Central GIA processor Brain logic section CPU
is analogous to the computer input devices, such as keyboards
and mouse. The task compiler is analogous to a compiler in a com-
puter, which allows various programs to be executed on a central
GIA processor (analogous to a CPU), while the knowledge engine
can be analogous to computer memory. Table 1 lists the human
and computer analogs for the GIA.
4. Benchmark

A quantified index is needed to measure the performance of the
GIA. Intelligent transferability, which mainly refers to the cost of
learning a new task, is the direct measurable standard for general
intelligence level; transferability can also be regarded as a key bot-
tleneck in the development of artificial intelligence (AI) technology
based on deep learning [15]. Therefore, we propose the AHCR as
the measurement index. The AHCR is defined as follows:

For task A, we have:
Tagent: the average time needed from the user obtaining task A’s

descriptions to the agents acquiring the whole skill of task A;
Thuman: the average time needed from a human learner obtain-

ing task A’s descriptions to the learner acquiring the whole skill of
task A.

Thus, we can compute the AHCR of task A as follows:
AHCR = Tagent/Thuman

Tagent is also called ‘‘the overall cost of agent teaching and learn-
ing.” Here, average time is used considering people’s time-
consumption bias. The main insight of the AHCR is that for the time
ratio of an agent’s task learning to a human’s task learning, the
value of the ratio is hoped to be lesser than or close to 1.

This index can measure an agent’s general intelligence
capability comprehensively. Teaching and learning cost are two
important factors. ① Teaching cost largely depends on the task
complier’s maturity. If a considerable amount of time must be
spent on task description, due to a poor task complier (e.g., too
much hard-coding time), the overall teaching time will be
increased. In an ideal situation, we can use natural language or
body language to describe the task, and the agent can clearly
understand it. ② Learning cost is the time needed for agent
learning, such as model training. It should be noted that, as
estimated, most of the tasks require a human-in-the-loop for users
to re-code according to feedbacks, which tests the agents’ active
learning effectiveness. In addition, the more powerful a GIA’s
knowledge engine and reasoning/conducting ability are, based on
learning cost, the less time is needed.

Scalable task zoo. Since there will be some bias in using a sin-
gle task to evaluate an agent’s transferability, it is necessary to set
up a task zoo with enough diversity and representativeness to
avoid measuring bias. We will use average AHCR to set a measure-
ment standard. We expect that, with the task quantity rising, the
overall learning duration will decrease. Under this circumstance,
a new academic question will emerge: What kinds of tasks should
be the first and should come later in order to ensure that the learn-
ing cost is minimized? For example, humans learn new things
starting from easier learning and moving to more difficult learning.
5. Community and experience sharing

The development of the GIA strongly relies on experience shar-
ing, which means that a considerable number of academic and
business communities, along with effective organization, are
needed to teach the GIA various tasks. We expect the advent of
the following communities:

� Perception model communities, in which members submit
and check various kinds of perception models, which are used
for different object detectors;
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� Task zoo communities (where we expect the task zoo to be
scalable), in which all members can submit new tasks, and
an approval committee is needed to check whether the task
submitted is approved or not;

� Task compiler communities, which encourage the develop-
ment of multiple task-oriented task-programming languages,
and where, after competitions, a few of the most outstanding
languages win and are widely used;

� Knowledge engine communities, in which members submit
and check various kinds of manipulation primitives, objects,
and knowledge.
6. Impact of the GIA on intelligent science

In our opinion, the GIA goes far beyond the idea of AI-empowered
robots, and will contribute enormously to the development of
intelligent science. The key bottleneck faced by the mainstream
deep learning method is that untrained data performance signifi-
cantly drops for new tasks—that is, there is low transferability.
The GIA can enhance machines’ transferability on tasks.

First, in terms of an understanding of world concepts, agents
need a deep understanding of the concepts of their environment
(especially the operational objects). Based on the primitive set with
generalization ability, the agent can have a deeper understanding
of the physical world by interacting with objects, and can better
represent various concepts of objects, such as functionality, opera-
tion modes, and materials. For example, we understand the con-
cept of scissors by judging whether an object can cut things
through interactions. As Fig. 2 shows, a human can conclude that
what an object is, even though no similar pictures have been pro-
vided in the training set. In contrast, a traditional learning algo-
rithm cannot achieve this result without relevant information
being present in the pre-training.

The GIA provides an interactive foundation with the outside
world that allows the agent to gain additional object property
understandings; this differs from the traditional deep learning sys-
tem. Based on property perception, the system can also gain a good
understanding of unseen objects. With the assistance of manipula-
tion-primitive construction, the research will shift from pattern
recognition to object understanding, enabling a good generaliza-
tion ability for unseen objects.

Scalable swarm intelligence. Even though this concept has
been put forward for over 20 years, it is difficult for swarm intelli-
gence to function across tasks [16]. The GIA provides a good oppor-
tunity for scalable swarm intelligence due to its foundation of the
manipulation primitive, as the manipulation primitive processes
strong universality in different tasks. With the mass manipulations
created and documented by GIA communities, this universality
Fig. 2. Scissors cannot be recognized by a vision deep learning model if this type of
scissors was not present in the training set. However, humans can recognize the
object as ‘‘scissors” based on its functionality through manipulation.
will be further generated to support task transfer. Furthermore,
as GIAs have a common protocol, it will be much easier to share
experience and achieve stronger transferability among GIAs. In
addition, empowered by universality, each manipulation primitive
can achieve a more effective structured indexing of numerous
intelligence spaces, and can construct reasonable connections
among common semantics.
7. Applications

The GIA will significantly improve working efficiency, and is
expected to bring huge changes into the manufacturing, medical
treatment, catering, agriculture, and household product industries
among others. For example, it is currently impossible to redesign
hardware, software, or learning models to address every new task
in each specified home environment, which is a key obstruction to
household product development. Considering the different diffi-
culty levels of various fields, the GIA’s actual application will occur
in sequential steps. Table 2 roughly summarizes four levels of GIA
application.

We consider that a high intelligence level is needed to deter-
mine what manipulation primitive to use each time, such as when
repairing objects. With the help of the knowledge engine, the
objects of manipulation can perform adaptively to the change of
the environment. For this reason, we can establish a distribution
of different fields of application across the four levels of difficulty
(Fig. 3). However, it cannot be said that a specific application will
be at only one level; rather, the applications are cross-level. Among
the considered GIA applications, industry GIA is at a relatively sim-
ple level, since after confirmation of the task, the object and envi-
ronment of manipulation do not vary much, and the manipulation
process is known. In contrast, household GIA involves interaction
with humans (i.e., uncertain objects) as well as unknown processes
(e.g., caring for the aged), which increases the complexity.

Thus, we suggest that the industry GIA application should be
realized first, since it will be possible to implement this type of
application relatively soon. This application can then function as
a basic prototype for future common GIAs, based upon which sub-
sequent GIAs in other industries can upgrade, eventually achieving
cross-industry universal GIAs.

Execution module. Most of the workers who focus on assem-
bling are fixed in position in front of the station. The execution
module of such a GIA can be a pair of robot arms, with seven
degrees of freedom (DOFs) to match a human’s flexibility. When
assembling complicated parts, a human usually relies on a sense
of touch and force to ‘‘feel the way” toward successful assembling,
which is a process of applying forces and moments in different
dimensions (6 DOFs in total) on the parts. Therefore, the arms must
be able to exert different combinations of forces and moments
dexterously on the parts. Thus, the robot arms should have high
6 DOFs force-control performance.

Perception module. For an arm with a high force-control per-
formance, high-quality force/moment sensors are required. These
Table 2
Four levels of difficulty for GIA application.

Level Condition of object and environment Process step

1 Both the environment and the objects of
manipulation vary slightly

Known
process step

2 Either the manipulation environment or the objects
of manipulation varies greatly

Known
process step

3 Both the environment and the object of
manipulation vary greatly

Known
process step

4 Both the environment and the object of
manipulation vary greatly

Unknown
process step
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could be embedded in the arm joints or on the end-effectors. It is
also necessary for the GIA to imitate the human senses of touch
and vision, which identify objects, localize the positions and orien-
tations of each object, and identify the assembling features on each
object. These sense are always required in order to support sophis-
ticated hand–eye coordination. A possible way to achieve 3D vision
is a RGB-D camera.

Task compiler. In production lines, well-documented standard
operation procedures (SOPs) and working instructions are neces-
sary in order for human workers to perform their tasks. Thus, the
most straightforward task compiler is one that can parse the SOPs
and convert them into sequences of correct primitives, and learn
the objects from pictures in the SOPs so as to link the objects for
each primitive. Another, even simpler, compiler could be a pro-
gramming pad that allows the field engineering to edit the primi-
tive flow, since the set of primitives is comparatively narrow
compared with GIAs for other applications.

Knowledge engine. Here, we propose a set of primitives
required for normal assembling procedures, although these may
not be a complete set for every assembly task. This set includes:

(1) Inserting and/or gripping part A and sliding its male/female
feature to the female/male feature of part B, where possible fea-
tures are connectors, shafts/holes, and screws/bores;

(2) Mating and/or pressing part A on top of part B and moving
around the surface of part A so that the features of part A and part
B can be mated together with tight tolerance, where possible fea-
tures are part geometries that fit with each other, with a transi-
tional or press fit;

(3) Screwing, turning, and installing part A into part B, where
features include screw threads and pipe threads.

Industry GIA. Compared with the capability of GIAs required for
a broader scope of applications, the GIAs applied in industrial
automation will operate in a relatively structured environment
with well-defined procedures; thus, they will be less difficult to
implement than the GIAs in other applications.

At present, various types of robots and customized equipment
have been utilized in modern production lines to manufacture
products efficiently, with related technology that has evolved over
tens of years. Mature automation works include soldering, paint-
ing, and material loading. However, there are still procedures that
can only be done by humans, which require more sophisticated
material handling that must adapt to the compliance of the parts
and non-perfect tolerance control of the components, such as
complex assembling. Here, we propose a possible form of industry
GIA that is capable of these types of tasks.
8. Conclusion

In this article, we discussed the new concept of the GIA in order
to pursue general transferability among tasks. A core primitive
flow model and GIA architecture were proposed. We believe that
the GIA will significantly promote intelligent science.
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