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Recently, due to the availability of big data and the rapid growth of computing power, artificial intelli-
gence (AI) has regained tremendous attention and investment. Machine learning (ML) approaches have
been successfully applied to solve many problems in academia and in industry. Although the explosion
of big data applications is driving the development of ML, it also imposes severe challenges of data pro-
cessing speed and scalability on conventional computer systems. Computing platforms that are dedicat-
edly designed for AI applications have been considered, ranging from a complement to von Neumann
platforms to a ‘‘must-have” and stand-alone technical solution. These platforms, which belong to a larger
category named ‘‘domain-specific computing,” focus on specific customization for AI. In this article, we
focus on summarizing the recent advances in accelerator designs for deep neural networks (DNNs)—that
is, DNN accelerators. We discuss various architectures that support DNN executions in terms of comput-
ing units, dataflow optimization, targeted network topologies, architectures on emerging technologies,
and accelerators for emerging applications. We also provide our visions on the future trend of AI chip
designs.
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1. Introduction

Classical philosophy described the process of human thinking as
the mechanical manipulation of symbols. For a very long time,
humans have been attempting to create artificial beings endowed
with the intelligence of consciousness, which was the initial seed
of artificial intelligence (AI). In 1950, Alan Turing mathematically
discussed the possibility of implementing an intelligent machine,
and proposed ‘‘the imitation game,” which was later known as
the ‘‘Turing test” [1]. The Dartmouth summer research project on
AI [2], which took place in 1956, is generally considered to be
the official seminal event for AI as a new research field. In the sub-
sequent decades, AI experienced several ups and downs. Very
recently, due to the availability of big data and the rapid growth
of computing power, AI has regained tremendous attention and
investment. Machine learning (ML) approaches have been success-
fully applied to solve many problems in academia [3,4] and in
industry [5].

ML algorithms (including biologically plausible models) origi-
nally emulate the behavior of a biological brain explicitly [6]. The
human brain is currently regarded as the most intelligent
‘‘machine,” and has extremely high structural complexity and
operational efficiency. Similar to biological nervous systems, two
basic function units in an ML algorithm are synapses and neurons,
which are responsible for information processing and feature
extraction, respectively. Compared to synapses, there are more
types of neuron models, such as the McCulloch–Pitts [6], sigmoid,
ReLU, and Integrate-and-Fire models [7]. These neuron models all
have certain nonlinear characteristics that are required for both
feature extraction and neural network (NN) training. Later,
‘‘biologically inspired” models were invented as mathematical
approaches to realize high-level functions [8]. In general, modern
ML algorithms can be divided into two categories: artificial neural
networks (ANNs), where data is represented as numerical values
[9], and spiking neural networks (SNNs), where data is represented
by spikes [10].

Although the explosion of big data applications is driving the
development of ML, it also imposes severe challenges of data
processing speed and scalability on conventional computer sys-
tems. More specifically, traditional von Neumann computers have
separate processing and data storage components. The frequent
data movement required between processors and off-chip memory
limits the system performance and energy efficiency, which has
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been further exacerbated by the skyrocketing volume of data in AI
applications. Computing platforms that are dedicatedly designed
for AI applications have been considered, ranging from a
complement to von Neumann platforms to a ‘‘must-have” and
stand-alone technical solution. These platforms, which belong to
a larger category named ‘‘domain-specific computing,” focus on
specific customization for AI. Orders-of-magnitude power and
performance efficiency improvements have been accomplished
by overcoming the well-known ‘‘memory wall” [11] and ‘‘power
wall” [12] challenges. Recent AI-specific computing systems—that
is, AI accelerators—are often constructed with a large number of
highly parallel computing and storage units. These units are
organized in a two-dimensional (2D) way to support common
matrix–vector multiplications in NNs. Network-on-chip (NoC)
[13], high bandwidth memory (HBM) [14], data reuse [15], and
so forth are applied to further optimize the data traffic in these
accelerators. Innovations at three levels—namely, biological theory
foundation, hardware design, and algorithms (software)—serve as
the three cornerstones of AI accelerators. This article summarizes
recent advances in AI accelerators for both data centers [5,16,17]
and edge devices [18–20].

Besides conventional complementary-symmetry metal-
oxide-semiconductor (CMOS) designs, emerging nonvolatile
memories, such as metal-oxide resistive random access memory
(ReRAM), have been recently explored in AI accelerator designs.
These emerging memories feature high storage density and fast
access time, as well as the potential to implement in-memory com-
puting [21–23]. More specifically, ReRAM arrays can not only store
NNs, but also perform in situ matrix–vector multiplications in an
analog manner. Compared with state-of-the-art CMOS designs,
ReRAM-based AI accelerators can achieve 3–4 orders of magnitude
higher computation efficiency [24] due to the low-power nature of
analog computation. The noisy analog operation, on the other
hand, can be largely tolerated by ML algorithms, as they show great
immunity to noise and faults. However, the conversion between
analog signals in ReRAM crossbars and digital values in other
digital units in the accelerators requires digital–analog converters
(DACs) and analog–digital convertors (ADCs), which cost up to
66.4% of power consumption and 73.2% of area overhead in
ReRAM-based NN accelerators [25].

In this article, we mainly focus on ANNs. In particular, we sum-
marize the recent advances in accelerator designs for deep neural
networks (DNNs)—that is, DNN accelerators. We discuss various
architectures that support DNN executions in terms of computing
units, dataflow optimization, targeted network topologies, and so
forth. This article is organized as follows. Section 2 introduces
the basics of ML and DNNs. Section 3 and Section 4 present several
representative DNN on-chip and stand-alone accelerators, respec-
tively. Section 5 describes various DNN accelerators implemented
with emerging memories. Section 6 briefly summarizes DNN
accelerators for emerging applications. Section 7 provides our
visions on the future trend of AI chip designs.
2. Background

This section presents some background on DNNs and on several
important concepts that form a basis for the contents discussed in
this article. It also gives a brief introduction of the emerging
ReRAM and its application in neural computation.
Fig. 1. DNN training dataflow in PipeLayer [22]. Each arrow represents a data
dependency. T: logical cycle; L: the ground-truth label; d: the feature map; A: array;
W: weight; d: error; W0: the reformed W.
2.1. Inference and training of DNNs

In general, a DNN is a parameterized function that takes a high-
dimensional input to make useful predictions—that is, a classifica-
tion label. This prediction process is called inference. To obtain a
meaningful set of parameters, training of the DNN is performed
on a training dataset, and the parameters are optimized via
approaches such as stochastic gradient descent (SGD) in order to
minimize a certain loss function. In each training step, a forward
pass is first performed to calculate the loss, followed by a backward
pass to back-propagate the error. Finally, the gradient of each
parameter is computed and accumulated. To fully optimize a
large-scale DNN, the training process can take a million steps or
more.

A DNN is typically a stack of NN layers. If we denote the lth layer
as a function fl, then the inference of an L-layer DNN can be
expressed by the following:

f ðxÞ ¼ f l�1 �f l�2 �:::�f 2 �f 1ðxÞ ð1Þ
in which x is the input. In this case, the output of each layer is only
used by the next layer, and the whole computation has no back
trace. The dataflow of a DNN inference is in the form of a chain
and can be efficiently accelerated in hardware without extra
demand on memory. This property is true for both feed-forward
NNs and recurrent neural networks (RNNs). The ‘‘recurrent” struc-
ture can be treated as a variable-length feed-forward structure with
temporal reuse of one layer’s weight, and the dataflow still forms a
chain.

In DNN training, the data dependency is twice as deep as it is in
inference. Although the dataflow of the forward pass is the same as
the inference, the backward pass then executes the layers in a
reversed order. Moreover, the outputs of each layer in the forward
pass are reused in the backward pass to calculate the errors
(because of the chain rule of back-propagation), resulting in many
long data dependencies. Fig. 1 illustrates how the training dataflow
differs from the inference. A DNN may include convolutional
layers, fully connected layers (batched matrix multiplications),
and point-wise operation layers such as ReLU, sigmoid, max
pooling, and batch normalization. The backward pass may have
point-wise operations, the forms of which are different from those
of a forward pass. Matrix multiplications and convolutions also
retain their computation pattern unchanged in the backward pass;
the main difference is that they perform on the transposed weight
matrix and rotated convolutional kernel, respectively.

2.2. Computation patterns

Although a DNN may include many types of layers, matrix
multiplications and convolutions dominate over 90% of the
operations, and are the main targets of DNN accelerator designs.
For a matrix multiplication, if we use Ic, Oc, B to denote the number
of input channels, number of output channels, and batch size,
respectively, the computation can be written as follows:



Fig. 3. Converting convolution to Toeplitz matrix multiplication. *: convolution.
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outputb;oc ¼
XIc�1

ic¼0

inputb;ic �weightic ;oc ð2Þ

where ic is the index of the input channel, oc is the index of the out-
put channel, and b is the index of samples in a batch. For 0 � b < B,
0 � oc < Oc. The data reuse involved in matrix multiplication is that
each input is reused for all output channels, and each weight is
reused for all input batches.

Convolutions in DNN can be viewed as an extended version of
matrix multiplications, which adds the properties of local connec-
tivity and translation invariance. Compared with matrix multipli-
cations, in convolutions, each input element is replaced by a 2D
feature map, and each weight element is replaced by a 2D convo-
lutional kernel (or filter). Then, the computation is based on sliding
windows: As shown in Fig. 2, starting from the top-left corner of
the input feature map, the filter slides toward the right end. When
it reaches the right end of the feature map, it moves back to the left
end and shifts to the next row. The formal description is shown
below:

outputb;oc ;x;y ¼
XIc�1

ic¼0

XFh�1

i¼0

XFw�1

j¼0

inputb;ic ;xþi;yþj � filteroc ;ic ;i;jc ð3Þ

where Fh is the height of the filter, Fw is the width of the filter, i is
the index of the row in a 2D filter, j is the index of the column in a
2D filter, x is the index of the row in a 2D feature map, y is the index
of the column in a 2D feature map. For 0 � b < B, 0 � oc < Oc,
0 � x < Oh, 0 � y < Ow (Oh: the height of the output feature map;
Ow: the width of the output feature map).

To provide translation invariance, the same convolutional filter
is repeatedly applied to all the parts of the input feature map, mak-
ing the data reuse pattern in convolutions much more complex
than in matrix multiplications. For easier hardware implementa-
tion, it is better to view the 2D sliding window in a two-level hier-
archy: The first level is a window of several rows that slides
downward to provide inter-row data reuse, and the second level
is a window of several elements that slides rightward to provide
intra-row data reuse.

Although the computation patterns of matrix multiplications
and convolutions are very different, they can actually be converted
to each other. Thus, an accelerator designed for one type of compu-
tation can still support the other type, although doing so might not
be very efficient. Convolutions can be transformed into matrix
multiplication through the Toeplitz matrix, as illustrated in
Fig. 3, at the cost of introducing redundant data. On the other hand,
matrixmultiplication is just a convolutionwithOh =Ow = Fw = Fh = 1.
The feature map and the filter are reduced to a single element.

2.3. Resistive memory

The memristor, also known as the ReRAM, is an emerging non-
volatile memory that stores information using cell resistances. In
2008, HP Lab reported its discovery of a nanoscale memristor
based on TiO2 thin-film devices [27]. Since then, many resistive
materials and structures have been found or rediscovered.
Fig. 2. Two levels of sliding windows in 2D convolution [26]. *: convolution.
As demonstrated in Fig. 4(a), each ReRAM cell has a metal-oxide
layer sandwiched between a top electrode (TE) and a bottom elec-
trode (BE). The resistance of a memristor cell can be programmed
by applying a current or voltage with an appropriate pulse width or
magnitude. In particular, the data stored in a cell can be repre-
sented by the resistance level accordingly: A low resistance state
(LRS) denotes bit ‘‘1,” while a high resistance state (HRS) denotes
bit ‘‘0.” For a read operation, a small sensing voltage is applied
across the device; the amplitude of the current is then determined
by the resistance.

In 2012, HP Lab proposed a ReRAM crossbar structure that has
demonstrated an attractive capability to efficiently accelerate
matrix–vector multiplications in NNs. As shown in Fig. 4(b), the
vector is represented by the input signals on the wordlines
(WLs). Each element of the matrix is programmed into the conduc-
tance of a cell in the crossbar array. Thus, the current summing at
the end of each bitline (BL) is viewed as the result of the matrix–
vector multiplication. For a large matrix that cannot fit in a single
array, the input and the output are partitioned and grouped into
multiple arrays. The output of each array is a partial sum, which
is collected horizontally and summed vertically to generate the
actual results.
3. On-chip accelerators

In the early stage of DNN accelerator design, accelerators were
designed for the acceleration of approximate programs in general-
purpose processing [28], or for small NNs [13]. Although the func-
tionality and performance of on-chip accelerators were very lim-
ited, they revealed the basic idea of AI-specialized chips. Because
of the limitations of general-purpose processing chips, it is often
necessary to design specialized chips for AI/DNN applications.

3.1. The neural processing unit

The neural processing unit (NPU) [28] is designed to use hard-
warelized on-chip NNs to accelerate a segment of a program
instead of running on a central processing unit (CPU).

The hardware design of the NPU is quite simple. An NPU con-
sists of eight processing engines (PEs), as shown in Fig. 5. Each
PE performs the computation of a neuron; that is, multiplication,
accumulation, and sigmoid. Thus, what the NPU performs is the
computation of a multiple layer perceptron (MLP) NN.

The idea of using the hardwarelized MLP—that is, the NPU—to
accelerate some program segments was very inspiring. If a pro-
gram segment is ① frequently executed and ② approximable,
and if ③ the inputs and outputs are well defined, then that
segment can be accelerated by the NPU. To execute a program on
the NPU, programmers need to manually annotate a program
segment that satisfies the above three conditions. Next, the
compiler will compile the program segment into NPU instructions
and the computation tasks are offloaded from the CPU to the NPU
at runtime. Sobel edge detection and fast fourier transform (FFT)



Fig. 4. The ReRAM basics. (a) ReRAM cell; (b) 2D ReRAM crossbar. V: write voltage; Vr: read voltage; BL: bitline; WL: wordline; TE: top electrode; BE: bottom electrode; LRS:
low resistance state; HRS: high resistance state.

Fig. 5. The NPU [28]. (a) Eight-PE NPU; (b) single PE. FIFO: first in, first out.
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are two examples of such program segments. An NPU can reduce
up to 97% of the dynamic CPU instructions and achieve a speedup
of up to 11.1 times.

3.2. RENO: A reconfigurable NoC accelerator

Unlike theNPU,which is designed for the acceleration of general-
purpose programs, RENO [13] is an accelerator for NNs. RENO uses a
similar idea for the PE design, as shown in Fig. 6. However, the PE of
RENO is based on ReRAM: RENO utilizes the ReRAM crossbar as the
basic computation unit to perform matrix–vector multiplications.
Each PE consists of four ReRAM crossbars, which respectively corre-
spond to the processing of positive and negative inputs and positive
and negative weights. In RENO, routers are deployed to coordinate
data transfer between the PEs. Unlike conventional CMOS routers,
the routers of RENO transfer the analog intermediate computation
results from the previous neuron to the following neuron. In RENO,
only the input and final output are digital; the intermediate results
are all analog and are coordinated by the analog routers. Data con-
verters (DACs and ADCs) are required only when transferring data
between RENO and the CPU.

RENO supports the processing of the MLP and the auto-
associate memory (AAM), and corresponding instructions are
designed for the pipelining of RENO and a CPU. Because RENO is
an on-chip design, the supported applications are limited. RENO
supports the processing of small datasets, such as the UCI ML
repository [29] and the tailored Modified National Institute of
Standards and Technology (MNIST) database [30].
4. Stand-alone DNN/convolutional neural network accelerator

For broadly used DNN and convolutional neural network
(CNN) applications, stand-alone domain-specific accelerators have
achieved great success in both cloud and edge scenarios. Com-
pared with general-purpose CPUs and graphics processing units
(GPUs), these custom architectures offer better performance and
higher energy efficiency. Custom architectures usually require a
deep understanding of the target workloads. The dataflow (or
data reuse pattern) is carefully analyzed and utilized in the design
to reduce the off-chip memory access and improve the system
efficiency.

In this section, we respectively use the DianNao series [31] and
the tensor processing unit (TPU) [5] as academic and industrial
examples to explain stand-alone accelerator designs and discuss
the dataflow analysis.

4.1. The DianNao series: An academic example

The DianNao series includes multiple accelerators, listed in
Table 1 [31]. DianNao is the first design of the series. It is composed
of the following components, as shown in Fig. 7:

(1) A computational block neural functional unit (NFU), which
performs computations;

(2) An input buffer for input neurons (NBin);
(3) An output buffer for output neurons (NBout);
(4) A synapse buffer for synaptic weights (SB);
(5) A control processor (CP).



Table 1
DianNao series accelerators [31].

Name Process (nm) Peak performance (GOP�s�1) Peak power (W) Area (mm2) Applications

DianNao 65 452 0.485 3.02 DNN
DaDianNao 28 5585 15.970 67.70 DNN
ShiDianNao 65 194 0.320 4.86 CNN
PuDianNao 65 1056 0.596 3.51 7 ML algorithms

GOP: group of picture.

Fig. 6. RENO architecture [13]. MBC: memristor-based crossbars; Vi+: positive input voltage; Vi–: negative input voltage; M+: the MBC mapped with positive weights; M–: the
MBC mapped with negative weights; Sum amp: summation amplifier.

Fig. 7. The DianNao architecture [18]. DMA: direct memory access; Inst.: instruc-
tions; Tn: the number of output neurons.
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The NFU, which includes multipliers, adder trees, and nonlinear
functional units, is designed as a pipeline. Rather than a normal
cache, a scratchpad memory is used as on-chip storage because it
can be controlled by the compiler and can easily explore the data
locality.

While efficient computing units are important for a DNN accel-
erator, inefficient memory transfers can also affect the system
throughput and energy efficiency. The DianNao series introduces
a special design to minimize memory transfer latency and enhance
system efficiency. DaDianNao [16] targets the datacenter scenario
and integrates a large on-chip embedded dynamic random access
memory (eDRAM) to avoid a long main-memory access time. The
same principle applies to the embedded scenario. ShiDianNao
[19] is a DNN accelerator dedicated to CNN applications. Because
of weight sharing, a CNN’s memory footprint is much smaller than
that of other DNNs. It is possible to map all of the CNN parameters
onto a small on-chip static random access memory (SRAM) when
the CNN model is small. In this way, ShiDianNao avoids expensive
off-chip dynamic random access memory (DRAM) access and
achieves a 60 times energy efficiency in comparison with DianNao.

PuDianNao [17] is designed for multiple ML applications. In
addition to supporting DNNs, it supports other representative ML
algorithms, such as k-means and classification trees. To deal with
the different data-access patterns of these workloads, PuDianNao
introduces a cold buffer and a hot buffer for data with different
reuse distances in its architecture. Moreover, compilation tech-
niques, including loop unrolling, loop tiling, and cache blocking,
are introduced as a software-and-hardware co-design method to
increase the on-chip data reuse and the PE utilization ratios.

On top of the stand-alone accelerators, a domain-specific
instruction set architecture (ISA), called Cambricon [32], was
proposed to support a broad range of NN applications. Cambricon
is a load-store architecture that integrates scalar, vector, matrix,
logical, data transfer, and control instructions. The ISA design
considers data parallelism, customized vector/matrix instructions,
and the use of scratchpad memory.

The successors of the Cambricon series introduce support to
sparse NNs. Other accelerators support more complicated NN
workloads, such as long short-termmemory (LSTM) and generative
adversarial network (GAN). These works will be discussed in detail
in Section 6.
4.2. The TPU: An industrial example

Highlighted with a systolic array, as shown in Fig. 8, google pub-
lished its first tpu paper (tpu1) in 2017 [5]. tpu1 focuses on infer-
ence tasks, and has been deployed in google’s datacenter since
2015. the structure of the systolic array can be regarded as a
specialized weight-stationary dataflow, or a 2d single instruction



Fig. 8. TPU block diagram [5]. DDR3: double-data-rate 3; PCle: Peripheral Component Interconnect Express.
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multiple data (simd) architecture.ed with a systolic array, as
shown in Fig. 8, Google published its first TPU paper (TPU1) in
2017 [5]. TPU1 focuses on inference tasks, and has been deployed
in Google’s datacenter since 2015. The structure of the systolic
array can be regarded as a specialized weight-stationary dataflow,
or a 2D single instruction multiple data (SIMD) architecture.

After that, in Google I/O’17 [33], Google announced its cloud
TPU (also known as TPU2), which can handle both training and
inference in the datacenter. TPU2 also adopts a systolic array and
introduces vector-processing units. In Google I/O’18 [34], Google
announced TPU3, which is highlighted as having liquid cooling.
In Google Cloud Next’18 [35], Google announced its edge TPU,
which targets the inference tasks of the Internet of Things (IoT).

4.3. Dataflow analysis and architecture design

A DNN/CNN generally requires a large memory footprint. For
large and complicated DNN/CNN models, it is unlikely that the
whole model can be mapped onto the chip. Due to the limited
off-chip bandwidth, it is of vital importance to increase on-chip
data reuse and reduce the off-chip data transfer in order to
improve the computing efficiency. During architecture design,
dataflow analysis is performed and special consideration needs
to be taken. As shown in Fig. 9 [15,36], Eyeriss explored different
NN dataflows, including input-stationary (IS), output-stationary
Fig. 9. Row-stationary dataflow [15,36].
(OS), weight-stationary (WS), and no-local-reuse (NLR) dataflows,
in the context of a spatial architecture and proposed the row-
stationary (RS) dataflow to enhance data reuse.

The high-efficient dataflow design inspired many practical
designs in the AI chip industry. For example, WaveComputing fea-
tures a coarse-grained reconfigurable array (CGRA)-based dataflow
processor [37]. GraphCore focuses on graph architecture and is
claimed to be able to achieve higher performance than the tradi-
tional scalar processor and vector processor on AI workloads [38].
5. Accelerators with emerging memories

ReRAM [27] and the hybrid memory cube (HMC) [39] are repre-
sentative emerging memory technologies and memory structures
that enable processing-in-memory (PIM). PIM can greatly reduce
the data movements in computing platforms, as the data move-
ment between CPUs and off-chip memory consumes two orders
of magnitude more energy than a floating point operation [40].
DNN accelerators can take these benefits from ReRAM and HMC
and apply PIM to accelerate DNN executions.
5.1. ReRAM-based DNN accelerators

The key idea of utilizing ReRAM for DNN acceleration is to use
the ReRAM array as a computation engine for matrix–vector mul-
tiplications [41,42], as mentioned in Section 2.3. PRIME [21], ISAAC
[25], and PipeLayer [22] are three representative ReRAM-based
DNN accelerators.

The architecture of PRIME [21] is shown in Fig. 10. PRIME
revises the ReRAM for both data storage and computation. In
PRIME, the wordline decoders and drivers are configured with mul-
tilevel voltage sources, so the input feature map can be applied to
the memory array in computation. The column multiplexer is con-
figured with analog subtraction and sigmoid circuitry; thus, partial
results from two arrays are combined and sent to the nonlinear
activation (sigmoid). The sense amplifier is also reconfigurable in
sensing resolution, and performs the functionality of an ADC.



Fig. 10. PRIME architecture [21]. GWL: global word line; SA: sense amplifier; WDD: wordline decoder and driver; GDL: global data line; IO: input and output; Vol.: voltage
source; Col mux.: column multiplexer.
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ISAAC [25] proposes an intra-tile pipeline design for NN process-
ing inReRAM, as shown in Fig. 11. Thepipelinedesign combinesdata
encoding and computation. IMA is the ReRAM-based in situmultiply
accumulate unit. In the pipeline, in the first cycle, data is fetched
from eDRAM to the computation tile. The data format in ISAAC is
fixed 16 bit. In computation, in each cycle, 1 bit is input to the
IMA, and the computation result from the IMA is converted to digital
format, shifted by1 bit, and accumulated. Therefore, it takes another
16 cycles to process the input. The nonlinear activation is then
applied, and the results are written back to eDRAM.

Tiled computation architecture is a natural and widely used
way to process NNs. It is necessary to explore coarse-grained par-
allel designs to improve the accelerators’ throughput. PipeLayer
[22] introduces intra-layer parallelism and an inter-layer pipeline
for tiled architecture, as illustrated earlier in Fig. 1. For intra-
layer parallelism, PipeLayer uses a data-parallel scheme, which
duplicates processing units with the same weights to process mul-
tiple data in parallel. For the inter-layer pipeline, buffers are deli-
cately employed for data sharing between weighted layers. As a
result, the processing of layers from multiple data can be paral-
lelized. The inter-layer pipeline is a model parallel scheme.
5.2. HMC-based DNN accelerators

An HMC vertically integrates DRAM dies and the logic die. The
high memory capacity, high memory bandwidth, and low latency
Fig. 11. Intra-tile pipeline in ISAAC [25]. Rd: read; IR: input register; Xbar: crossbar; S +
based in situ multiply accumulate unit.
offered by an HMC enables near-data processing. In an HMC-
based accelerator design, computation and logic units are placed
on the logic die, and the DRAM dies in a vault are used for data
storage. Neurocube [43] and Tetris [44] are two DNN accelerators
based on an HMC.

A whole accelerator in Neurocube has one HMC with 16 vaults
[43]. As shown in Fig. 12, each vault can be viewed as a subsystem,
which consists of a PE to perform multiply-accumulation (MAC)
and a router for package transferring between the logic die and
the dies of DRAM. Each vault can send data to a destination vault
by the router, which enables out-of-order data arrival. For each
PE, if the buffer (16 entries) is filled with data, the computation will
start.

Tetris [44] also employs 16 PEs in one HMC, but it uses a spatial
mesh to connect the PEs. Tetris proposes a bypassing ordering
scheme, which is similar to the data stationary scheme discussed
in Refs. [15,36], to improve data reuse. To minimize data remote
access, Tetris explores the partitioning of input and output feature
maps.
6. Accelerators for emerging applications

The efficiency of DNN accelerators can be also improved by
applying efficient NN structures. NN pruning, for example, makes
the model small yet sparse, thus reducing the off-chip memory
access. The NN quantization allows the model to operate in a
A: shift and add; OR: output register; Wr: write; r: sigmoid unit; IMA: the ReRAM-



Fig. 12. Neurocube architecture and PE design [43]. VC: vault controller; PNG:
programmable neurosequence generator; TSV: through silicon via; A, B, C: input
operands; Y: output operand; R: register; l: microcontroller.
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low-precision mode, thus reducing the required storage capacity
and computational cost. Emerging applications, such as the GAN
and the RNN, raise special requirements for dedicated accelerator
designs. This section discusses accelerator designs for the sparse
NN, low precision NN, GAN, and RNN.
6.1. Sparse neural network

Previous work in dense-sparse-dense (DSD) [46] has shown that
a large proportion of NN connections can be pruned to zero with or
without minimum accuracy loss. Many corresponding computing
architectures have also been proposed. For example, EIE [47] and
Cnvlutin [48] respectively target accelerating the computations of
NN models with sparse weight matrices and sparse feature maps.
However, the special data format and extra encoder/decoder
adopted in these designs introduce additional hardware cost. Some
algorithm works discuss how to design NN models in a hardware-
friendly way, such as by using block sparsity, as shown in Fig. 13
[45]. Techniques that can handle irregular memory access and an
unbalanced workload in sparse NN have also been proposed. For
example, Cambricon-X [49] and Cambricon-S [50] address the
memory access irregularity in sparse NNs through a cooperative
software/hardware approach. ReCom [51] proposes a ReRAM-
based sparse NN accelerator based on structural weight/activation
compression.
6.2. Low precision neural network

Reducing data precision or quantization, is another viable way
to improve the computing efficiency of DNN accelerators. The
recent TensorRT results [52] show that the widely used NNmodels,
including AlexNet, VGG, and ResNet, can be quantized to 8 bit
without inference accuracy loss. However, it is difficult for such a
Fig. 13. Structural sparsity: filter-wise, channel-wise, shape-wise, and depth-wise spars
channel length; nl: input channel length; ml: kernel height; kl: kernel width; ": " is a pl
unified quantization strategy to retain the network’s accuracy
when further lower precision is adopted. Many complex quantiza-
tion schemes have been proposed, however, significantly increas-
ing the hardware overhead of the quantization encoder/decoder
and the workload scheduler in the accelerator design. As shown
in the following discussion, a ‘‘sweet point” exists between data
precision and overall system efficiency with various optimizations.

(1) The weight and feature map are quantized into different
precisions to achieve lower inference accuracy loss. This may
change the original dataflow and affect the accelerator architec-
ture, especially the scratchpad memory.

(2) Different layers or different data may require different quan-
tization strategies. In general, the first and the last layer of the NN
require higher precision. This fact increases the design complexity
of the quantization encoder/decoder and the workload scheduler.

(3) New quantization schemes have been proposed by observ-
ing the characteristics of the data distribution. For example, an
outlier-aware accelerator [53] performs dense and low-precision
computations for a majority of data (weights and activations)
while efficiently handling a small number of sparse and high-
precision outliers.

(4) A new data format has been proposed to better represent
low-precision data. For example, the compensated DNN [54] intro-
duces a new fixed-point representation: fixed point with error
compensation (FPEC). This representation has two parts: ① com-
putation bits, which are the conventional fixed-point format; and
② compensation bits, which represent the quantization error. This
work also proposes a low-overhead sparse compensation scheme
to estimate the error in the MAC design.
6.3. Generative adversarial network

Compared with the original DNN/CNN, the GAN consists of two
NNs: namely, the generator and the discriminator. The generator
learns to produce fake data, which is supplied to the discriminator,
and the discriminator learns to distinguish the generated fake data.
The goal is to have the generator generate fake data that eventually
cannot be differentiated by the discriminator. These two NNs are
trained iteratively and compete with each other in a minimax
game. The GAN’s operations involve a new operator, called trans-
posed convolution (also known as deconvolution or fractionally
strided convolution). Compared with the original convolution,
transposed convolution performs up-sampling with a lot of zeros
inserted into the feature maps. Redundant computation will be
introduced if the transposed convolution is mapped straightfor-
wardly. Techniques are also needed to deal with nonstructural
memory access and irregular data layout if zeros are bypassed. In
summary, compared with the stand-alone DNN/CNN inference
accelerators discussed in Section 4, GAN accelerators must
① support training, ② accommodate transposed convolution,
and ③ optimize the nonstructural data access.
ity, as shown in Ref. [45]. W: DNN weights; l: the index of weight tensor; cl: output
aceholder.



Fig. 14. Computation sharing pipeline in ReGAN [23]. T: logical cycle; dD: error map of discriminator; dG: error map of generator; rWD: partial derivative of the weights in
discriminator; rWG: partial derivative of the weights in generator; rbG: partial derivative of the bias in discriminator; rbD: partial derivative of the bias in generator; IP:
input project layer; FCNN: fractional-strided convolution layer.
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ReGAN proposes a ReRAM-based PIM GAN architecture [23]. As
shown in Fig. 14, a dedicated pipeline is designed for layer-wise
computation in order to increase the system throughput. Two tech-
niques, called spatial parallelism and computation sharing, are pro-
posed to further improve training efficiency. LerGAN [55] proposes
a zero-free data-reshaping scheme to remove the zero-related
computation in ReRAM-based PIM GAN architecture. A
reconfigurable interconnection scheme is proposed to reduce the
data transfer overhead.

For a CMOS-based GAN accelerator, previous work [56] pro-
posed efficient dataflow for different steps in a GAN; that is,
zero-free output stationary (ZFOST) for feed-forward/backward
propagation, and zero-free weight stationary (ZFWST) for the
weight update. GANAX [57] proposed a unified SIMD-multiple
instruction multiple data (MIMD) accelerator to maximize the
efficiency of both the generator and the discriminator: The
SIMD-MIMD mode is used in selective executions due to the zero
insertion in the generator, while the pure SIMD mode is used to
operate the conventional CNN in the discriminator.
6.4. Recurrent neural network

The RNN has many variants, including gated recurrent units
(GRU) and LSTM. The recurrent property of the RNN leads to com-
plicated data dependency, in comparison with the conventional
DNN/CNN.

ESE [58] demonstrated an accelerator dedicated to sparse LSTM.
A load-balance-aware pruning is proposed to ensure high hard-
ware utilization. A scheduler is designed to encode and partition
the compressed model to multiple PEs for parallelism and schedule
the LSTM dataflow. DNPU [59] presented an 8.1TOPS/W
reconfigurable CNN-RNN system-on-chip (SoC) DeltaRNN [60]
leveraged the RNN delta network update approach to reduce mem-
ory access: The output of a neuron updates only when the neuron’s
activation changes by more than a delta threshold.
7. The future of DNN accelerators

In this section, we share our perspectives about the future
of DNN accelerators. We discuss three possible future trends:
① DNN training and accelerator arrays, ② ReRAM-based PIM
accelerators, and ③ DNN accelerators on edge devices.
7.1. DNN training and accelerator arrays

Currently, almost all DNN accelerator architectures focus on
optimization for DNN inference within the accelerator itself, and
very few considered the training support [22]. The presumption
is that the DNN model has already been trained before deploy-
ment. Very few accelerator architectures exist that can support
DNN training. Following the increase of the size of training datasets
and NNs, a single accelerator is no longer capable of supporting the
training of a large DNN. It is inevitably necessary to deploy an array
of accelerators or multiple accelerators for the training of DNNs.

A hybrid parallel structure for DNN training on an accelerator
array is proposed in Ref. [61]. The communication between the
accelerators dominates the time and energy consumption in DNN
training on an accelerator array. Ref. [61] proposes a communica-
tion model to identify where the data communication is generated
and how large the traffic is. Based on the communication model,
layer-wise parallelism is optimized to minimize the total commu-
nication and improve the system performance and energy
efficiency.

7.2. ReRAM-based PIM accelerator for DNNs

Current ReRAM-based accelerators, such as those described in
Refs. [21,22,25,62], assume ideal memristor cells. However, realis-
tic challenges such as process variation [63,64], circuit noise
[65,66], retention issues, and endurance issues [67–69] greatly hin-
der the realization of ReRAM-based accelerators. There are also
very few silicon proofs of ReRAM-based accelerators and advanced
architectures such as PIM, except for that provided in Ref. [70]. In
practical ReRAM-based DNN accelerator designs, these non-ideal
factors must be taken into consideration.

7.3. DNN accelerators on edge devices

In edge-cloud DNN applications, the computational and
memory-intensive parts (e.g., training) are often offloaded onto
the powerful GPUs in the cloud, and only certain light inference
models are deployed on edge devices (e.g., the IoT or mobile
devices).

Following the rapid increase in data acquisition scale, it has
become desirable to have intelligent edge devices that are capable
of adaptively learning or fine-tuning their DNN models for certain
tasks. For example, in wearable applications that monitor the
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health of users, it will be helpful to adapt the CNN models locally
rather than sending the sensed health data back to the cloud,
due to significant data communication overhead and privacy
issues. In other applications, such as robots, drones, and autono-
mous vehicles, statically trained models cannot efficiently handle
the time-varying environmental conditions.

However, the long data-transmission latency of sending huge
amounts of environmental data to the cloud for incremental train-
ing is often unacceptable. More importantly, many real-life scenar-
ios require real-time execution of multiple tasks and dynamic
adaptation capability [58]. Nevertheless, it is extremely challeng-
ing to perform learning in edge devices because of their stringent
computing resources and tight power budget. RedEye [71] is an
accelerator for DNN processing on the edge, where the computa-
tion is integrated with sensing. Designing lightweight, real-time,
and energy-efficient architectures for DNNs on the edge is an
important research direction to pursue next.
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