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a b s t r a c t

Renewable energy sources (RESs) are considered to be reliable and green electric power generation
sources. Photovoltaics (PVs) and wind turbines (WTs) are used to provide electricity in remote areas.
Optimal sizing of hybrid RESs is a vital challenge in a stand-alone environment. The meta-heuristic algo-
rithms proposed in the past are dependent on algorithm-specific parameters for achieving an optimal
solution. This paper proposes a hybrid algorithm of Jaya and a teaching–learning-based optimization
(TLBO) named the JLBO algorithm for the optimal unit sizing of a PV–WT–battery hybrid system to satisfy
the consumer’s load at minimal total annual cost (TAC). The reliability of the system is considered by a
maximum allowable loss of power supply probability (LPSPmax) concept. The results obtained from the
JLBO algorithm are compared with the original Jaya, TLBO, and genetic algorithms. The JLBO results show
superior performance in terms of TAC, and the PV–WT–battery hybrid system is found to be the most
economical scenario. This system provides a cost-effective solution for all proposed LPSPmax values as
compared with PV–battery and WT–battery systems.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Traditional energy generation uses fossil-fuel resources such as
oil, natural gas, and coal, which are depleted with consumption [1]
and cause environmental pollution and global warming. For exam-
ple, the use and combustion of fossil fuels cause toxic air emissions
that result in environmental problems with great risk to living
organisms [2]. Carbon dioxide (CO2) accounts for an estimated
77% of human-generated greenhouse gas emissions [3]. These fac-
tors contribute to toxic air emissions in the environment by harm-
ing the climate. Therefore, it is currently of the utmost importance
to exploit new ways of producing energy that is more environmen-
tally friendly, economical, clean, and inexhaustible by nature.
Renewable energy sources (RESs) are an emerging trend and are
widely used to generate power from various sources, including
solar, wind, geothermal, hydropower, and other naturally repleni-
shing energy sources [4]. Among RESs, wind turbines (WTs) and
photovoltaics (PVs) are the most dominant and encouraging tech-
nologies, and are considered by the global community to fulfill the
load requirements of electricity consumers [5].
RESs that consist of solar and wind systems have come under
more focus than other energy sources because they tend to reduce
ecological and universal CO2 emissions [6,7]. However, such
resources can be unpredictable and intermittent, depending on
natural conditions. The reliability of RESs is thus a major concern
that needs to be tackled at a minimum cost to consumers. To over-
come environmental challenges, there is a great need to consider
RESs in energy production. RESs can be implemented in two ways:
grid-connected (GC) and stand-alone (SA) modes. In GC modes,
RESs inject the produced electricity to a power utility network,
while in SA modes, they directly power up the consumer’s electri-
cal load [8].

In a GC system, the consumers are directly connected to the
utility grid. In case of any shortfall of electricity from the RESs, con-
sumers can obtain and fulfill their load requirements from the util-
ity grid. Thus, there are no reliability concerns in the GC system. An
SA system introduces unreliability concerns because consumers
are only dependent on the power produced by the RESs, and there
is no connectivity to a grid system. Furthermore, using a single RES
in an SA environment results in high energy variations. This effect
results in an energy mismatch situation, where the consumer’s
load requirements are not fulfilled by the generation capacity. To
overcome RES unreliability and related challenges, Ref. [9] utilizes
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a hybrid renewable energy system (HRES) along with an energy
storage system (ESS) to fulfill the consumer’s load. The comple-
mentary features of solar and wind energies are combined in the
HRES, along with ESS backup. An ESS, which consists of batteries,
fuel cells (FCs), and other technologies, is utilized to satisfy the
deficit energy during stress time—that is, when the energy pro-
duced by RESs is less than the required load. Therefore, the power
solution provided by an HRES along with an ESS is considered to be
more sustainable and reliable than a single RES [10].

The primary issue in an HRES is determining the optimum size
of individual components, including WTs, PVs, and batteries. Opti-
mal sizing is required for strategic decisions such as feasibility
studies, initial capital investments, or cost estimations. The
methodology used to determine accurate and appropriate sizing
of HRES components by maintaining the system’s reliability at
minimal total annual cost (TAC) is called unit sizing [11]. The unre-
liability of RESs can be overcome by oversizing the system’s com-
ponents; however, doing so results in an increased system cost. On
the other hand, undersizing the system’s components can lead to a
loss of supply (LOS) problem, in which the energy produced by the
RESs is less than the consumer’s load. Therefore, optimum unit siz-
ing of an HRES that measures the exact number of a system’s com-
ponents at a reduced TAC is essential [12]. (Nomenclature is
provided at the end of this paper.)

Software-based tools, formal techniques, and meta-heuristic
algorithms are commonly used for the unit sizing of RESs. The
hybrid optimization model for electric renewables (HOMER) is a
software-based tool that is applied for energy optimization, sensi-
tivity analysis, and planning. Mamaghani et al. [13] suggest the use
of a PV–WT–diesel generator HRES for electrifying three remote
off-grid villages in Colombia. A techno-economic feasibility analy-
sis of the cost and an environmental evaluation in terms of CO2 is
conducted. The HOMER software tool is used for the techno-
economical HRES analysis in order to fulfill 13048 kW of average
load requirements per day, with an estimated peak of 1185 kW
[14]. The PV–WT–diesel–battery system provides optimal results
of 17.15 million USD and 2571131 kg per year in terms of net pre-
sent cost (NPC) and CO2 emissions, respectively. In contrast, the
electricity produced by a single diesel generator results in an
NPC of 21.09 million USD and 5432244 kg per year of CO2 emis-
sions. Karmaker et al. [15] conduct an environmental and eco-
nomic feasibility assessment of the use of a PV–biomass–battery
system to supply power to electric vehicles in Bangladesh. Results
are obtained by means of the HOMER Pro software, which shows a
34.68% deduction in CO2 emissions with the use of the proposed
system in contrast to grid-based electric vehicle charging, along
with savings of 12–18 USD per month. The HOMER software used
in Refs. [13–15] suffers from some limitations and is not capable of
performing multi-objective optimization; it only supports a uni-
objective function based on NPC minimization. In addition, HOMER
does not support intra-hour basis variability, and requires a huge
computational time for large design points.

Considering the limitations of the HOMER software, works like
Refs. [16–18] solve the optimal unit sizing of RESs through mixed-
integer linear programming (MILP). Ren et al. [16] consider a GC
scenario in which residential energy demands are fulfilled through
a PV–FC–battery system. The authors propose a multi-objective
function to reduce both annual cost and CO2 emissions. The
authors formulate the problem via MILP and consider selling
energy back to the grid. The results demonstrate that batteries con-
tribute to economic benefit while PVs provide an environmentally
friendly solution. However, the MILP is a formal technique that suf-
fers from some limitations. The MILP technique performs a com-
plete search of the solution space to find an exact solution.
However, this technique is not suitable for stochastic environ-
ments and suffers from the curse of the dimensionality problem
for large design points.

Other studies have suggested the use of meta-heuristic algo-
rithms, including the artificial bee swarm optimization (ABSO)
[19], genetic algorithm (GA) [20–22], harmony search (HS)
[23,24], and particle swarm optimization (PSO) [25–27], among
others, which are more successive and highly efficient [28] in com-
parison with other approaches. However, techniques such as the
HS, PSO, GA, and ABSO require algorithmic-specific parameters in
order to function. For example, the HS algorithm uses harmony
memory, pitch adjustment, and the consideration rate with several
improvisations, while the PSO requires cognitive and social
parameters with inertia weight values. The GA needs a selection
operator along with crossover and mutation probabilities.
Similarly, the ABSO cannot be executed without initialization and
adjustment of algorithmic-specific parameters including the num-
ber of employed, scout, and onlooker ‘‘bees” with a limit specifier.
Algorithms such as GA and ant colony optimization also require
performance tuning of algorithmic-specific parameters in order
to achieve optimal results. If not tuned properly, algorithmic-
specific parameters may result in locally optimal solutions or an
increased computational time.

Meta-heuristic algorithms such as PSO, ABSO, and GA require
not only algorithmic-specific parameters, but also performance
tuning of their parameters in order to achieve an optimal solution.
The performance of these algorithms is mainly dependent on the
selection, calibration, and performance tuning of these parameters.
A small change in any parameter may affect the overall perfor-
mance of the algorithm and may result in increased computation
time or being stuck in local optima. Therefore, algorithms have
been proposed in the literature, including Jaya [29], teaching–
learning-based optimization (TLBO) [30], and improved TLBO
[31], which do not need any algorithmic-specific parameters.
Furthermore, the functioning of these algorithms is only depen-
dent on certain common controlling parameters such as number
of generations and population size.

This paper solves the unit sizing problem of an HRES via the
Jaya, TLBO, and their hybrid, JLBO, algorithms. We consider a
hybrid PV–WT–battery system, which is more ecofriendly and
cost-effective than other hybrid systems utilizing diesel genera-
tors. The contributions listed below are an extension of our previ-
ous work [32]:

� Various components of the PV–WT–battery system are formu-
lated and elaborated using an informative HRES model.

� Motivated by non-algorithmic-specific approaches, Jaya and
TLBO algorithms are proposed to find an optimal number of
HRES and their components to reduce the user’s annual
electricity cost in an SA environment.

� A hybrid approach, JLBO, is proposed by combining Jaya and
the learning phase of the TLBO algorithm for optimized
searching of the solution space.

� The reliability of the system is considered using the various
maximum allowable loss of power supply probability
(LPSPmax) values provided by the consumer.

The rest of the paper is organized as follows. Section 2 depicts
the proposed system model, sizing formulation, and objective
function based on some constraints. The methods are given in Sec-
tion 3. Simulation results are presented and discussed in Section 4.
A conclusion and future work are provided in Section 5.
2. System model and sizing formulation

This section comprises the systemmodel and the formulation of
RES and TAC modeling.
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2.1. The proposed system model

Fig. 1 displays a typical system model for a PV–WT–battery
HRES. The proposed system model consists of a single direct cur-
rent (DC) bus architecture. The bus is connected to dual RESs,
including PV panels and WTs. The intermittent nature of solar
and wind systems can cause nonlinear and unpredictable output
power from RESs. Thus, using a single RES in an SA mode would
result in energy variations. Therefore, an HRES comprising solar
and wind systems is used in conjunction with an ESS. The ESS is
composed of batteries, which are kept in a battery bank. Conven-
tionally, the ESS uses deep-cycle lead-acid batteries.

Three different modes—balance, surplus, and deficit—are
defined for the power generation from the RESs. In balance mode,
the total power generated from RESs, including WTs and PVs, is
equal to the total consumer’s load. Thus, there are no surplus or
deficit powers. In surplus mode, the total energy produced by the
RESs is greater than the total consumer’s load; therefore, the ESS
is utilized and the additional energy is stored in the batteries of
the power bank. Here, the flow of power is from the RESs to both
home and ESS. In the power deficit mode, the RESs produce less
power than is required by the user. Thus, the ESS is utilized to ful-
fill the consumer’s load in power deficit time slots. Here, the flow
of power is from both the RESs and the ESS to the consumer’s load.
Thus, the ESS in conjunction with RESs adds a reliability factor and
makes the hybrid model economical for the user.

2.2. Sizing formulation of the proposed model

This section presents the modeling of the RESs, ESS, and TAC.
(1) Sizing formulation of the PV power system. The hourly PV

panel power output POWpv for solar radiation I is given by Eq. (1)
[19]:

POWpv tð Þ ¼ Ppv
r � I=Iref

� �
� 1þ Tcof Tc � Tref

� �h i
ð1Þ

where POWpv(t) is the total hourly PV panels’ power (W) generated
at time slot t, Prpv is the rated PV power, I represents the solar insu-
lation data (W∙m�2), Iref denotes the solar insulation under the ref-
erence conditions with a value of 1000 W∙m�2, and Tcof is the
temperature coefficient of the PV panels and is set as �3.7 � 10�3

�C�1 for mono- and polycrystalline silicon [19]. Tref represents the
PV cell temperature under the given reference conditions, which
is normally set as 25 �C, while Tc represents the cell temperature,
which can be obtained by Eq. (2):

Tc ¼ Tamb þ Tnoct � 20
800

� I ð2Þ
Fig. 1. Proposed system model for an HRES. AC: alternating current; DC: direct
current.
where Tamb depicts the ambient air temperature (�C), and Tnoct rep-
resents the normal operating cell temperature (�C). Tnoct is depen-
dent upon the manufacturer’s specifications for the PV module.

If there exist a number of PV panels Npv, then the total gener-
ated power npv can be given as follows:

npv tð Þ ¼ Npv � POWpv tð Þ ð3Þ
(2) Sizing formulation of the WT power system. The mecha-

nism of the WT generator that produces electrical power is entirely
based upon the wind’s kinetic energy. The WTmay be composed of
two or more blades that are mechanically coupled to a motor that
generates power depending on the speed of the wind. To increase
the WT efficiency, the turbine is mounted high on a tower. The WT
power POWwt at time slot t is calculated by the following equation
[33]:

POWwt tð Þ ¼ 0; v tð Þ < vci

POWwt tð Þ ¼ x � v tð Þ3 � y � Pwt
r

h i
; vci < v tð Þ < v r

POWwt tð Þ ¼ Pwt
r ; v r < v tð Þ < vco

POWwt tð Þ ¼ 0; v tð Þ > vco

8>>>>><
>>>>>:

ð4Þ

where v represents the speed of the wind; Prwt denotes the nominal
power of WT; and vr, vco, and vci represent the rated, cut-out, and
cut-in wind speed, respectively. The parameters x and y can be
obtained by Eq. (5):

x ¼ Pwt
r = v rð Þ3 � vci

� �3h i
y ¼ vci

� �3
= vrð Þ3 � vci

� �3h i
8><
>: ð5Þ

If there are the number Nwt of WTs installed in an area, then the
overall produced wind power nwt(t) is obtained by the following
equation:

nwt tð Þ ¼ Nwt � POWwt tð Þ ð6Þ
(3) Accumulative power generation by RESs and the con-

sumer’s load formulation. The PV and WT accumulative electrici-
ty generation ngen(t) can be expressed as follows:

ngen tð Þ ¼ npv tð Þ � gi þ nwt tð Þ � g2
i ð7Þ

where gi represents the efficiency of the inverter.
In homes, the consumer’s load nld at time slot t depends upon

the appliances’ usage. Thus, the nld can be computed by Eq. (8):

nld tð Þ ¼
Xz

g¼a

pg tð Þ � v tð Þ ð8Þ

where g and p denote the number of appliances and their power rat-
ings, respectively. v(t) represents a Boolean integer showing an
appliance status. When v(t) = 1, the appliance status is considered
to be ON at hour t; otherwise, it is considered to be OFF.

(4) Sizing formulation of the battery bank. The energy storage
capacity of the battery bank is changed due to the intermittent nat-
ure of solar irradiation and wind speed. When ngen(t) is greater
than nld(t), the battery bank is in a state of charge (SOC). Thus,
the charging quantity of the battery bank at time slot t is obtained
by Eq. (9) [19]:

nstore tð Þ¼ nstore t�1ð Þ� 1� ið Þþ ngen tð Þ�nld tð Þ
gi

" #
�gb; 8ngen tð Þ> nld tð Þ

ð9Þ
where nstore(t) and nstore(t � 1) show the stored amount of energy in
the battery bank at time slots t and (t � 1), respectively; i repre-
sents the self-discharging state; and gb denotes the battery bank
charging efficiency.
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When ngen(t) is less than nld(t) at time slot t, the stored energy in
the battery bank is utilized to fulfill the consumer’s load. Here, the
state of the battery bank is changed to discharging. The battery
bank discharging efficiency is assumed to be 1, and temperature
effects are not considered for this study. Thus, the battery bank
charging quantity at time slot t is given by the following formula:

nstore tð Þ ¼ nstore t � 1ð Þ � 1� ið Þ

� nld tð Þ
gi

� ngen tð Þ
" #

=gi; 8ngen tð Þ

< nld tð Þ

ð10Þ
Fig. 2. Flowchart for calculating the hybrid system’s reliability.
2.3. Calculation of batteries for the battery bank

An important decision variable in the PV–WT–battery HRES is
the calculation of the total number of batteries (Nb) required for
the battery bank. Nb depends upon the consumer’s load require-
ment and the generation capacity of the RESs. To find Nb, a tempo-
rary storage variable (temp) is supposed and initialized as 0. When
the power generation from the RESs is higher than the consumer’s
load at an instant of time slot t, the temp stores energy, as per Eq.
(9). However, when the power generation produced by the RESs is
smaller than the consumer’s load at time slot t, the temp variable is
updated using Eq. (10). Thus, finding the total number of batteries
for a system is dependent upon the curve of the variable temp.
Positive temp values indicate the generation availability of the
RESs, while negative values show a generation deficiency in the
respective time slots. The total required storage capacity (Trsc) is
the difference between the maximum point and the minimum
point in the temp curve, which can be obtained by the following
equation:

Trsc ¼ max tempð Þ �min tempð Þ ð11Þ
where, max(temp) and min(temp) represent the maximum and
minimum generation points on the temp curve, respectively. Thus,
the calculation for the Nb required for a given system can be derived
using the following equation [34]:

Nb ¼ Trsc

1:35

� �
ð12Þ

where 1.35 is the nominal capacity of a battery.

2.4. System reliability

Reliability is an essential factor that must be considered in the
SA system. Therefore, in this paper, the concept of the loss of power
supply probability (LPSP) is considered and implemented to obtain
a reliable HRES. The LPSP is elucidated by a number in the range of
0 and 1. An LPSP of 0 indicates that the system is very reliable and
the consumer’s load will always be fulfilled. An LPSP equal to 1
indicates that the consumer’s load is never fulfilled. The LPSP for
one year (T = 8760 h) can be expressed as follows:

LPSP ¼
P8760

t¼1 LOPS tð ÞP8760
t¼1 nld tð Þ

ð13Þ

where LOPS stands for loss of power supply. LOPS occurs when the
total energy generated ngen by the HRES is less than the total con-
sumer’s load nld at any time slot. LOPS is defined in Eq. (14).

LOPS tð Þ ¼ nld tð Þ � ngen tð Þ; 8t 2 T ð14Þ
A flowchart for calculating the hybrid system’s reliability is pre-

sented in Fig. 2. The flowchart is presented for the population size
X = 50.
2.5. TAC formulation and constraints

In this section, an objective function based on the TAC mini-
mization is formulated, along with constraints.

(1) Objective function. The objective function is based on find-
ing the optimum number of components required for the HRES to
satisfy the consumer’s load at minimum TAC, expressed as (ftac).
The TAC is derived using two different costs: the annual capital
cost (fcap) and the annual maintenance cost (fmtn). The former cost
occurs at the start of a project, while the latter cost takes place dur-
ing the life of the project. Thus, minimization of ftac is given by the
following formula:

Minimize ftac ¼ fcap þ fmtn ð15Þ
The initial capital cost needs to be converted to the annual

capital cost. To do so, the capital recovery factor (CRF) approach
is used. The CRF is obtained by Eq. (16) [19]:

CRF ¼ ir 1þ ir
� �n

1þ ir
� �n � 1

ð16Þ

where ir represents the rate of interest and n depicts the system’s
lifespan in years.

Several of the components used in a PV–WT–battery HRES are
frequently replaced during the project’s lifespan. For example,
the life of the battery is estimated to be five years. Similar to the



Table 1
Hybrid system components and parameters.

Components Parameters Value

PV panel Pr
pv 120 W

fpv 614 USD
fpv,m 0 USD
Apv 1.07 m2

gpv 12%
Tnoct 33 �C

WT Pr
wt 1 kW
vci 2.5 m∙s�1

vr 11 m∙s�1

vco 13 m∙s�1

fwt 3200 USD
fwt,m 100 USD

Battery Voltage 12 V
Battery nominal capacity 1.3 kW∙h
Lifespan 5 years
gb 85%
qb 130 USD
DoD 0.8
i 0.0002

Inverter/converter Pr
inv/conv 3 kW

Lifespan 10 years
ginv/conv 95%
qinv/conv 2000 USD

Other parameters ir 5%
n 20 years

Apv: area of the PV panel; gpv: efficiency of the PV panel; Prinv/conv: rated power of
invertor/convertor; ginv/conv: efficiency of the inverter/converter.
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approach used in Ref. [19], the present worth factor via single pay-
ment can be derived using Eq. (17):

fbp ¼ qb � 1þ 1

1þ ir
� �5 þ 1

1þ ir
� �10 þ 1

1þ ir
� �15

" #
ð17Þ

where fp
b represents the battery’s present worth and qb depicts the

price of the battery.
Similarly, the lifetime of an inverter/converter is estimated to

be ten years. Therefore, the present worth factor via single pay-
ment can be defined using Eq. (18):

finv=convp ¼ qinv=conv � 1þ 1

1þ ir
� �10

" #
ð18Þ

where fP
inv/conv represents the present components’ worth of the

inverter/converter and qinv/conv depicts the price of the
inverter/converter.

Thus, by breaking apart the PV–WT–battery HRES into the
annual costs of the PV panels, WTs, battery, and inverter/converter,
Eq. (19) is obtained:

fcap ¼CRF

� Nwt� fwtþNpv� fpvþNb� fbþNinv=conv� finv=conv
� � ð19Þ

where fwt denotes the WT’s unit cost, fpv represents the PV panel’s
unit cost, fb is the unit cost of the battery, finv/conv represents the
unit cost of the inverter/converter, and Ninv/conv depicts the quantity
of the inverters/converters.

In order to obtain the system’s components’ annual mainte-
nance cost fmtn, Eq. (20) is used:

fmtn ¼ Npv � fpv;m þ Nwt � fwt;m ð20Þ
where fpv,m and fwt,m denote the annual maintenance costs of the
PV panels and WTs, respectively. In this paper, the maintenance
costs of the inverter/converter and battery units are not considered.

(2) Constraints. The battery bank charge quantity at any time
nstore(t) is subject to the minimum and maximum storage capacity
constraint given by the following formula:

nstore;min � nstore tð Þ � nstore;max ð21Þ
where nstore,max represents the battery bank maximum charge quan-
tity. The nstore,max takes the nominal capacity nstore value of the bat-
tery bank. nstore,min shows the battery bank minimum charge
quantity, which is calculated by Eq. (22):

nstore;min ¼ 1� DoDð Þ � nstore ð22Þ
where DoD represents the maximum depth of discharge.

In order to have a reliable system, the LPSP constraint given in Eq.
(23) is consideredduring the costminimizationoptimizationprocess:
Fig. 3. Schematic diagram
LPSP � LPSPmax; 80 � LPSPmax � 1 ð23Þ
where LPSPmax represents the maximum allowable LPSP value,
which is specified by the electricity consumer.

In addition, the following constraints for the total number of PV
panels, WTs, and batteries should also be satisfied:

0 � Npv � Npv;max; 8Npv;max � 300 ð24Þ

0 � Nwt � Nwt;max; 8Nwt;max � 200 ð25Þ

0 � Nb � Nb;max; 8Nb;max � 20000 ð26Þ
where Npv,max, Nwt,max, and Nb,max denote the maximum number of
PV panels, WTs, and batteries, respectively. In this paper, the mini-
mum and maximum bounds for the decision variables are set at 0–
300 for PV panels, 0–200 for WTs, and 0–20000 for batteries. The
components and parameters required for the PV–WT–battery
hybrid system are given in Table 1 [19]. Fig. 3 provides a schematic
diagram of the HRES process based on inputs, processing, and
output.
of the HRES process.
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3. Proposed methodology

Inspired by the use of non-algorithmic-specific techniques, the
optimum unit sizing problem is solved using Jaya, TLBO, and
hybrid JLBO algorithms; their results are also compared with those
of a GA, which requires the algorithmic-specific parameters of
crossover and mutation.
3.1. Jaya

The Jaya optimization algorithm considers only common con-
trol parameters, including population size and termination criteria,
and does not require any algorithmic-specific parameters for its
execution. In the Jaya algorithm, the objective function f(o) is
minimized at each iteration i, having the number ‘‘c” of decision
variables (j = 1, 2, . . ., c), and the number ‘‘e” of candidate solutions
for a population size (k = 1, 2, 3, . . ., e). The best candidate f(o)best is
selected, which has the foremost value of f(o) in the entire solution.
Similarly, the worst value of f(o) is denoted by f(o)worst, which is
assigned as the worst candidate in the entire population. If Oj,k,i

represents the value of the jth variable for the kth candidate during
the ith iteration, then it is changed according to the criteria defined
by the following equation [29]:

O0
j;k;i¼ floor Oj;k;iþrand1;j;i Oj;best;i�Oj;k;i

� ��rand2;j;i Oj;worst;i�Oj;k;i
� �� 	

 



ð27Þ

where Oj,best,i and Oj,worst,i are the values of variable j for the best and
the worst candidates at the ith iteration, respectively. O0

j;k;i depicts
the updated value of Oj,k,i, while rand1,j,i and rand2,j,i denote the
two random numbers for the jth variable during the ith iteration
in the range from 0 to 1. The expression ‘‘rand1,j,i(Oj,best,i � Oj,k,i)”
depicts the inclination of the solution to move toward the best solu-
tion, while the expression ‘‘rand2,j,i(Oj,worst,i � Oj,k,i)” shows the ten-
dency to avoid the worst solutions. O0

j;k;i is only accepted when it
achieves a better fitness value. During the optimization process,
accepted solutions are utilized to update the population for the next
generation. To avoid negative and decimal values, we used the
absolute and floor functions of MATLAB, respectively, to obtain an
integer value for the decision variables.
3.2. Teaching–learning-based optimization

In TLBO, the rows and columns of the population represent the
learners and subjects, respectively. Each subject of the learner is
related to the decision variable, whereas the total number of sub-
jects of the learner corresponds to a solution. The TLBO process is
divided into two different phases: the teacher phase and the lear-
ner phase. The former phase shows learning from the teacher and
the latter phase is associated with learning via interaction among
the learners [30].

In the teacher phase, the mean of the learners is calculated as
subject wise. All the learners are evaluated through the fitness
function, and the best learner with the minimum TAC will be cho-
sen as a teacher Xteacher

1 . The algorithm now tries to shift the learn-
ers’ mean toward the teacher. Thus, a new vector formed by the
current and best mean vectors is added to the existing population,
as shown in Eq. (28):

Xl
new tð Þ ¼ Xl

old tð Þ þ r � Xl
teacher � T factor �Ml

� �h i
ð28Þ

where r represents a random number in the range of 0 and 1, and
Tfactor is the teaching factor (TF). The TF is selected as either 1
or 2. It should be mentioned that Tfactor is not taken as an input
parameter; rather, it is randomly decided with an equal probability
by the algorithm during the optimization process, as given in the
following equation:

T factor ¼ round 1þ r � 2� 1ð Þ½ � ð29Þ

and the Xnew
1 in Eq. (28) is only accepted if it provides a better fit-

ness function value.
In the learner phase, each learner randomly interacts with other

learners in order to share and increase their knowledge. The pro-
cess starts by randomly selecting two learners: Xm

1 and Xn
1, from

the existing population, such that m – n. Based on the fitness val-
ues of the learners, the population is updated by the following
equation:

Xl
new tð Þ ¼

Xl
old tð Þ þ r � Xl

m tð Þ � Xl
n tð Þ

� �
; if Xl

m tð Þ � Xl
n tð Þ

Xl
old tð Þ þ r � Xl

n tð Þ � Xl
m tð Þ

� �
; otherwise

8><
>: ð30Þ

The optimization process of the algorithm continues until some
termination criterion is met.
3.3. JLBO

JLBO is composed of Jaya followed by the learning phase of
TLBO, which results in an increased search power around the glo-
bal solution. Fig. 4 shows the flowchart of the optimization process
of the JLBO algorithm. The mapping steps of the JLBO algorithm to
obtain an optimum unit sizing solution for the HRES are given
below.

Step 1: The hourly input parameters, including solar irradiation,
wind speed, ambient temperature, and consumer’s load profile
data, are taken as input.

Step 2: Based on the input data, the power generation capacities
of individual PV panels and WTs are calculated via Eqs. (1) and (4).

Step 3: An initial population with the size of 50 is randomly
generated, consisting of only two decision variables: X = [Npv,
Nwt]. In this position vector, the first element depicts the total
number of PV panels and the second term represents the total
number of WTs. To keep the decision variables within the search
space, the minimum and maximum bounds (constraints) given in
Eqs. (24) and (25) must be satisfied.

Step 4: Here, we calculate the number of batteries for each solu-
tion of X using Eq. (12), and apply the constraint given in Eq. (26). X
is updated such that it now represents three integer decision
parameter values: X = [Npv, Nwt, Nb]. Here, the third element
corresponds to the total number of batteries. These performance
parameters are the decision variables of the unit sizing problem.
Thus, the initial population generated now consists of a matrix size
of [50 � 3], where 50 represents the rows and 3 depicts the
columns for each performance parameter. Each corresponding
row of population X depicts a solution to the unit sizing problem.

Step 5: The LPSP of each solution of X is found via Eq. (13). Now
only those solutions are considered that satisfy the LPSPmax con-
straint given in Eq. (23).

Step 6: In this step, the cost values for each solution in X are
computed using Eq. (15). Depending on the values of the fitness
function, the best and worst solutions in X are now selected.

Step 7: Using Jaya Eq. (27), the first two elements (Npv and Nwt)
of the entire X are updated.

Step 8: During the learner phase, two solutions—Xm and Xn—are
randomly selected from X. Based on the fitness function values,
Xnew is updated via Eq. (30). Xnew now contains the updated popu-
lation values.

Step 9: Finally, Steps 4–8 are repeated until a termination crite-
rion (in this work, 100 generations) is met.



Fig. 4. Flowchart of the JLBO algorithm.
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Step 10: The best solution among all generations based on the
TAC is selected as an optimal solution, and the corresponding per-
formance parameter values are returned.

3.4. Genetic algorithm

The GA is a bio-inspired algorithm that is dependent on the
genetic evaluation and survival of the fittest concepts [35]. The
GA has been widely applied to energy management via appliances
scheduling [36,37] and unit sizing problems of hybrid systems
[38]. In a GA, the algorithmic-specific parameters, including selec-
tion, mutation, and crossover operators, are initialized and tuned
during the optimization process to achieve a near-optimal global
solution. Like other meta-heuristic algorithms, the GA process
starts by randomly generating an initial population (X) with N
numbers and D dimensional space. The genes present in the D
dimension space represent the decision variables of the problem.
In a GA, a chromosome is a complete row consisting of several
genes forming a candidate solution to the problem. As the GA opti-
mization process evolves, all chromosomes are evaluated through
a fitness function, which is TAC minimization in this study. During
an iteration, the best chromosome represents the local best solu-
tion (Lbest).

To produce a new population (Xnew) for the next generation,
mutation and crossover strategies are applied. The process repeats
and Xnew is evaluated through the fitness function. Newer solutions
with better TAC are used to replace the previous ones until the ter-
mination criterion is satisfied. The best solution with the minimum
TAC is selected among all generations as the globally best (Gbest)
solution. The crossover and mutation values for this study are set
to 0.8 and 0.2, respectively.
4. Simulation results

The simulation results were obtained using MATLAB R2016a
software with a system with a 2.9 GHz Intel Core i7 processor with
8 GB of installed memory. A dataset containing hourly data for
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solar insolation (Fig. 5), ambient temperature (Fig. 6), and wind
speed at a height of 10 m (Fig. 7) was obtained for a year
(8760 h) from Rafsanjan, Iran [39]. Figs. 5(a)–7(a) and Figs. 5(b)–
7(b) depict the solar insolation, ambient temperature, and wind
speed data during the year and during the first 8 d of the year
(192 h), respectively. A consumer’s load profile for a year and dur-
ing the first 8 d is presented in Figs. 8(a) and (b), respectively. The
initial charge of the batteries is assumed to be 30% of their nominal
storage capacity.

Table 2 summarizes and elaborates the TAC results obtained by
algorithms for the optimal sizing of an HRES. In this table, the
mean values, standard deviation, and best and worst indexes of
each algorithm for all hybrid cases are given. The indexes are
reported over ten independent runs. In Table 2, the average rank
Fig. 5. Hourly solar insolation profile data (a) during

Fig. 7. Hourly wind speed profile data (a) during a

Fig. 6. Hourly ambient temperature profile data (a) du
values of the proposed algorithms are derived by taking the mean
of their mean values calculated for all three cases: PV–WT–battery,
PV–battery, and WT–battery. For example, the JLBO average rank
value 85183USD is obtained by taking a mean of 50247, 67052,
and 138250USD achieved by the PV–WT–battery, PV–battery,
and WT–battery cases, respectively. The various ranks of the algo-
rithms are assigned based on the average rank of the TACs. As
shown in Table 2, the JLBO results show that at LPSPmax = 1%, the
PV–WT–battery hybrid system is the most cost-effective solution
with a TAC of 50247 USD, compared with the WT–battery and
PV–battery systems with TAC values of 138 250 and 67 052 USD,
respectively. The best and worst indexes in Table 2 show the
best and worst solutions found by the algorithms during ten inde-
pendent runs. The standard deviation is defined as a quantity
a year and (b) during the first 8 d of the year.

year and (b) during the first 8 d of the year.

ring a year and (b) during the first 8 d of the year.



Fig. 8. Hourly consumer’s load profile data (a) during a year and (b) during the first 8 d of the year.

Table 2
Summary of the mean, standard deviation (Std.), best performance, worst performance, and ranks of the schemes over ten independent runs for the proposed hybrid systems at
LPSPmax = 1%.

Hybrid systems Index Jaya TLBO JLBO GA

PV–WT–battery Mean (USD) 50596 51458 50247 54626
Std. (USD) 173.1658 1790.2 0 4539.9
Best (USD) 50268 50268 50247 50247
Worst (USD) 50678 55621 50247 63565

PV–battery Mean (USD) 67052 67052 67052 67052
Std. (USD) 0 0 0 0
Best (USD) 67052 67052 67052 67052
Worst (USD) 67052 67052 67052 67052

WT–battery Mean (USD) 138250 138250 138250 138250
Std. (USD) 0 0 0 0
Best (USD) 138250 138250 138250 138250
Worst (USD) 138250 138250 138250 138250

Average rank (USD) 85299.33 85586.67 85183 86642.67

Final rank 2 3 1 4
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expressing by how much the members of a group differ from
the mean value for the group. In Table 2, for the PV–battery,
WT–battery, and PV–WT–battery cases, JLBO achieved the same
best and worst solutions in ten independent runs; therefore, it
resulted in a standard deviation value of 0.

In the case of the PV–WT–battery system listed in Table 2, the
optimal sizing that was found for the best index by the Jaya algo-
rithm is Npv = 160, Nwt = 9, and Nb = 1296, with a TAC of 50268 USD
and an LPSP of 0.9650%. The worst solution found by the Jaya algo-
rithm results in a TAC of 50678 USD with optimal sizing of
Npv = 155, Nwt = 10, and Nb = 1306 and an LPSP of 0.9340%. The best
solution found by the TLBO algorithm is the same as that obtained
by Jaya. The worst solution found by the TLBO algorithm achieved
optimal sizing of Npv = 144, Nwt = 13, and Nb = 1453 with a TAC of
55621 USD and an LPSP of 0.5859%. In the case of the hybrid JLBO,
both the best and worst solutions were the same, with a TAC of
50247 USD, optimal sizing of Npv = 165, Nwt = 8, and Nb = 1299,
and an LPSP of 0.9817%. The best index value obtained using the
GA was the same as that obtained using the hybrid JLBO. The worst
solution obtained by the GA resulted in a TAC of 63565 USD with a
unit sizing combination of Npv = 115, Nwt = 20, and Nb = 1682 and
an LPSP of 0.8211%.

For the PV–battery and WT–battery systems, all the algorithms
achieved the same best and worst solutions, resulting in a stan-
dard deviation value of 0. In the case of the PV–battery system,
the best and worst solutions resulted in the same TAC of 67052
USD with optimal sizing values of Npv = 202 and Nb = 1893 for
PV panels and batteries, respectively, and an LPSP value of
0.9715%. In the WT–battery system, we found similar results
for the best and worst cases for all algorithms, with a TAC of
138250 USD and optimal sizing of Nwt = 54 and Nb = 3954. At
LPSPmax = 1%, the LPSP obtained by all algorithms was 0.8744%.
Therefore, it was revealed that all of the algorithms had a similar
performance for the PV–battery and WT–battery systems due to
the lower number of decision variables involved in the system,
in comparison with the PV–WT–battery system. In the case of
the PV–WT–battery system, as the number of decision variables
was increased to three (i.e., Npv, Nwt, and Nb), the performance
of the algorithms varied. The comparative performances of the
Jaya, TLBO, JLBO, and GA algorithms at LPSPmax = 1%, showed that
the JLBO results were better in terms of mean, standard deviation,
and best and worst indexes for the PV–WT–battery system. It is
pertinent to note that all the proposed algorithms were evaluated
over the same number of generations. The algorithms are there-
fore ranked as follows based on the fitness values they achieved
for the TAC: JLBO, Jaya, TLBO, and GA.

For simplicity, only the results of the Jaya and JLBO algorithms
for the proposed hybrid systems are summarized in Table 3. This
table provides the optimum results for the decision variables Npv,
Nwt, and Nb in terms of the minimized TAC values at five different
LPSPmax achieved by the aforementioned algorithms. It is notable
that at all LPSPmax values, the PV–WT–battery system is economi-
cal in terms of TAC, in comparison with the PV–battery and WT–
battery systems. Due to its enhanced search for more promising
areas of the solution space, the hybrid JLBO achieved better results
for the PV–WT–battery system. For the PV–battery and WT–bat-
tery systems, the results achieved by Jaya and TLBO were similar
for all TACs at different LPSPmax values.



Table 3
Summary of Jaya and JLBO results for the proposed hybrid systems at different LPSPmax values.

Hybrid systems LPSPmax (%) Jaya JLBO

LPSP (%) Npv Nwt Nb TAC (USD) LPSP (%) Npv Nwt Nb TAC (USD)

PV–WT–battery 0 0 145 15 1802 66863 0 150 14 1795 66542
0.3 0.2721 139 15 1620 61102 0.2962 144 14 1612 60752
1.0 0.9650 160 9 1296 50268 0.9817 165 8 1299 50247
2.0 1.8080 172 5 1084 43066 1.7976 168 6 1078 43046
5.0 4.6908 170 4 849 35555 4.8372 174 3 818 34464

PV–battery 0 0 213 N/A 2601 88853 0 213 N/A 2601 88853
0.3 0.2097 210 N/A 2404 82790 0.2097 210 N/A 2404 82790
1.0 0.9715 202 N/A 1893 76052 0.9715 202 N/A 1893 76052
2.0 1.9158 193 N/A 1354 50424 1.9158 193 N/A 1354 50424
5.0 4.5991 187 N/A 997 39409 4.5991 187 N/A 997 39409

WT–battery 0 0 N/A 56 4246 147730 0 N/A 56 4246 147730
0.3 0 N/A 55 4072 142150 0 N/A 55 4072 142150
1.0 0.8744 N/A 54 3954 138250 0.8744 N/A 54 3954 138250
2.0 0.8744 N/A 54 3954 138250 0.8744 N/A 54 3954 138250
5.0 0.8744 N/A 54 3954 138250 0.8744 N/A 54 3954 138250

N/A: not applicable.

A. Khan, N. Javaid / Engineering 6 (2020) 812–826 821
When considering the Jaya algorithm, it was found that at
LPSPmax = 0, a TAC of 66863 USD was achieved with 145 PV panels,
15 WTs, and 1802 batteries for the PV–WT–battery system. As the
values of LPSPmax increased from 0 to 5%, the corresponding TAC
values decreased due to the tradeoff effect between the cost and
reliability of the system. In other words, the system is more reli-
able but costly and will always fulfill the consumer’s load demand
at LPSPmax = 0 as compared with other LPSPmax values, where LOS is
probably caused by a lower amount of power generation from the
RESs. At an increased value of LPSPmax, that is, at 5%, the PV–WT–
battery system achieved the minimum TAC value of 35555 USD for
the Jaya algorithm. An analysis of Table 3 reveals that the PV–WT–
battery system provides a more economical solution than the PV–
battery and WT–battery systems for the Jaya algorithm. For exam-
ple, when the LPSPmax value is set to 5%, TAC values of 35555,
39409, and 138250 USD are achieved for the PV–WT–battery,
PV–battery, and WT–battery systems, respectively.

Table 3 also reveals that more promising and efficient results
are obtained concerning the minimized TAC values by the JLBO
algorithm for the PV–WT–battery HRES as compared with the Jaya
algorithm. At LPSPmax = 0, the TAC value achieved by the JLBO algo-
rithm is 66542 USD, which is 321 USD less than that of the Jaya
scheme. Here, the optimum sizing found by the JLBO algorithm is
Npv = 150, Nwt = 14, and Nb = 1795. When the LPSPmax value is
set at 0.3%, the TAC achieved by the JLBO algorithm is 60752
USD, which is 350 USD less than that obtained by Jaya. In this case,
the optimum size of the components is Npv = 144, Nwt = 14, and
Nb = 1612, with an obtained LPSP value of 0.2962%. At LPSPmax = 1%,
the PV–WT–battery system, with a TAC value of 50247 USD and
optimum sizing of Npv = 165, Nwt = 8, and Nb = 1299, is found to
be the most cost-effective HRES in comparison with the PV–battery
and WT–battery systems. Here, the total cost saved by JLBO is 21
USD in comparison with the Jaya algorithm. Furthermore, when
LPSPmax is increased to 2%, the optimum sizing obtained by the
JLBO is Npv = 168, Nwt = 6, and Nb = 1078 with a TAC and an LPSP
of 43046 USD and 1.7976%, respectively. In this case, the cost
saved by JLBO is 20 USD in comparison with the Jaya scheme.
Finally, at LPSPmax = 5%, the TAC value found by JLBO is 34464
USD for the PV–WT–battery system, which is 1091 USD less than
the solution obtained by the Jaya scheme. In this case, the
optimum sizing of the system components is Npv = 174, Nwt = 3,
and Nb = 818, with an LPSP value of 4.8372%.

As shown in Table 3, the results obtained by the JLBO algorithm
for the PV–battery system are more economical in terms of TAC
than those for the WT–battery system. The TAC values obtained
for the PV–battery system at LPSPmax = 0, 0.3%, 1%, 2%, and 5%
are 88853, 82790, 76052, 50424, and 39409 USD, respectively.
In the case of the WT–battery system, the TAC values obtained
are 147730, 142150, and 138250 at LPSPmax = 0, 0.3%, 1%, 2%,
and 5%, respectively. The simulation plots obtained by the JLBO
algorithm for performance parameters including RESs power
generation, status of energy storage in the battery bank, and TAC
values along with their convergence are discussed next.

The fulfillment of the consumer’s load at any time instant is
mainly dependent on the RES power generation and the extent of
energy stored in the battery bank. Figs. 9 and 10 present the hourly
produced power by the PV panels and WTs, along with the
expected amount of stored energy in the battery bank throughout
a year and during the first 8 d of the year, respectively, for the PV–
WT–battery HRES considering various LPSPmax values. As depicted
in Fig. 9(a), the maximum PV power is produced at LPSPmax values
of 5% and 2%, with Npv of 174 and 168, respectively. The least
amount of power produced by PV panels is at LPSPmax = 0.3%, with
Npv = 144. In Fig. 9(b), the highest produced power by WTs has a
similar profile for LPSPmax values of 0 and 0.3% because of the equal
number of Nwt, that is, 14. The lowest power is produced when the
installed number of WTs is 3 at LPSPmax = 5% for the PV–WT–
battery hybrid system.

The expected amount of energy stored in the battery bank
during a year and the first 8 d of the year is plotted in Figs. 9(c)
and 10(c), respectively, at five different LPSPmax values. It is found
that a large amount of energy is stored at LPSPmax = 0 because of
the large number of installed batteries (Nb = 1795). In this case,
the consumer must bear the maximum TAC value of 66542 USD.
As shown in Fig. 9(c), an increase in LPSPmax value results in a
decreased amount of stored energy in the battery bank due to
the lower number of batteries. For example, at LPSPmax = 0.3%,
1%, 2%, and 5%, the number of batteries Nb is 1612, 1299, 1078,
and 818, respectively. Furthermore, loss of load (LOL) is caused at
time slots when the amount of stored energy in the batteries
reaches the minimum allowable limit.

The hourly produced PV power and energy storage level of the
PV–batteries system throughout a year and during the first 8 d of
the year at different LPSPmax values are presented in Figs. 11 and
12, respectively. As shown in Fig. 11(a), at LPSPmax = 0, the hourly
produced power is the highest, with 213 PV panels. Accordingly,
the consumer bears a maximum TAC of 88853 USD. When the
LPSPmax value increases, there is a relative decrease in the hourly
produced PV power, along with the TAC values. At LPSPmax values
of 0.3%, 1%, 2%, and 5%, the number of PV panels obtained by JLBO



Fig. 9. Hourly produced power and energy storage level of the PV–WT–battery
system achieved by the JLBO algorithm during a year at different LPSPmax values.
(a) Produced PV power; (b) produced WT power; (c) battery energy storage level.

Fig. 10. Hourly produced power and energy storage level of the PV–WT–battery
system achieved by the JLBO algorithm during the first 8 d of the year at different
LPSPmax values. (a) Produced PV power; (b) produced WT power; (c) battery energy
storage level.
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decreases to 210, 202, 193, and 187, respectively. Based on this
fact, the amount of power generated by the PV panels is also
reduced. The corresponding PV power for the first 8 d of the year
is given in Fig. 12(a). Thus, depending on the solar insolation and
ambient temperature data profiles, the daily output power of the
PV panels varies accordingly.

Fig. 11(b) presents the hourly battery energy storage level of the
PV–battery system. As has been already mentioned, it is assumed
that the batteries are initially 30% charged. Thus, for different
LPSPmax, the starting storage points are dependent upon the num-
ber of batteries. For example, at LPSPmax = 0, the PV–battery system
results in the highest amount of storage capacity with Npv = 213
and a TAC value of 88853 USD. Similarly, a decrease in the
expected mass of stored energy is evident with increasing LPSPmax

values due to the tradeoff effect between the system’s reliability
and the TAC. The stored mass of energy is the lowest at an LPSPmax

of 5%, with a TAC value of 39409 USD. The corresponding energy
storage level plot during the first 8 d of the year at different
LPSPmax is given in Fig. 12(b). Since the PV–battery system initially
utilizes the amount of stored energy in the battery bank due to the
lack of renewable power from PV panels, a declining trend in
energy storage is observed in Fig. 12(b).

Figs. 13 and 14 illustrate the hourly produced power and energy
storage levels of the WT–battery system for a year and during the
first 8 d of the year, respectively, at different LPSPmax values. The
highest power is produced by WTs at LPSPmax = 0, with the maxi-
mum number of WTs installed—that is, 56. When LPSPmax is
increased to 0.3%, Nwt decreases to 55, resulting in reduced power
in comparison with LPSPmax = 0. The power produced by the WT–
battery system during the first 8 d of the year at different LPSPmax is
given in Fig. 14(a). The profiles depicting the WT–produced power
in Fig. 13(a) and the stored amount of battery energy in Fig. 13(b)
at LPSPmax values of 1%, 2%, and 5% are similar to those of the same
number of batteries and WTs (Nb = 3954, Nwt = 54). Due to this fact,
for the aforementioned three LPSPmax values, the TAC borne by the
consumer is the same, at 138250 USD. Similar behavior is observed
in the hourly produced WT power and energy storage level of the



Fig. 11. Hourly produced power and energy storage level of the PV–battery system
achieved by the JLBO algorithm during a year at different LPSPmax values.
(a) Produced PV power; (b) battery energy storage level.

Fig. 12. Hourly produced power and energy storage level of the PV–battery system
achieved by the JLBO algorithm during first 8 d of the year at different LPSPmax

values. (a) Produced PV power; (b) battery energy storage level.

Fig. 13. Hourly produced power and energy storage level of the WT–battery system
by the JLBO algorithm during a year at different LPSPmax values. (a) Produced WT
power; (b) battery energy storage level.

Fig. 14. Hourly produced power and energy storage level of the WT–battery system
achieved by the JLBO algorithm during the first 8 d of the year at different LPSPmax

values. (a) Produced WT power; (b) battery energy storage level.
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WT–battery system during the first 8 d of the year in Figs. 14(a)
and (b), respectively.

Fig. 15 represents the convergence process of the JLBO algo-
rithmwhile minimizing the TAC of the proposed HRES. It is notable
that, at each iteration, the JLBO scheme decreases the TAC value
based on the fitness function. This confirms the performance and
efficiency of the proposed JLBO scheme for the optimal unit sizing
problem. It is also observed that the convergence process of the
JLBO algorithm for the PV–battery and WT–battery systems as
given in Figs. 15(b) and (c), respectively, is relatively faster than
that for the PV–WT–battery system shown in Fig. 15(a), due to
the presence of fewer decision variables.

To summarize, it can be stated that the proposed hybrid algo-
rithm JLBO has more promising and cost-effective results than
the other algorithms. Furthermore, non-algorithmic-specific
parameter schemes, including Jaya and TLBO, are simple because
no performance tuning and calibration of their parameters is
needed.
Fig. 15. Convergence process of the JLBO algorithm for obtaining optimum results
at different LPSPmax values. (a) PV–WT–battery system; (b) PV–battery system;
(c) WT–battery system.
5. Conclusion and future work

In this paper, non-algorithmic-specific parameter schemes were
proposed in order to find and evaluate the optimum size of the
HRES components required to fulfill the consumer’s load at mini-
mum TAC. To achieve this goal, all components required for the
HRES were modeled and a fitness function based on TAC minimiza-
tion was formulated. The system’s reliability was ensured using
various LPSPmax values. To find the optimum unit size of the hybrid
system components, Jaya, TLBO, hybrid JLBO, and GA algorithms
were applied. When considering the optimization aspect, it was
found that the hybrid JLBO algorithm yields more promising and
economical results than its ancestors or the GA in terms of the
TAC. The PV–WT–battery hybrid system was found to have the
most cost-effective solution, with TAC values of 66542, 60 752,
50247, 43046, and 34464 USD at LPSPmax values of 0, 0.3%, 1%,
2%, and 5%, respectively. The PV–battery system is the second-
most economical solution, and the WT–battery system comes last

In the future, we are interested in extending this work by com-
paring it with different meta-heuristic algorithms—including PSO,
enhanced differential evaluation, artificial flora, and so forth—that
require algorithmic-specific parameters.
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 Jaya best candidate values of variable j for at ith

iteration

j,k,i
 Jaya value of jth variable for the kth candidate

during the ith iteration

j,worst,i
 Jaya worst candidate values of variable j for at ith

iteration

appliances power ratings
V
 rated PV power

t
 nominal power of WT
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nv/conv
 rated power of inverter/converter

Wpv
 PV panel power output

Wwt
 WT power
random number

time slot
mp
 temporary storage variable

mb
 ambient air temperature
temperature of PV cell

of
 PV panels temperature coefficient

actor
 teaching factor

oct
 normal operating cell temperature

ef
 PV cell temperature at reference conditions

sc
 difference between the maximum and the

minimum points in the temp curve

speed of the wind
i
 cut-in wind speed

o
 cut-out wind speed
rated wind speed

total population size

learner m in population X

learner n in population X
ew
 new population generation

eacher
 teacher in TLBO algorithm
unit cost of battery

present worth of battery
ap
 annual capital cost

v/conv
 unit cost of inverter/converter

v/conv
 present components worth of inverter/converter

tn
 annual maintenance cost

v
 unit cost of PV panel

v,m
 annual maintenance cost of the PV panels

ac
 total annual cost

t
 unit cost of WT

t,m
 annual maintenance cost of WTs
battery bank charging efficiency

efficiency of the inverter
v
 efficiency of the PV panel

nv/conv
 efficiency of the inverter/converter
self-discharging state

en
 accumulative power generation

d
 consumer’s load

v
 total produced PV power

tore
 stored amount of energy in the battery bank

tore,max
 battery bank maximum charge quantity

tore,min
 battery bank minimum charge quantity

t
 total produced WT power
battery price

nv/conv
 inverter/converter price
Boolean integer
v
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