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This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2
from satellite gravimetry, satellite altimetry, and Earth Gravitational Model 2008 (EGM2008)-derived
gravity data based on the theory of the ellipsoidal harmonic analysis and coefficient transformation
(EHA-CT). We first derive the related formulas of the EHA-CT method, which is used for computing the
spherical harmonic coefficients from grid area-mean and point gravity anomalies on the ellipsoid. The
derived formulas are successfully evaluated based on numerical experiments. Then, based on the derived
least-squares formulas of the EHA-CT method, we develop the newmodel SGG-UGM-2 up to degree 2190
and order 2159 by combining the observations of the Gravity Field and Steady-State Ocean Circulation
Explorer (GOCE), the normal equation of the Gravity Recovery and Climate Experiment (GRACE), marine
gravity data derived from satellite altimetry data, and EGM2008-derived continental gravity data. The
coefficients of degrees 251–2159 are estimated by solving the block-diagonal form normal equations
of surface gravity anomalies (including the marine gravity data). The coefficients of degrees 2–250 are
determined by combining the normal equations of satellite observations and surface gravity anomalies.
The variance component estimation technique is used to estimate the relative weights of different obser-
vations. Finally, global positioning system (GPS)/leveling data in the mainland of China and the United
States are used to validate SGG-UGM-2 together with other models, such as European improved gravity
model of the earth by new techniques (EIGEN)-6C4, GECO, EGM2008, and SGG-UGM-1 (the predecessor
of SGG-UGM-2). Compared to other models, the model SGG-UGM-2 shows a promising performance in
the GPS/leveling validation. All GOCE-related models have similar performances both in the mainland
of China and the United States, and better performances than that of EGM2008 in the mainland of
China. Due to the contribution of GRACE data and the new marine gravity anomalies, SGG-UGM-2 is
slightly better than SGG-UGM-1 both in the mainland of China and the United States.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

High-resolution Earth’s gravity field model can be used for
high-precision geoid determination [1,2], the unification of global
height systems [3], the determination of dynamic sea surface
topography [4], and exploring Earth’s interior structure [5]. With
the advent of the new generation satellite gravity missions (Chal-
lenging Minisatellite Payload (CHAMP) [6], Gravity Recovery and
Climate Experiment (GRACE) [7], and Gravity Field and Steady-
State Ocean Circulation Explorer (GOCE) [8]), the accuracy of long
to medium wavelength signals was improved greatly [9–16].
Meanwhile, surface gravity anomaly data, which is constructed
from terrestrial gravity, satellite altimetry, airborne gravimetry,
or fill-in gravity anomalies computed by residual terrain model
(RTM) forward modeling, provides high precision short wavelength
information [17]. Thus, high-resolution gravity field model can be
obtained by combination of the gravity signals from satellite
gravity data, satellite altimetry data, surface gravity data, airborne
gravity data, shipborne gravity data, and terrain model.

The high-resolution gravity field models incorporating gravity
data from the dedicated satellite missions published on the
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International Center for Global Earth Models (ICGEM) website
(http://icgem.gfz-potsdam.de/tom_longtime) include Earth Gravi-
tational Model (EGM)2008 [18], European improved gravity model
of the earth by new techniques (EIGEN)-6C4 [19], GECO [20],
gravity observation combination (GOCO) model GOCO05c [21],
Experimental Gravity Field Model (XGM)2016 [22], and SGG-
UGM-1 [23]. Referring to the ICGEM website, the main attributes
of these models are shown in Table 1. EIGEN-6C4 is a representa-
tive model of the EIGEN-series, which share almost the same calcu-
lation strategy and data sources. The new-generation satellite
gravity missions contributed greatly to these models, and the accu-
racy of the long-to-medium-wavelength parts of the models has
been improved substantially. EGM2008, which is currently the
most frequently used gravity field model, is constructed with pos-
sibly the best global 50 �50 data set of gravity anomaly data from
terrestrial observations, satellite altimetry, and fill-in gravity
anomalies from RTM forward modeling and the GRACE normal
equation (NEQ) of the Institute of Geodesy and Geoinformation
of the University of Bonn (ITG)-GRACE03S satellite-only model.
However, it does not contain any GOCE observations. A later model
EIGEN-6C4 incorporates GOCE observations and Laser Geodynam-
ics Satellite (LAGEOS) observations. However, the surface gravity
anomalies on land areas contained in EIGEN-6C4 are taken from
EGM2008. Compared to the block-diagonal NEQs of high-degree
coefficients in EGM2008 and EIGEN-6C4 modeling, GOCO05c and
XGM2016 are developed based on the combination of full NEQ
systems up to full resolution, and therefore they use regionally
varying weighting based on the varying quality of the terrestrial/
altimetry data. Moreover, compared to EIGEN-6C4, the gravity
anomaly data used in GOCO05c and XGM2016 is independent of
EGM2008. Both GECO and SGG-UGM-1 are calculated through
the improvement of EGM2008 with GOCE data, and they are calcu-
lated using EGM2008-derived global gravity anomaly data and
GOCE-only NEQs [22–24]. According to the validation results from
Liang et al. [23], EGM2008, EIGEN-6C4, and SGG-UGM-1 have con-
sistent accuracy in United States and the GOCE-related models
(e.g., EIGEN-6C4 and SGG-UGM-1) have better performances in
China. SGG-UGM-2 is different from SGG-UGM-1 in three main
aspects: the use of ellipsoidal harmonic functions, the update of
gravity anomaly data in marine areas, and the employment of
the GRACE NEQ.

Among the above mentioned models, only EGM2008 is con-
structed based on the ellipsoidal harmonic functions. However,
as the figure of the Earth can be closely approximated by an oblate
ellipsoid of revolution, the errors induced by spherical approxima-
tion are bigger than those caused by ellipsoidal approximation.
Thus, for modeling Ohio States University (OSU)91 [25], EGM96
[26], and EGM2008 [18], gravity anomalies were reduced onto
the earth’s reference ellipsoid. In this situation, ellipsoidal har-
monic analysis is more suitable than spherical harmonic analysis
[27]. Hotine [28] and Jekeli [29,30] proposed the renormalized
Legendre function of the second kind and derived the mutual
transformation formulas between ellipsoidal and spherical har-
Table 1
Main characteristics of the released high-resolution gravity field models.

Model name Max degree Input dataa Ref.

EGM2008 2190 A, G, S(GRACE) [18]
EIGEN-6C4 2190 A, G, S(GOCE), S(GRACE), S(LAGEOS) [19]
GECO 2190 EGM2008, S(GOCE) [20]
GOCO05c 720 A, G, S [21]
XGM2016 719 A, G, S(GOCO05s) [22]
SGG-UGM-1 2159 EGM2008, S(GOCE) [23]

a S is for satellite (e.g., GRACE, GOCE, and Laser Geodynamics Satellite (LAGEOS)),
A is for altimetry, and G is for ground data (e.g., terrestrial, shipborne, and airborne
measurements).
monic coefficients. This transformation method was later numeri-
cally investigated by Gleason [31], and is called ‘‘Jekeli’s
transformation” in this paper. In addition, Sebera et al. [32]
extended the direct computation of the Legendre functions up to
second derivatives and minimized the number of required recur-
rences by the hypergeometric transformation.

With respect to their applications in gravity field modeling,
ellipsoidal harmonic functions are always employed in the follow-
ing manner: The ellipsoidal harmonic coefficients are first calcu-
lated through ellipsoidal harmonic analysis with gravity
anomalies on the reference ellipsoid, and then the ellipsoidal coef-
ficients are transformed to spherical harmonic coefficients of dis-

turbing potential (C
s
nm). This method of determining gravity field

models is called the ellipsoidal harmonic analysis and coefficients
transformation (EHA-CT) method for brevity in this paper. Imple-
mentations of the EHA-CT method can differ from each other, for
example, the ellipsoidal harmonic analysis can be fulfilled by either
numerical integration or the least-squares method. Rapp and Pavlis

[33] derived a formula for the computation of C
s
nm directly from

area-mean gravity anomalies on the ellipsoid based on Jekeli’s
transformation. This formula was later used in computing gravity
field models, such as OSU89 [33], OSU91 [25], EGM96 [26],
IGG97LB [34], and MOD99 [35]. In computing the EGM2008 [18],

at first, ellipsoidal harmonic coefficients (C
e
nm) are calculated by

ellipsoidal harmonic analysis with the least-squares method. Then

Jekeli’s transformation is used to transform C
e
nm to C

s
nm. Although

the EHA-CT method has been widely used in gravity field determi-
nation, there is still lack of thorough introduction and review of its
different applications. In this paper, we will first give a short
introduction to this method and we will then introduce our imple-
mentation and highlight the differences relative to other imple-
mentations. The weighting and sampling theory of Driscoll and
Healy [36] is introduced in the ellipsoidal harmonic analysis. More-
over, its employment in other studies will also be reviewed. For
example, we point out that 1/(n �2k � 1) in the formula given
by Rapp and Pavlis [33] should be 1/(n � 1). Although this might
be a typo, it is still worth pointing out the problem to avoid its mis-
use. Recovering the gravity field model from gravity anomalies on
the ellipsoid is also described as the ellipsoidal geodetic boundary
value problem (GBVP). The EHA-CT method gives a solution to this
problem; meanwhile, other alternative methods can be found in
Refs. [36–43].

Gravity data from the vast ocean areas, which account for
nearly 71% of the earth’s area, is necessary for modeling a high-
resolution gravity field model. Fortunately, radar altimeter data
frommore and more altimetry satellites can be used for recovering
marine gravity anomalies. The released altimetry data include Geo-
sat GM/ERM (17 d), ERS-1/GM (168 d), ERS/ERM (35 d), T/P/T/P
Tandem (10 d), Jason-1/ERM (10 d), Envisat (35 d/30 d), Jason-2/
ERM (10 d), Jason-1/GM (406 d), CryoSat-2 (369 d), SARAL/AltiKa
ERM (35 d), HY-2A (14 d), Jason-2/GM, and SARAL/AltiKa GM.
The notation ‘‘d” in the brackets after the mission’s name means
day, which indicates the repetition period for each altimeter mis-
sion. By combining these multiple sources of altimetry data, grid
marine gravity anomalies in the latitude range of ±80.738 with a
10 �10 spatial resolution can be recovered based on either a numeri-
cal analysis method [44,45] or least squares collocation [46,47]
with geoid height as the intermediate variable. The EGM2008-
derived gravity anomalies were used to fill in the ocean area to
determine SGG-UGM-1. In this paper, the selected altimetry data
shown above are used to recover 10 �10 spatial resolution marine
gravity anomaly data. By combination with EGM2008-derived data
for the rest of the area, the global surface gravity anomaly data is
formed for the development of the new model SGG-UGM-2. In
addition, the GRACE satellite mission was in orbit for over 15 years
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and provided valuable data for recovering the long-wavelength
part of the gravity field. Institute of Theoretical Geodesy and Satel-
lite Geodesy (ITSG)-Grace2018 [48], which consists of constrained
daily solutions, a high-resolution static field, and unconstrained
monthly solutions, is the latest time series of the ITSG series model
at the Institute of Geodesy in Graz University of Technical. The
authors [48] provided the NEQ system of ITSG-Grace2018 on the
ftp sever of their institute (ftp://ftp.tugraz.at/outgoing/ITSG/
GRACE/ITSG-Grace2018/). The NEQ of the static gravity field from
GRACE is used in modeling SGG-UGM-2. Note that we intend to
continuously develop SGG-UGM-series models and release them
as alternatives to users on the ICGEM website. SGG-UGM-2 will
also be available there.

The paper is divided into 6 sections. First, the principles of the
EHA-CTmethod and the derivations of the formulas are given in Sec-
tion 2. The derived discrete integral formulas and least-squares for-
mulas of the EHA-CT method are evaluated in Section 3. The data
processing strategies of forming the GOCE satellite NEQ, the deter-
mination of marine gravity anomalies, the combination of the NEQs
of satellite data and gravity anomalies, and the scheme of determin-
ing SGG-UGM-2 are given in Section 4. The SGG-UGM-2 model is
validated in Section 5. The conclusions are given in Section 6.

2. Methodology

2.1. Ellipsoidal harmonic analysis and coefficient transformation
method

The arbitrary harmonic function f, which satisfies Laplace’s
equation, can be represented by the ellipsoidal harmonic expan-
sions in its harmonic domain as follows [30,32]:

f u; d; kð Þ ¼
X1
n¼0

Xn
m¼�n

Snjmj u=Eð Þ
Snjmj b=Eð Þ f

e
nmYnm d; kð Þ ð1Þ

where (u, d, k) are ellipsoidal-harmonic coordinates [1]; E is the lin-
ear eccentricity of the reference ellipsoid; b is the semiminor axis of
the reference ellipsoid; �Ynm(d, k) are the fully normalized surface
spherical harmonic functions:

�Ynm d; kð Þ ¼ �Pnjmj cos dð Þcosmk if m � 0
�Pnjmj cos dð Þsinjmjk if m < 0

�
,

Pnjmj(cos d) are the fully normalized associated Legendre functions

of the first kind [1]; f
e

nm are the fully normalized ellipsoidal har-
monic coefficients; n and m are the degree and order of the ellip-
soidal harmonic functions and their relevant coefficients; and
Snjmj is Jekeli’s renormalized function [30].

Thus, the harmonic function rDg is represented by the ellip-
soidal harmonic expansions as follows [31,33]:

rDg u; d; kð Þ ¼ a
X1
n¼0

Xn
m¼�n

Snjmj u=Eð Þ
Snjmj b=Eð Þ g

e
nmYnm d; kð Þ ð2Þ

where r is the geocentric radius, Dg is the gravity anomaly defined
by Eqs. (2–287) in Ref. [1], rDg is the product of r andDg, ge

nm are the
‘‘ellipsoidal harmonic” coefficients of rDg, and a is the semimajor
axis of the reference ellipsoid. The quotation mark on the term ellip-
soidal harmonic here indicates that ge

nm are not rigorous the ellip-
soidal harmonic coefficients of rDg, as there exists a scale factor a
in the expansion.

When gravity anomalies refer to the surface of the reference
ellipsoid, Eq. (2) is simplified to the following equation:

rDg b; d; kð Þ½ �E ¼ a
X1
n¼0

Xn
m¼�n

ge
nmYnm d; kð Þ ð3Þ

where []E means that the data refer to the reference ellipsoid.
The ellipsoidal harmonic coefficients ge
nm can be estimated if we

have gravity anomaly data on the ellipsoid surface. Then there are

two more steps for estimating the coefficients C
s
nm as follows [33]:

rDg½ �E ! ge
nm ! gs

nm ! Cs
nm ð4Þ

Based on the scheme in Eq. (4), first, ge
nm are transformed to the

spherical harmonic coefficients of [rDg]E, gs
nm. Then, g

s
nm are trans-

formed to C
s
nm. The detailed transformation equations are given in

the next section.
The approach described above is named as the EHA-CT method

in this paper for abbreviation. Moreover, if the integration method
is employed in the ellipsoidal harmonic analysis, the EHA-CT
method is called the integral EHA-CT method. Otherwise, if the
least-squares method is used instead, the method is called the
least-squares EHA-CT method. In addition, the discrete observa-
tions rDg are either grid area-mean values or point values. We will
discuss the related formulas in detail in Sections 2.1.1 and 2.1.2.

2.1.1. Integral formulas of the EHA-CT method
According to Eq. (3), the integral formula for estimating the

coefficients ge
nm from gravity anomalies on the reference ellipsoid

is obtained based on the orthogonality of the surface spherical har-
monics as follows:

ge
nm ¼ 1

4pa

ZZ
r

rDg b; d; kð Þ½ �EYnm d; kð Þdr ð5Þ

The coefficients ge
nm are transformed to gs

nm using Jekeli’s trans-
formation as follows [30]:

gs
nm ¼

Xk max

k¼0

Knmk
1

Sn�2k;jmj b=Eð Þ g
e
n�2k;m; k max ¼ n� jmj

2

� �
ð6Þ

For the explicit expression of Krank, please refer to Jekeli [30].

The relation between coefficients gs
nm and C

s
nm was given by

Gleason [31] as follows:

Cs
nm ¼ a2

GM n� 1ð Þ g
s
nm ð7Þ

where GM is the geocentric gravitational constant.
Thus, by combining Eqs. (5), (6), and (7), we obtain the

following:

Cs
nm ¼ 1

4pac
Xk max

k¼0

Knmk
1

n� 1ð ÞSn�2k;jmj b=Eð Þ
�
ZZ

f
r

rDg b; d; kð Þ½ �EYn�2k;m d; kð Þdrg
ð8Þ

where c = GM/a2.
Even though Eq. (8) is rigorous, it is not possible to use it in

gravity field determination as we only have discretized gravity
anomalies in reality. Thus, the discretized form of Eq. (8) is needed.
The discretization depends on the gravity anomaly values, in the
form of point values or area means, and layout of the grid, such
as an equal-angular grid.

For area-mean values in equal-angular grid, the discretization of
Eq. (8) is shown as follows:

Cs
nm ¼ 1

4pac
Xi max

i¼0

ri½ �E
Xk max

k¼0

Knmk

Sn�2k;jmj b=Eð Þ
IPi

n�2k;jmj
n� 1ð Þ

�
Xj max

j¼0

Dgij
� �E IC

IS

( )j

m

if m � 0

if m < 0

ð9Þ
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where i and j denote a cell residing on the i-th (i = 0, . . ., N � 1) lati-
tude belt (‘‘row”) and the j-th (j = 0, . . ., 2N � 1) meridional sector
(‘‘column”) in a global equiangular grid composed of N rows by
2N columns on the reference ellipsoid; i_max and j_max are deter-
mined by i_max = N�1 and j_max = 2N�1, respectively; [ri]E is the

radius at the center of a block on the i-th latitude belt; Dgij

� �E
are

the area-mean gravity anomalies in a block; the area-mean value

of [rDg|E in the block is approximated as ri � Dgij
� �E

; and IP
i
njmj is

the integral of Legendre function. IP
i
njmj and

IC
IS

� �j

m

are computed

as: IPi
njmj ¼

R diþ1
di

Pnjmj cos dð Þdd and IC
IS

� �j

m
¼ R kjþ1

kj

cos mk
sin jmjk

� �
dk. The

detailed derivation of this equation can be seen in the Appendix A.
For the grid point gravity anomalies in and equal-angular grid,

we have the following:

Cs
nm ¼ DkDd

4pac
Xi max

i¼0

ri½ �Esin dið Þ
Xk max

k¼0

Knmk

Sn�2k;jmj b=Eð Þ
Pi
n�2k;jmj
n� 1ð Þ

�
Xj max

j¼0

Dgij

� �E cosmk

sin jmjk

� �j

m

if m � 0
if m < 0

ð10Þ

where Dk and Dd are the grid width in the latitudinal and meridi-
onal direction, respectively; [Dgij]E is the grid point gravity anomaly
in the block and, generally, is the value at the center of the block;

and P
i
njmj is defined as P

i
njmj ¼ Pnjmj cos dið Þ.

However, as the Legendre base functions lose their orthogonali-
ty in the discrete case, both Eq. (9) and Eq. (10) have discretization

errors and will yield the approximate coefficients C
s
nm. Moreover, in

the case of area-mean values, in the derivation of Eq. (9) there
exists an assumption that the gravity anomalies are constant in a
grid and equal to the area-mean value of the grid. However, in
most cases, the observations will have fluctuations in each block

and it will be less smooth. Therefore, the coefficients C
s
nm from

the equation are smoothed values. As a refinement, the smoothing
factor qni suggested by Colombo [49] is employed to de-smooth the
coefficients. After applying the smoothing factor, the de-smoothed
form of Eq. (9) is as follows:

Cs
nm ¼ 1

4pac
Xi max

i¼0

ri½ �E
Xk max

k¼0

Knmk

Sn�2k;jmj b=Eð Þ
IPi

n�2k;jmj
n� 1ð Þqi

n�2k

�
Xj max

j¼0

Dgij
� �E IC

IS

� �j

m

if m � 0
if m < 0

ð11Þ

Even though the smoothing factor is applied, Eq. (11) is still an
approximated formula as the orthogonality problem of the dis-
cretized integral of Legendre functions still exists. To our limited
knowledge, this problem has not been solved. Fortunately, in the
case of point values, the orthogonality problem of discretized
Legendre functions can be solved using certain weighting and sam-
pling schemes. Two popular quadrature algorithms, the Gauss–
Legendre (GL) quadrature method (or the second-order Neumann
method) [50] and the quadrature following Driscoll/Healy (DH)
method [36], were developed. In the DH method, the data should
be distributed within a [N � N] (nmax = N/2–1) grid, where nmax

is the maximum spherical harmonic degree of the coefficients,
with a latitude parallel sampling of Dd = 180�/N and a meridian
sampling of Dk = 360�/N, or on a [N�2N] equiangular grid with
Dd = Dk = 180�/N. The weight accounting for the orthogonality
problem of the Legendre functions in the DH method is as follows:

w dið Þ ¼ 2
N

XN=2�1

j¼0

1
2jþ 1

sin 2jþ 1ð Þdj
� � ð12Þ
By applying the weighting scheme in Eq. (12) to Eq. (10), we can
derive the formula for estimating the coefficients from the grid
point gravity anomalies on the ellipsoid as follows:

Cs
nm ¼ Dk

4pac
Xi max

i¼0

ri½ �Esin dið Þw dið Þ
Xk max

k¼0

Knmk

Sn�2k;jmj b=Eð Þ
Pi
n�2k;jmj
n� 1ð Þ

�
Xj max

j¼0

Dgij

� �E cos mk

sin jmjk

( )j

m

if m � 0

if m < 0

ð13Þ

Similar to the DH method, the GL quadrature method can also
be used to solve the orthogonality problem [50]. However, the grid
in the GL method is an irregular grid with equidistant sampling
along latitude parallels and variable sampling along meridians.
On the meridians, the grid points are the zero-crossing of Pnjmj. A
recent employment of the GL quadrature method was in the
numerical evaluation of geodetic convolution integrals by Hirt
et al. [51]. For more details, please refer to Refs. [50,51]. Consider-
ing that the data used for the gravity field determination are com-
monly provided in the equal angular grid, we prefer the DH
method in this paper.

Eq. (11) and Eq. (13) can be used to compute C
s
nm coefficients

using the grid area-mean and point gravity anomalies on the ellip-
soid, respectively. To our limited knowledge, the DH method has
not been employed in gravity field determination with gravity
anomalies on the ellipsoid surface; therefore, we think that the
derived formula Eq. (13) is new and helpful to readers. Note that
Rapp and Pavlis [33] also derived the counterpart of Eq. (11), which
is Eq. (20) in Ref. [33]. The basic principles of the derivation of
these two formulas are exactly the same. A more detailed deriva-
tion of Eq. (11) is shown in the Appendix A. However, we find that
1/(n � 1) in Eq. (11) is different from 1/(n � 2k � 1) in its counter-
part in Ref. [33]. From our derivation procedure above, it is very
clear that 1/(n � 1) or 1/(n � 2k � 1) is produced by the relation

between the coefficients gs
nm and C

s
nm (see Eq. (7)), which is only

related to the degree n.

2.1.2. Least-squares formulas of the EHA-CT method
Based on Eq. (3), the surface ellipsoidal harmonic expansion for

the grid area-mean and point gravity anomalies ri � Dgij

� �E
and

[ri�Dgij]E are shown as follows:

ri � Dgij
� �E ¼ a

Dri

P1
n¼0

Pn
m¼�n

ge
nmIY

ij
nm

ri � Dgij

� �E ¼ a
P1
n¼0

Pn
m¼�n

ge
nmY

ij
nm

ð14Þ

and

IYij
nm ¼ IPi

njmj �
IC

IS

� �j

m

if m�0
if m<0

; Dri ¼Dk cos di�cos diþ1ð Þ

Yij
nm ¼ Pn mj j cos dið Þ � cosmkj

sin mj jkj

� �
if m�0
if m<0

ð15Þ

According to Eq. (14), based on a standard Gauss–Markov
model, the functional and statistical models for estimating the

coefficients ge
nm from the observations ri � Dgij

� �E
or [ri�Dgij]E on

the reference ellipsoid are defined as follows:

y ¼ Axe þ e; D yf g ¼ r2
0Q ¼ r2

0P
�1 ð16Þ

where y is the vector of the observations ri � Dgij
� �E

or[ri�Dgij]E; A is
the design matrix, xe is the vector of ge

nm to be estimated, e is the
observation error vector; D{y} is the error variance–covariance
matrix; P and Q are the weight matrix and its inverse, respectively;
and r2

0 is the unit weight variance.
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Based on Eq. (16), the coefficients ge
nm can be estimated by the

least-squares technique. Then, according to the strategy in Eq.

(4), the estimated coefficients ge
nm are transformed to C

s
nm by Eqs.

(6) and (7). However, when solving Eq. (16) by the least-squares
method, the dimension of the normal matrix is extremely huge
for determining a high-resolution gravity field. Thus, the computa-
tional work volume is extremely large, for example, in the determi-
nation of the gravity field model up to degree 2160 with the
dimensions of the normal matrix of 4 669917�4669917. The
block-diagonal least-squares (BDLS) method can be used to reduce
the computational tasks [18,19]. If the gravity anomalies referring
to the ellipsoidal surface can satisfy the requirements for a block-
diagonal normal matrix [49], the normal matrix can be inversed by
the BDLS method [18]. The grid equal angular gravity anomalies on
the ellipsoidal surface can meet all the requirements except for the
requirements for data weights. The data weights should be longi-
tude independent and symmetric with respect to the equator
[49]. However, considering real data conditions, it is always hard
to meet such requirement for data weights. Therefore, some
approximation is always employed. Liang et al. [52] analyzed the
impact of the approximation of matrix P with unit matrix I, and
the approximation error was moderate. Therefore, in this study,
when forming the normal matrix, all the gravity anomalies have
equal weight.

Meanwhile, by combining Eqs. (6), (7), and (14), we obtain the
explicit relation between the grid area-mean and point gravity

anomalies on the ellipsoid and the coefficients C
s
nm as follows:

ri �Dgij
� �E
¼ GM
aDri

X1
n¼0

Xn
m¼�n

IYij
nmSnjmj b=Eð Þ

Xk�max

k¼0

knmk n�2k�1ð ÞCs
n�2k;m ri �Dgij

� �E
¼GM

a

X1
n¼0

Xn
m¼�n

Yij
nmSnjmj b=Eð Þ

Xk�max

k¼0

knmk n�2k�1ð ÞCs
n�2k;mw¼ n�jmj

2

� �
ð17Þ

Eq. (17) can be used to directly set up the observation equation

with respect to the coefficients C
s
nm, as in Eq. (16) and to simulate

the grid area-mean and point gravity anomalies on the reference
ellipsoid. Note that ellipsoidal corrections are required if the
EHA-CT method is used with raw terrestial gravity data.

The least-squares form of EHA-CT method was also employed in
the determination of EGM2008 [18]. Its calculation scheme is sum-
marized as follows:

rEi � DgE
ij ! Ce

nm ! Cs
nm ð18Þ

Comparing Eq. (4) and Eq. (18), the processing strategy in this
paper is different from the one in Ref. [18]. In Pavlis et al. [18],

the observation coefficients C
e
nm are at first determined, and then

C
e
nm are transformed to C

s
nm using Jekeli’s transformation. This data

processing strategy is also rigorous and the corresponding formu-
las in Ref. [18] used to determine EGM2008 are correct.

2.2. Combination of surface gravity anomalies and satellite gravity
observations

Different data sets, such as gravity anomalies, GOCE observa-
tions and GRACE observations, can be combined using the least-
squares method in recovering a gravity field model. In the least-
squares method, when each data set is assumed to be uncorrelated
with other data, the combined solution from multiple data sets is
given in the following equation:
bxs ¼ 1br2
0;1

AT
1P1A1 þ � � � þ 1br2

0;i

AT
i PiAi þ � � �

 !�1

� 1br2
0;1

AT
1P1li þ � � � þ 1br2

0;i

AT
i Pili þ � � �

 !

¼ 1br2
0;1

N1 þ � � � þ 1br2
0;i

Ni þ � � �
 !�1

� 1br2
0;1

U1 þ � � � þ 1br2
0;i

U1 þ � � �
 !

¼ bw0;1N1 þ � � � þ bw0;iNi þ � � �� 	�1

� bw0;1U1 þ � � � þ bw0;iU1 þ � � �� 	

ð19Þ

where Ai denotes the design matrices that establish the relationship
between the unknown coefficients and the i data set; Pi is the

weight matrix of the i data set; li is the observation vector; br2
0;i is

the initial variance component with respect to the i data set; Ni

and Ui are the normal matrix and vector with respect to the i data
set; and bw0;i denotes the relative weight of the i data set.

As the initial variance components br2
0;i are not accurate enough

for the combination of the NEQs, the variance components are esti-
mated iteratively by variance component estimation (VCE) method
[53]. In the VCE method, the variance component is determined by
the following [53]:

br2
kþ1;i ¼

vT
k;iPivk;i

rk;i
ð20Þ

where k denotes the k-th iteration; vk,i represents the residual vec-
tor; and rk,j represents the redundancy. For more details, please
refer to Ref. [53].

However, when using the VCE method on the NEQ level, on one
hand, the weight sums of the residuals are not always provided
when the NEQs are provided by others. On the other hand, if
stochastic models of noise with respect to the normal matrices
are different and not accurate enough, the classical VCE method
will cause nonoptimal results [54]. On the contrary, the weighting
scheme proposed in Ref. [55] is used here to estimate the variance
components. In this weighting scheme, the relative weights of the
NEQs are derived according to the noise of their corresponding
solutions. The weights are derived by VCE on the solution level
and then applied to the NEQs. The variance components and
weights are given by the following [55]:

bwkþ1;i ¼ 1br2
kþ1;i

; br2
kþ1;i ¼

vT
k;ivk;i

rk;i
with vk;i ¼ bxk � C i and rk;i

¼ Ncoef ;i
1� bwk;iPNsol

i¼1
bwk;i

 !
ð21Þ

where bxk is the combined solution in the k-th iteration; Ci is the
solution corresponding to the i NEQ; and Ncoef,j is the number of
coefficients in the i NEQ.

In this way, the relative weights of the different data sets are
estimated iteratively and the final combined solution is also deter-
mined in the iteration. In modeling the SGG-UGM-1 model in Liang
et al. [23], since both of the unknown parameters of the observa-
tion equations for surface gravity anomalies and satellite gravity
data are the spherical harmonic coefficients, the combination can
be easily done based on the least squares approach.

However, in this study, the ellipsoidal harmonic base functions
are employed when constructing the NEQ of surface gravity
anomalies based on Eq. (16). Therefore, the unknown parameters
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in the NEQs are the ellipsoidal coefficients ge
nm, while the

unknowns in the satellite NEQs are always the spherical harmonic

coefficients C
s
nm. Before combination, the unknown parameters

should first be unified. We can transform the satellite observation

equation with the spherical harmonic coefficients C
s
nm into the

equation with the ellipsoidal harmonic coefficients C
s
nm.

Similar to Eq. (16), the observation equation of the satellite data

for the spherical harmonic coefficients C
s
nm is written as follows:

ys ¼ Asbxs þ es ð22Þ

where the subscript ‘‘s” indicates the quantities with respect to the

satellite observations, and bxs is the vector of C
s
nm to be estimated.

The transformation between the coefficients ge
nm and C

s
nm is

expressed in matrix form as follows:bxs ¼ Tsebxe ð23Þ
where Tse is a matrix computed by Eqs. (6) and (7); and bxe is a vec-
tor of ge

nm.
Upon substituting Eq. (23) into Eq. (22), we obtain the

following:

ys ¼ AsT
sebxe þ es ¼ Aebxe ð24Þ

Under the least squares criterion, the NEQ is given by the
following:

Nebxe ¼ Ue

Ne ¼ AT
ePAe


 �
¼ Tseð ÞTAT

sPAsT
se


 �
¼ Tseð ÞTNsT

se

 �

Ue ¼ AT
ePys ¼ Tseð ÞTAT

sPys ¼ Tseð ÞTUs

ð25Þ

Eq. (25) provides the relation of the NEQs with different parame-
ters, thus we can transform the satellite observation equation with

the spherical harmonic coefficients C
s
nm into the equation with the

ellipsoidal harmonic coefficients ge
nm. Then, different NEQs can be

unified and combined. The combined estimated coefficients ge
nm

can finally also be converted to coefficients C
s
nm.

3. Evaluation of the derived formulas of the EHA-CT method

The main goal of this section is to evaluate the discrete integral
formulas and least-squares formulas of EHA-CT derived in Sec-
tion 2, and the discrete integral formula (Eq. (20)) in Rapp and
Pavlis [33] using numerical experiments. On one hand, we want
to ensure that the formulas used for the determination of SGG-
UGM-2 are correct. On the other hand, as shown in Section 2.1.1,
the two discrete integral formulas used for estimating the spherical
coefficnets with grid area mean gravity anomaly data on the ellip-
soid, Eq. (11) in the paper and Eq. (20) in Rapp and Pavlis [33], are
different in terms of the items 1/(n � 1) and 1/(n � 2k � 1), respec-
tively. It is interesting to validate these items. The numerical test is
based on a close-loop test. First, gravity anomaly data on the refer-

ence ellipsoid are simulated with an initial set of C
s
nm coefficients,

and then the formulas are used to recover the input coefficients.
The error of the estimated coefficients with respect to the input
coefficients reflects the accuracy of the formulas.

Based on Eq. (17), we simulate two different datasets of gravity
anomalies on the Geodetic Reference System 1980 (GRS80) reference
ellipsoid [56] using the EGM2008 up to degree 2190 and order 2159.
One dataset is the grid area-mean gravity anomalies, and another is
the point gravity anomalies. The spatial resolution is 20 �20.

First, we use Eq. (11) to recover the geopotential model (named
Model1) from the simulated 20 �20 grid area-mean gravity anoma-
lies. The degree error root mean square (RMS) of Model1 compared
to EGM2008 is shown in Fig. 1 in red. As analyzed in Section 2.1.1,
there are still discretization errors in Eq. (11), although the
smoothing factors qi

n�2k are employed. From the figure, the influ-
ences of the discretization errors in Eq. (11) on the coefficients of
Model1 run up to the magnitude of 10�11 (except when otherwise
specified, all the coefficient errors in this paper mean the absolute
error compared to the ‘‘true” input EGM2008 model coefficients)
for the area-mean gravity anomalies, which cannot be ignored if
we want to fully recover the input coefficients.

Then, Model2 and Model3 are calculated using Eq. (13) with DH
weights and Eq. (10) without DH weights, respectively from the
simulated 20 �20 grid point gravity anomalies. The degree error
RMS values of Model2 and Model3 are also shown in Fig. 1 in blue
and dark gray, respectively. According to Fig. 1, the degree error
RMS of Model2 is lower than the magnitude of 10�17 throughout
the whole frequency band (2–2160), the level of which can be con-
sidered as the effect of computer truncation error. The degree error
RMS of Model3 is very large and shows huge fluctuation in even
and odd degrees. The accuracy of Model2 is far higher than those
of the Model1 and Model3. Thus Eq. (13) is deemed to be accurate
enough to recover the input coefficients, which also demonstrates
the effect of the sampling weights used in it.

Moreover, with the simulated 20 �20 grid point gravity anoma-
lies, Model4 is estimated based on the least-squares method as
shown in Section 2.1.2. The coefficients ge

nm are first estimated by
the least-squares technique with the observation equation implied
by Eq. (14). The BDLS method and OpenMP [57] parallel computing
technique are used to deal with the huge computing task, consid-
ering the coefficients to be estimated (e.g. degree and order up to
2160 corresponding to 4669917 parameters). Then, the estimated

coefficients ge
nm are transformed to C

s
nm by Eqs. (6) and (7). The

degree error RMS of Model4 is also shown in Fig. 1 in magenta.
The coefficient errors of Model4 are also small enough to be
neglected, which shows that the least-squares formula of the
EHA-CT method in this paper have enough accuracy to be used
for gravity field determination. Meanwhile, compared to the inte-
gral method, the least squares method has advantages in its flexi-
bility in concerning data covariance and its flexibility in the
combination of different data types. Therefore, the least squares
method is used for estimating SGG-UGM-2. Note that we have
applied the methods used for Model3 and Model4 to the grid
area-mean gravity anomalies. The results are very similar to those
from grid point values.

Eq. (11) in this paper and Eq. (20) in Ref. [33] are both dis-
cretized formulas and differ in terms of two items 1/(n � 1) and
1/(n � 2k � 1). Therefore, both contain discretization error, which
causes difficulty in distinguishing whether the error is caused by
the formula differences or from discretization error. Therefore, it
is hard to evaluate Eq. (11) and its counterpart in Ref. [33] using
the equations themselves. However, as shown above, Eq. (13),
which is a similar formula to Eq. (11) used for point values, can

fully recover the coefficients C
s
nm from point gravity anomalies.

The equations share the 1/(n � 1). Analogously, if Eq. (20) in Rapp
and Pavlis [33] is correct, we can get its corresponding formula for

computing C
s
nm from point gravity anomalies by replacing the fac-

tor 1/(n � 1) in Eq. (13) with 1/(n � 2k � 1):

Cs
nm ¼ Dk

4pac
Xi max

i¼0

ri½ �Esin dið Þw dið Þ
Xk max

k¼0

Knmk

Sn�2k;jmj b=Eð Þ
Pi
n�2k;jmj

n� 2k� 1ð Þ

�
Xj max

j¼0

Dgij

� �E cosmk

sin jmjk

� �j

m

if m � 0
if m < 0

ð26Þ



Fig. 1. The degree error RMS of Model1 (red), Model2 (blue), Model3 (dark gray), Model4 (magenta), and Model5 (green) compared to EGM2008. (a) Degrees 2–2160;
(b) degrees 2–200. The degree error RMS of the EGM2008 model coefficients is also shown here as the dashed black line.
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Therefore, the errors caused by Eq. (26) reflect the influences of
the 1/(n � 2k � 1) item in Eq. (20) in Rapp and Pavlis [33]. This is
the ‘‘trick” that we use to validate the equation. Based on Eq. (26),
we recover a model up to degree and order 2160 (named Model5)
from the simulated 20 �20 grid point gravity anomalies. The degree
error RMS of Model5 is also shown in Fig. 1 in green. We can see
that the degree error RMS of the long wavelength part of Model5
is relatively large and reaches a magnitude of 10�9 around degree
5. The degree error RMS values greater than 10�11 are mainly
located at the low degrees (n < 50), which cannot be ignored. Thus
it is inferred that 1/(n � 2k � 1) in Eq. (20) in Ref. [33] is wrong
although it might be a typo.

To further analyze the formulas derived in this paper and Rapp
and Pavlis [33], the gravity anomalies and geoid errors on the ref-
erence ellipsoid of Model2 and Model5 are computed, and given in
Table 2. The spatial distributions of the model-derived geoid errors
of Model2 and Model5 are shown in Fig. 2. From Table 2, the RMS
values of the gravity anomalies and geoid errors of Model5 up to
degree and order 2160 are 0.18 mGal (1 mGal = 1 � 10�5 m�s�2)
and 11 cm, respectively, which are far larger than those of Model2.
For Model5, the maximum geoid error is 3.5 cm for the degree
range 100–2160 and 1.9 cm for the degree range 200–2160.
And, the maximum error of the gravity anomalies is 1.4 mGal for
the degree range 100–2160 and 1.2 mGal for the degree range
200–2160. According to Fig. 2, Model5 shows large and systematic
geoid errors, while the geoid errors of Model2 are far less than
those of Model5. These results reflect the error level caused by
the item 1/(n � 2k � 1) in Eq. (26).
Table 2
Statistics of the global gravity anomalies and geoid errors of Model2 and Model5 compare

Item Model Degree and order Minimum

Gravity anomaly (mGal) Model5 2160 �2.00
Model5 100–2160 �1.30
Model5 200–2160 �1.10
Model2 2160 �0.67 � 10�4

Geoid error (cm) Model5 2160 �23.00
Model5 100–2160 �3.5
Model5 200–2160 �1.90
Model2 2160 �0.21 � 10�4

STD: standard deviation.
4. Computation of the high-resolution gravity field model SGG-
UGM-2

In this paper, we combine altimetry data, satellite gravity data,
and surface gravity anomalies to compute the high-resolution
gravity field model SGG-UGM-2 up to degree and order 2160.
The data processing strategies of different observations (satellite
gravity, satellite altimetry data) will be discussed briefly in the fol-
lowing sections. Moreover, the strategy of combining the NEQs of
the satellite observations and gravity anomalies is given.

4.1. Forming the NEQs of GOCE and GRACE satellites

To construct the NEQ of the GOCE satellite, the released GOCE’s
EGG_NOM_2 and SST_PSO_2 products are used here [58]. The
EGG_NOM_2 product mainly includes gravity gradient tensor
(GGT) observations in gradiometer reference frame (GRF), the
attitude quaternions EGG_IAQ_2 used for the transformation from
inertial reference frame (IRF) to GRF, and the common-mode
accelerations EGG_CCD_2C. The SST_PSO_2 product includes the
kinematic orbits SST_PKI_2 (PKI orbits), the variance–covariance
information SST_PCV_2 of the precise PKI orbits, reduced-
dynamic orbits SST_PRD_2, and the quaternions SST_PRM_2 used
for the transformation from earth-fixed reference frame (EFRF) to
IRF. The data period of the EGG_NOM_2 products is approxi-
mately 2.5 years starting from 1st of November, 2009. The data
period of SST_PKI_2 product is approximately eight months start-
ing from 1st of November, 2009. The sampling interval of all kinds
d to EGM2008.

Maximum Mean STD RMS

1.20 0.00 0.18 0.18
1.40 �0.56 � 10�4 0.10 0.10
1.20 0.40 � 10�4 0.07 0.07
0.65 � 10�4 �0.38 � 10�10 0.54 � 10�5 0.54 � 10�5

24.00 �0.21 11.00 11.00
3.10 �0.00054 0.33 0.33
1.60 0.33 � 10�4 0.14 0.14
0.20 � 10�4 �0.18 � 10�8 0.17 � 10�5 0.17 � 10�5



Fig. 2. Spatial distribution of the model-derived geoid errors of (a) Model2 and (b) Model5 up to degree 2160.
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of observations is 1 s. We only used the diagonal components (Vxx,
Vyy, Vzz) with high accuracy of the GGT to form the satellite obser-
vation NEQ [24]. The maximum degrees of the recovered model
from satellite gravity gradient (SGG) and satellite-to-satellite in
high-low mode (SST-hl) data (PKI orbits) are 220 and 130,
respectively.

Based on the data described above, the key data processing
strategies in forming the NEQ of the GOCE satellite are as follows:

(1) All SGG and SST-hl data are preprocessed, such as the data
interpolation, outlier detection, coordinate system transformation,
and epoch unification.

(2) The NEQ of SGG is formed independently based on the direct
method [24]. A bandpass auto regressive moving-average (ARMA)
filter with the pass-band of 5–41mHz is applied to both sides of
the linear observation equation to deal with the colored noise in
SGG data [59]. The maximum frequency fmax = 41mHz of the
pass-band approximately corresponds to the maximum degree of
220 of the geopotential model based on the formula
fmax ¼ Nmax=Tr, where Tr = 5383 s is one satellite orbital revolution
[60].

(3) The NEQ of SST-hl is formed independently by the point-
wise acceleration approach, and the observation residuals are com-
puted [60–62]. The accelerations of satellite motion are derived
from the kinematic satellite positions based on the extended differ-
entiation filter (EDF5) technique with Dt = 5 s [62].

(4) The NEQs obtained from SGG observations and SST-hl obser-
vations are combined according to their variance components. For
more details about the weighting strategies, please refer to Xu et al.
[24].

This is a brief description of forming the NEQ of the GOCE satel-
lite. The constructed GOCE NEQ is also the basis for determining
the GOCE-only model GOSG01S and the high resolution gravity
field model SGG-UGM-1. For more detailed description of the data
processing in recovering this GOCE-only satellite gravity model,
please refer to Xu et al. [24].

As mentioned in the introduction, the NEQ of ITSG-Grace2018
[48] is used as the NEQ of the static gravity field from GRACE in
SGG-UGM-2, and the GRACE satellite observations are not used
or processed here. The NEQ of ITSG-Grace2018 in SINEX [63] for-
mat is converted to the format defined in our software; thus, we
can use it directly in the computation.

4.2. Global marine gravity anomaly recovery

For recovering global marine gravity anomalies, multi-satellite
altimeter datasets including Geosat, ERS-1, Envisat, T/P, Jason-1,
CryoSat-2 and SARAL/AltiKa are collected and used [45]. The used
satellite altimetry data sets and corresponding record numbers
during the preprocessing procedure are collected in Table 3. The
specific cycle number and time span are not investigated in con-
structing the global marine gravity model. It is well known that
the geoid heights and vertical deflections derived from satellite
altimeter measurements provide major input information to calcu-
late marine gravity anomalies. In addition, the process of calculat-
ing the vertical deflection from sea surface heights can effectively
restrain the radial orbit error and other long-wavelength correc-
tions. The numerical-analytical method leads to reasonable
skipping of the complicated crossover adjustment procedure, and
yields a reliable accuracy according to previous numerical tests
using the same altimeter measurements [64].

Consequently, we first obtained the information on the vertical
deflection from multi-satellite altimeter datasets through a series
of joint processing procedures and recovered the desired marine
gravity anomalies by the numerical-analytical method [45]. First,



Table 3
Data used in the computation of 10 �10 resolution marine gravity data.

Mission description After resampling
(ascending/descending)

After gross-error editing
(ascending/descending)

After low-pass filtering
(ascending/descending)

Along-track residual VD
(ascending/descending)

Geosat-GM 62819391/63328036 61158174/61889402 61069909/61807025 61025777/61765837
Geosat-ERM 2404326/2418309 2390665/2406238 2387598/2403207 2386065/2401692
ERS-GM 55654802/56 323982 54255269/55014497 54165210/54 925262 54120181/54880645
ERS-ERM 4728108/4728373 4680453/4682242 4671750/4673743 4667399/4669494
Envisat 229720618/230647516 227586522/228680076 227293315/228396751 227146712/228255089
Envisat/polar area 70359224/71732669 59303673/60705562 57375164/58757415 57053746/58432724
T/P 1372867/1373185 1371131/1371625 1369700/1 370190 1368985/1369473
T/P Tandem 11927519/11863815 11690389/11613755 11667990/11 591002 11656791/11579626
Jason-1/ERM 464419254/463010102 459720807/458130967 459226978/457626358 458980064/457374054
Jason-1/GM 52047065/52028393 51485270/51453120 51429721/51395863 51401947/51367235
CS-2/LRM 121216038/122398382 120083477/121266866 119952604/121136843 119887168/121071832
CS-2/SAR 23455721/23624139 21963011/22138340 21774880/21 953709 21680815/21861394
CS2/SAR polar area 33271404/33 234174 29824044/29945322 29023875/29166689 28923854/29069360
CS-2/SIN 3658431/3659248 3427824/3439159 3369567/3380112 3340439/3350589
CS-2/SIN polar area 4552232/4568268 3479946/3527868 3139065/3188187 3096455/3145727
SARAL/AltiKa 39385710/39 579450 38722079/38996656 38642108/38 920451 38602123/38882349
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the raw waveforms from different altimeter missions were fitted
and corrected using a two-pass waveform retracker [45] and
resampled along profiles to a reasonable rate, aiming at enhancing
both the accuracy and density of the available measurements. Sec-
ond, the obtained measurements were transformed to sea surface
heights using correction items provided in the standard products
to constrain the corresponding effects of both path delay and the
geophysical environment. Afterward, the along-track sea surface
height gradients were calculated, while the along-track gradients
of the EGM2008 were also interpolated for preliminary verification
to detect outliers. Considering that the high frequency noise
was amplified during the difference procedure, we used Parks–
McClellan low-pass filters to obtain along-track filtered sea surface
height gradients data. Then, the DOT2008A and EGM2008 models
were selected respectively to interpolate and subtract from
along-track observations to remove the effects of the sea surface
topography and geoid height. The along-track residual vertical
deflections were computed according to the velocity formulas of
ground tracks. The relationship between the along-track residual
vertical deflections and the two-dimensional components of resid-
ual deflections can be established as equations at each grid point.

Based on the above procedures, the directional components of
the residual vertical deflection at gridding points were calculated.
Then, the residual gravity anomalies were calculated according to
the relationship formula between the gravity anomalies and verti-
Table 4
Validation information using NGDC shipboard gravity data over typical areas.

Situation Bathymetry (m) Description M

Shallow water < 100 New result vs ship-measured �
EGM2008 vs ship-measured �
DTU10 vs ship-measured �
DTU13 vs ship-measured �
V23.1 vs ship-measured �

Non-shallow water > 100 New result vs ship-measured �
EGM2008 vs ship-measured �
DTU10 vs ship-measured �
DTU13 vs ship-measured �
V23.1 vs ship-measured �

Open sea >3000 New result vs ship-measured �
EGM2008 vs ship-measured �
DTU10 vs ship-measured �
DTU13 vs ship-measured �
V23.1 vs ship-measured �
cal deflections. At last, a 10 �10 resolution marine gravity anomaly
dataset was then computed after restoring the reference model.
We compared this dataset with DTU10, DTU13, and SS V23.1 using
three kinds of ship-measured data provided by the National Geo-
physical Data Center (NGDC) in Table 4 for three situations, which
represent a shallow water area, non-shallow water area, and open
sea, respectively. The results showed that our marine gravity
anomaly dataset has a higher accuracy over non-shallow water
area and open ocean areas compared to recently published models
such as DTU10, DTU13, and SS V23.1, although the significant dif-
ference is quite close.

4.3. Combination of the NEQs of GOCE and GRACE satellite
observations and surface gravity anomalies

Since satellite and surface gravity anomaly data have different
spectral sensitivities to gravity field, the method by which to prop-
erly make use of the gravity signal implied from satellite observa-
tions and surface gravity anomalies is very important for obtaining
an optimal high-resolution gravity field model. In this study, we
assume that the three kinds of observations, GRACE observations,
GOCE observations, and surface gravity anomalies, are uncorre-
lated. Therefore, these observations can be easily combined on
the NEQ level. We use the NEQ system of the ITSG-Grace2018
[48] model provided by the authors instead of processing the
inimum (mGal) Maximum (mGal) Mean (mGal) RMS (mGal)

39.969 47.336 1.432 7.678
19.997 19.977 1.662 7.108
23.881 21.706 1.651 7.211
26.673 28.141 1.870 7.279
35.391 58.192 1.293 7.696

40.078 71.381 �0.226 5.866
19.999 19.999 0.002 6.181
26.886 27.643 0.014 6.143
31.972 33.281 �0.005 5.823
42.594 83.899 �0.241 5.940

32.055 25.172 0.240 5.445
19.995 19.999 0.445 5.642
23.676 22.073 0.466 5.596
28.444 25.258 0.390 5.534
32.303 25.201 0.262 5.432
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original GRACE observations. The combination method follows the
degree-dependent NEQ combination technique that was used for
the computation of EGM96 [26] and the EIGEN-series high-
resolution model [19]. The strategy of combining the NEQs of satel-
lite gravity data and the gravity anomalies is shown in Fig. 3.

The maximum degrees of the NEQs of GRACE satellite, GOCE
satellite, and surface gravity anomaly data are 200, 220, and
2159, respectively. As we have gravity anomalies on the ellipsoid,
the block-diagonal form can be achieved according to the required
rules [49], which is helpful for reducing the computation scale. As
it is hard to directly combine the full satellite NEQs and the block-
diagonal ones from gravity anomalies, the combination of the NEQs
is divided into two parts as shown in Fig. 3, namely, the low-degree
part and the high-degree part. On one hand, in the high-degree
part the coefficients ge

nm of 251–2159 degrees are estimated by
solving the block-diagonal form NEQs only from the surface gravity
anomalies (including the marine gravity data derived by satellite
altimetry). On the other hand, in the low-degree part, the coeffi-
cients ge

nm of 2–250 degrees are determined by combining the NEQs
of satellite observations and surface gravity anomalies. Degree 250
is called the ‘‘transition degree” here. The premise of such separa-
tion is that the two parts of the coefficients are uncorrelated; how-
ever, this is not true. In reality, incorporation via the satellite NEQ
should not only change the coefficients in low degrees but also
those in high degrees. This simplification will lead to some
approximation. An appropriate selection of the ‘‘transition degree”
should be well considered when combining the NEQs. On the
positive side if this degree is larger, more coefficients are estimated
with the combination of satellite observations and gravity anoma-
lies. On the other side, when the degree is increased, the dimension
of the combined normal matrix in the low-degree part will become
larger, which can result in a much greater computational task. Con-
sidering the balance between the computational task and accuracy
requirement, the ‘‘transition degree” is set as 250 in this paper.
This can also help obtain a smooth transition from the full com-
bined to the block-diagonal solution.

Considering that satellite observations are more sensitive to the
long wavelength part of the gravity field compared to surface grav-
ity anomalies, the signals of gravity anomalies corresponding to
coefficients of less than degree 101 are removed. We select this
special degree according to the geoid degree errors of the satellite
solutions (ITSG-Grace2018 and GOSG01S) and gravity anomaly
solution (EGM2008). As shown in Fig. 4, the geoid errors of
EGM2008 reach maximum values around degree 100, while after
Fig. 3. The schematic diagram of combining the NEQs of GRACE satellite, GOCE
satellite, and surface gravity anomalies.
degree 100 the errors decrease. Because our surface gravity
anomalies on land are derived from EGM2008, it is reasonable to
select the special degree band based on the performance of
EGM2008. In addition, the residual gravity anomalies are used to
form the NEQ of the coefficients of 101–250 degrees, which is com-
bined with the NEQs of the GOCE and GRACE satellite observations.

4.4. Computation of the SGG-UGM-2 model

The scheme of determining the SGG-UGM-2 is shown in Fig. 5.
The detailed steps and data processing strategies of modeling SGG-
UGM-2 are as follows:

(1) Using the processing strategy described in Section 4.1, the
NEQ of the GOCE satellite from SGG and SST-hl observations with

respect to coefficients C
s
nm up to degree and order 220 is con-

structed. Meanwhile, a GOCE-only model named GOSG01S is
achieved after solving this NEQ. The NEQ of ITSG-Grace2018 from
the authors is converted to the format defined in our software.

(2) The parameters of these two satellite NEQs are the spherical

harmonic coefficients C
s
nm. As we intend to unify the NEQs for easy

combination, the NEQs are transformed into NEQs with parameters
of ellipsoidal harmonic coefficients ge

nm using the transformation
matrix shown in Section 2.2.

(3) Based on the method discussed in detail in Section 4.2, we
estimate the 50 �50 marine grid gravity anomalies on the GRS80
reference ellipsoid using satellite altimetry data.

(4) The 50 �50 continental grid point gravity anomalies are com-
puted from the EGM2008 on the reference ellipsoid using Eq. (27).
The parameters GM and a for determining SGG-UGM-2 are
3.986004415 � 1014m3�s�2 and 6 378 136.3 m, respectively, which
are same as those in the satellite NEQs. A global set of the gravity
anomaly data set DgF is formed by the combination of the recov-
ered marine gravity anomalies in the previous step and
EGM2008-derived gravity anomalies on land areas. Not only in this
step but also throughout the whole study, the numerical problem
of computing high degree and order normalized associated
Legendre functions is solved using the method proposed by [65].
DgF ¼ GM
r2

X2190
n¼2

n� 1ð Þ a=rð Þn

�
Xn
m¼0

Cnmcos mkð Þ þ Snmsin mkð Þ
h i

Pnm d; kð Þ ð27Þ
Fig. 4. Geoid degree errors of the EGM2008, GOSG01S, and ITSG-Grace2018 models.



Fig. 5. The scheme of computing the SGG-UGM-2 model.
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(5) With the constructed global gravity anomalies DgF, the NEQ
with parameters of the ge

nm coefficients of 2–2159 degrees is
formed in block-diagonal form. The BDLS method and the OpenMP
parallel computing technique are employed here. Meanwhile, a set
of ge

nm coefficients of 2–2159 degrees is computed by solving this
NEQ. To fulfill the requirement of the BDLS method, the unit matrix
is selected as the weight matrix and the variance component
applied to the NEQ is set as (5 mGal)2, which is approximately
derived from the accumulated gravity anomaly error of EGM2008
up to degree 2190.

(6) The residual gravity anomalies DgR on the ellipsoid are
computed based on the recovered coefficients ge

nm in step (5) with
Eq. (28); thus, DgR only contain the signals of coefficients from
degree 101 to 250. Afterwards, the block-diagonal form NEQ is
constructed using DgR as follows:

DgR ¼ DgF � a
r

X100
n¼2

Xn
m¼�n

ge
nmYnm d; kð Þ � a

r

X2190
n¼251

�
Xn
m¼0

ge
nmYnm d; kð Þ ð28Þ
(7) The satellite NEQs with ge
nm as the parameters in step (2) and

the NEQ formed in step (6) are accumulated to get the combined
NEQ system up to degree 250. All the relative weights among the
NEQs are set to 1.0 originally. Then, the ellipsoidal harmonic coef-
ficients ge

nm of degrees 2–250 are estimated based on the strict
least-squares method from the combined NEQ.

(8) After getting the combined solution in the low-degree part,
the relative weight between the NEQs are updated using the VCE
method at the solution level as shown in Section 2.2. Afterwards,
the step (7) and step (8) are carried out using the updated weights
until they converge. In this study, we only need four iterations, and
the weights of the NEQs of surface gravity anomaly data, GOCE, and
GRACE converge to 1.0, 1.9, and 1.3, respectively.

(9) Then, the final set of ellipsoidal harmonic coefficients ge
nm in

the degrees 2–250 is obtained in the iteration process and the
remaining part, the coefficients in the degree range 251–2159
are those estimated in step (5).

(10) The ellipsoidal harmonic coefficients ge
nm of 2–2159 degree

determined in step (9) are transformed into the spherical harmonic

coefficients C
s
nm of the degree 2–2190 and order 0–2159 by Eqs. (6)

and (7). Finally, after adding the normal potential coefficients of



Fig. 7. Spectra of the absolute value of the coefficient differences (represented by
common logarithm lg x) between the three models (a) SGG-UGM-2, (b) EIGEN-6C4,
and (c) GECO and EGM2008.
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GRS80 ellipsoid, the high resolution gravity field model SGG-UGM-
2 is obtained.

5. Accuracy analysis of the SGG-UGM-2 model

5.1. Comparison with EGM2008 in the frequency and spatial domains

To analyze the accuracy of the SGG-UGM-2 model, we compute
the degree RMS of the coefficient differences between our model
and EGM2008, which are shown in Fig. 6 in red. The degree RMSs
of the coefficient differences between the other two high-
resolution models (EIGEN-6C4 and GECO) and EGM2008 are also
shown in Fig. 6. We also plot the spectra of the coefficient differ-
ences between the three models (SGG-UGM-2, EIGEN-6C4, and
GECO) and EGM2008 in Fig. 7. According to Fig. 6 and Fig. 7, the
three models are very close to each other below degree 160, espe-
cially SGG-UGM-2 and EIGEN-6C4, because all of them contain
GOCE data. The signal differences of all three models begin to
diverge from each other above degree 160, which is caused by
the different surface gravity datasets and the different combination
methods used in their modeling. We use the newly derived marine
gravity anomalies, while GECO only uses the EGM2008-derived
marine gravity anomalies and the gravity anomalies used for
EIGEN-6C4 are very close to those used for EGM2008. This also
results in the model coefficients of EIGEN-6C4 and GECO after
degree 360 being more close to those of EGM2008 than those of
SGG-UGM-2. Moreover, the coefficients of the GECO model are
exactly same as those of EGM2008 after degree 360.

The differences of the model-derived gravity anomalies
between SGG-UGM-2 and EGM2008 are computed and shown in
Fig. 8. Similarly, the differences between SGG-UGM-2 and EIGEN-
6C4 are also shown in Fig. 8. According to Fig. 8, the large differ-
ences between SGG-UGM-2 and EGM2008 are located at areas
where there are no gravity data or only sparse gravity data used
for compiling EGM2008, such as the Tibetan Plateau, South
America, central Africa, and Antarctica. This indicates the contribu-
tion of the GOCE data to the SGG-UGM-2 and EIGEN-6C4 models.
Moreover, there are also large differences around coast lines, which
might reflect differences in the marine gravity anomaly data used
between SGG-UGM-2 and EGM2008. The differences around coast
lines between SGG-UGM-2 and EIGEN-6C4 have similar character-
istics, because the marine gravity anomalies used for modeling
EIGEN-6C4 are very close to EGM2008-derived gravity anomalies.
Fig. 6. The degree RMS of the coefficient differences between the three models
(SGG-UGM-2, EIGEN-6C4, and GECO) and EGM2008.
5.2. Validation using global positioning system/Leveling data in the
United States and the mainland of China

For analyzing the accuracy of the SGG-UGM-2 model, we first
use 649 global positioning system (GPS)/Leveling points in the
mainland of China [66] and 6169 GPS/leveling points in the United
States [67] to validate the gravity field models. GPS/leveling data in
the mainland of China refer to quasi-geoidal heights, while GPS/
leveling data in the United States refer to geoidal heights. There-
fore, in the validation we use the models to compute the geoidal
heights in the United States and the quasi-geoidal heights in China
on the GPS/leveling points. Note that the GPS/leveling data in both
China and the United States as well as the gravity field models to
be validated use the tide-free system [67–69]. He et al. [69]
showed that there is about a 70 cm tilt in the west–east direction
in GPS/levelling datasets in the United States [69], while the west–
east tilt of the data in the mainland of China is approximately 9 cm.
The statistical results of the full differences between the quasi-
geoidal/geoidal heights of the SGG-UGM-2 model and the GPS/
leveling data in the United States and the mainland of China are
given in Table 5 and Table 6. Note that the differences in Table 5
and Table 6 refer to full differences without removing any deter-
ministic model. To compare these results with recently released
high-resolution models, the validation results of EGM2008,
EIGEN-6C4, SGG-UGM-1, and GECO are also given in the tables.
Moreover, to validate these models, histograms of the differences
with respect to the GPS/leveling data sets in the United States
and the mainland of China are shown in Fig. 9 and Fig. 10.



Table 5
Statistical results of comparison with GPS/leveling data in the United States (6169 points) (unit: m).

Model Maximum Minimum Mean STD RMS

EGM2008 0.360 �1.396 �0.511 0.284 0.584
EIGEN-6C4 0.397 �1.392 �0.512 0.282 0.585
SGG-UGM-1 0.317 �1.407 �0.511 0.280 0.583
SGG-UGM-2 0.386 �1.394 �0.511 0.277 0.578
GECO 0.313 �1.391 �0.513 0.281 0.585

Fig. 8. Spatial distribution of the model-derived gravity anomaly differences between SGG-UGM-2 and other models (a) EGM2008 and (b) EIGEN-6C4.

Table 6
Statistical results of comparison with GPS/leveling data in the mainland of China (649 points) (unit: m).

Model Maximum Minimum Mean STD RMS

EGM2008 1.729 �1.535 0.239 0.240 0.339
EIGEN-6C4 0.729 �0.698 0.243 0.157 0.289
SGG-UGM-1 0.744 �0.618 0.246 0.162 0.294
SGG-UGM-2 0.744 �0.603 0.246 0.161 0.292
GECO 1.165 �0.847 0.244 0.180 0.303
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According to Table 5, Table 6, Fig. 9, and Fig. 10, in the United
States, the accuracies of EGM2008, EIGEN-6C4, SGG-UGM-1, SGG-
UGM-2, and GECO are very close to each other as suggested by
the error STDs, and the error STDs of the models differ by less than
7 mm. The histograms corresponding to these models are very sim-
ilar to each other, although the dispersion degree of the difference
distribution is slightly high, which might indicate that the GPS/
leveling data in the United States have different quality levels in
different regions. SGG-UGM-2 has the best performance and
EGM2008 has the worst performance as suggested by their STDs,
which are 0.277 and 0.284 m, respectively. However, in the main-
land of China, the models behave inversely, and the error STDs of
the models range from 0.157 to 0.240 m. The models (SGG-UGM-1,
SGG-UGM-2, GECO, and EIGEN-6C4) including GOCE data have very
similar accuracies, and EIGEN-6C4 performs the best with the error
STD of 0.157 m. However, EGM2008 also behaves the worst in the
mainland of China with the error STD of 0.240 m. Moreover, its
difference relative to the best model is much bigger than the differ-
ence relative to the best model in the United States. The histograms
corresponding to these models including GOCE data are also very



Fig. 9. The histograms of the differences with respect to the GPS/leveling data sets in the United States for (a) EGM2008, (b) EIGEN-6C4, (c) SGG-UGM-1, (d) SGG-UGM-2, and
(e) GECO.

W. Liang et al. / Engineering 6 (2020) 860–878 873
similar to each other, as in the case of in the United States.
Meanwhile, the dispersion degree of the difference distribution
of EGM2008 is the highest, and the histogram shows obvious dif-
ferences relative to other models. This may be caused by only
low accuracy gravity data or no data in the mainland of China
being available to EGM2008 developers. The other models over-
come this problem by including GOCE data, which improves the
accuracy of long wavelength signals in the mainland of China;
therefore, their performances over China are better than that of
EGM2008. In addition, both SGG-UGM-1 and SGG-UGM-2 have
promising accuracies in the United States and the mainland of
China, and can be regarded as improvements over EGM2008
because of combining GOCE and GRACE satellite observations
and satellite altimetry data. However, due to the contribution of
the new GRACE NEQ system and the new marine gravity anoma-
lies, SGG-UGM-2 has a better performance than its predecessor
SGG-UGM-1 in both the mainland of China and the United States.
Because EIGEN-6C4 and SGG-UGM-2 share similar combination
methods and input data, their performances in both the mainland
of China and the United States are similar. EIGEN-6C4 uses more
satellite gravity data (e.g., LAGEOS) than SGG-UGM-2. The relative
weights of the surface gravity data and satellite data are
determined with the modified VCE method in SGG-UGM-2, while
they are empirically determined by the model validation result in
EIGEN-6C4 [12,19].

Moreover, the models are validated through the variogram
analysis of the differences with respect to the GPS/leveling data
sets. Each variogram represents the variance of the differences
between the model and the GPS control data set for pairs of points
as a function of the lag distance. The computational method of the
empirical variograms refers to Ref. [70]. The empirical variograms
for the models in the mainland of China and the United States are
shown in Fig. 11. Following Refs. [71,72], the term ‘‘gammavari-
ance” representing the variance of the differences at a given lag
distance is used here. The empirical variograms of EGM2008 and
GECO show obvious differences from those of other three models
in the mainland of China. EGM2008 has the higher gammavariance
in both areas, while SGG-UGM-1, SGG-UGM-2, and EIGEN-6C4
have similar gammavariances in both areas. In both the mainland
of China and the United States, the EIGEN-6C4 model has almost
the lowest gammavariance, especially in cases of long distances,
which indicates that long wave-length signal of EIGEN-6C4 per-
forms the best.

5.3. Validation using GPS/leveling data in Qingdao and Taiwan

To validate the accuracy of SGG-UGM-2 in coastal regions and
islands, we compare the model-derived quasi-geoidal/geoidal
heights with GPS/leveling data in two coastal areas in China, Qing-
dao and Taiwan. The GPS/leveling data in Qingdao and Taiwan con-
tain 152 points and 88 points, respectively. The statistical results of
the full differences between the quasi-geoidal/geoidal heights of
the SGG-UGM-2 model and the GPS/leveling data in Qingdao and
Taiwan are shown in Table 7 and Table 8. Meanwhile, the his-
tograms of the differences with respect to the GPS/leveling data
sets in Qingdao and Taiwan are shown in Fig. 12 and Fig. 13. The
empirical variograms for all the models in Qingdao and Taiwan
are shown in Fig. 14, which represents the variance of the differ-
ences between the model and the GPS control data set for pairs
of points as a function of the lag distance in Qingdao and Taiwan.
As the height reference frames in Qingdao and Taiwan are the nor-
mal height and orthometric height respectively, the model-derived



Fig. 10. The histograms of the differences with respect to the GPS/leveling data sets in the mainland of China for (a) EGM2008, (b) EIGEN-6C4, (c) SGG-UGM-1, (d) SGG-UGM-
2, and (e) GECO.

Fig. 11. The empirical variograms of the differences with respect to the GPS/leveling data sets in (a) the mainland of China and (b) United States for EGM2008, EIGEN-6C4,
GECO, SGG-UGM-1, and SGG-UGM-2.
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heights in Qingdao and Taiwan are quasi-geoidal heights and geoi-
dal heights, respectively.

According to Table 7 and Table 8, the error STD of SGG-UGM-2
is smaller than that of SGG-UGM-1 in Qingdao, but bigger than that
of SGG-UGM-1 in Taiwan. On one hand, the statistics of the differ-
ences in Qingdao indicates that the newly included marine gravity
anomaly data improved the high-resolution model in the coastal
regions and islands. On the other hand, this is not true in Taiwan.



Table 7
Statistical results of comparison with GPS/leveling data in Qingdao (152 points) (unit: m).

Model Maximum Minimum Mean STD RMS

EGM2008 0.510 �0.090 0.196 0.100 0.220
EIGEN-6C4 0.373 �0.054 0.179 0.089 0.200
SGG-UGM-1 0.362 �0.075 0.168 0.102 0.197
SGG-UGM-2 0.415 �0.067 0.180 0.093 0.205
GECO 0.411 �0.137 0.174 0.116 0.209

Table 8
Statistical results of comparison with GPS/leveling data in Taiwan (88 points) (unit: m).

Model Maximum Minimum Mean STD RMS

EGM2008 0.918 0.437 0.676 0.086 0.681
EIGEN-6C4 0.715 0.267 0.557 0.091 0.564
SGG-UGM-1 0.720 0.248 0.569 0.091 0.576
SGG-UGM-2 0.733 0.272 0.563 0.096 0.540
GECO 0.729 0.204 0.564 0.106 0.574

Fig. 12. The histograms of the differences with respect to the GPS/leveling data sets in Qingdao for (a) EGM2008, (b) EIGEN-6C4, (c) SGG-UGM-1, (d) SGG-UGM-2, and
(e) GECO.
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The reason for this situation might be that surface gravity data
with very good quality in Taiwan has been used for modeling
EGM2008. Therefore, the newly included satellite data and marine
gravity data in SGG-UGM-2 do not improve its accuracy in Taiwan.
The same situation happened for SGG-UGM-1, EIGEN-6C4, and
GECO. The error STDs of these models in Taiwan are also larger
than those of EGM2008. In Qingdao, the histograms corresponding
to all the models show very similar patterns, which is consistent
with the statistical results in Table 7. However, in Taiwan, the his-
tograms corresponding to all the models show obvious differences,
which should be caused by the complex topography in Taiwan and
its surroundings. According to Fig. 14, EGM2008 has the best per-
formance at all distances, as indicated by the results shown in
Table 7 and Table 8, especially at distances from 80 to 140 km in
Qingdao, which approximately correspond to the degrees from
140 to 250. This frequency band can be greatly contributed by sur-
face gravity anomalies, which has been proven by the situation in
which GOCE-related models show no obvious improvement at
areas with well covered surface gravity data, such as oceanic areas
and the United States.
6. Conclusions

In this paper, we introduce the EHA-CT method and give its
implementation strategies. The related formulas in the



Fig. 13. The histograms of the differences with respect to the GPS/leveling data sets in Taiwan for (a) EGM2008, (b) EIGEN-6C4, (c) SGG-UGM-1, (d) SGG-UGM-2, and
(e) GECO.

Fig. 14. The empirical variograms of the differences with respect to the GPS/leveling data sets in (a) Qingdao and (b) Taiwan for EGM2008, EIGEN-6C4, GECO, SGG-UGM-1,
and SGG-UGM-2.
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implementation strategies for computing the spherical harmonic
coefficients from the grid area-mean and point gravity anomalies
on the ellipsoid are derived. The DH weighting and sampling the-
ory [36] is introduced for the ellipsoidal harmonic analysis. A
review of the implementation of the EHA-CT method in Rapp and
Pavlis [33] shows that the formula Eq. (20) in Ref. [33] contains a
wrong item, which might be a typo. The simulation experimental
results show that the formula Eq. (20) in Ref. [33] causes large
errors in the long wavelength part of the gravity field model, while
the corresponding formula derived in the paper is rigorous.

Moreover, based on the derived least-squares formulas of the
EHA-CT method, we develop a new 50 �50 spatial resolution gravity
field model SGG-UGM-2 up to degree 2190 and order 2159 by
combining GOCE SGG and SST-hl observations, the ITSG-
Grace2018 NEQ system, marine gravity anomalies recovered from
satellite altimetry data, and EGM2008-derived continental gravity
data. The new SGG-UGM-2 model has a promising performance in
the GPS/leveling validation and error analysis compared to
EGM2008 in the frequency and spatial domains. The GPS/leveling
data in China and the United States are used to validate the model
SGG-UGM-2, together with EIGEN-6C4, SGG-UGM-1, GECO, and
EGM2008. SGG-UGM-2 shows the best performance in the United
States, as indicated by the statistics of the differences between
model-derived quasi-geoidal/geoidal heights and GPS/leveling
data, and their histograms and empirical variograms. Due to the
contribution of the new GRACE NEQ and the new marine gravity
anomalies, SGG-UGM-2 has a slightly better performance than that
of its predecessor SGG-UGM-1 in both the mainland of China, the
United States, and the coastal city Qingdao of China. This indicates
that the methods used for developing SGG-UGM-2 are valid and
can be used for developing future SGG-UGM series with available
independent terrestrial gravity datasets (e.g. the mainland of
China). In addition, the accuracy of the new model SGG-UGM-2
indicates that this model will provide an alternative for users.
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