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Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and
limited airspace capacity. As air traffic is associated with complex air transport systems, delays can be
magnified and propagated throughout these systems, resulting in the emergent behavior known as delay
propagation. An understanding of delay propagation dynamics is pertinent to modern air traffic manage-
ment. In this work, we present a complex network perspective of delay propagation dynamics.
Specifically, we model air traffic scenarios using spatial–temporal networks with airports as the nodes.
To establish the dynamic edges between the nodes, we develop a delay propagation method and apply
it to a given set of air traffic schedules. Based on the constructed spatial-temporal networks, we suggest
three metrics—magnitude, severity, and speed—to gauge delay propagation dynamics. To validate the
effectiveness of the proposed method, we carry out case studies on domestic flights in the
Southeastern Asia region (SAR) and the United States. Experiments demonstrate that the propagation
magnitude in terms of the number of flights affected by delay propagation and the amount of propagated
delays for the US traffic are respectively five and ten times those of the SAR. Experiments further reveal
that the propagation speed for US traffic is eight times faster than that of the SAR. The delay propagation
dynamics reveal that about six hub airports in the SAR have significant propagated delays, while the sit-
uation in the United States is considerably worse, with a corresponding number of around 16. This work
provides a potent tool for tracing the evolution of air traffic delays.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction results in economic losses [6,7]. Furthermore, air traffic delay
Air transport is pivotal to modern traffic, as it facilitates our
lives. Characterized by its high level of safety and fast speed, air
transport is prioritized by travelers, resulting in the phenomenal
growth of air traffic demands [1,2]. Air transport is associated with
air transport systems, which encompass manifold components
interacting with one another, usually in a nonlinear fashion [3,4].
The complex dynamics of air transport systems, together with a
variety of uncertainties such as inclement weather, airspace
restriction, mechanical failures, and so forth, result in intractable
air traffic delays [5] which can be extremely difficult for air traffic
controllers to deal with. This situation could worsen in the coming
decade, as air traffic demands are envisaged to increase.

Air traffic delay is one of the most challenging tasks being
addressed by modern air traffic management (ATM). It not only
harms entities such as passengers, airlines, and airports, but also
increases the pollution load on the natural environment [8,9]. It
should be pointed out that air traffic delay is bound to happen,
due to a wide range of factors [5,10]. Many efforts have been made
in the past several decades to probe the reasons for delays and
their internal causalities [11,12]. After building a comprehensive
understanding of the relationships among the causal factors and
various components of air traffic delays, scientists have spared
no efforts in seeking remedies to mitigate them [13–15]. Represen-
tative initiatives include Air Traffic Flow Management (ATFM)
[16,17], Ground Delay Programs (GDPs) [18,19], and Collaborative
Decision-Making (CDM) [20–22]. All these procedures have proven
to be valuable in reducing air traffic delays.

While tremendous collaborative efforts are still needed in the
research on air traffic delay mitigation, a very fundamental yet
challenging task pertaining to modern ATM is delay prediction
[23,24]. Prediction of flight delays is significant to those working
in aviation, especially during their decision-making process
[25,26]. Thus far, researchers have developed many delay predic-
tion methods. In particular, the data sciences represented by
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machine learning techniques are gaining notable momentum in
delay prediction [27–30]. A comprehensive literature survey on
delay prediction can be found in Ref. [26]. Despite the abundance
of methods for delay prediction, it is cumbersome to develop mod-
els or methods that can predict precisely, given the vast amount of
flight operation data available and the high complexity of air trans-
port systems [26].

In reality, airlines construct flight schedules with the intent of
maximizing passenger movements. As a result, an aircraft normally
operates a number of flight ‘‘legs” or ‘‘hops” (where a leg or hop
refers to a flight between two airports that is part of the aircraft’s
itinerary). Consequently, the delay of an upstream flight can spread
to downstream flights causing reactionary delays, and the reac-
tionary delays of one aircraft will continue to cause a cascade of
reactionary delays for other aircraft. Air traffic delays therefore dis-
play the ‘‘ripple effect,” which is detrimental to aviation workers
[31]. According to the ripple effect, also known as delay propaga-
tion [32] primary flight delays grow and propagate within complex
air transport systems. Studies on delay propagation have attracted
an enormous amount of attention from researchers not only in the
field of aviation, but also in the fields of computer science, manage-
ment science, system science, and more [33,34]. Compared with
studies on delay prediction, studies on delay propagation may be
more appealing, as they can assist in locating the origins of delays,
calculating reactionary delays, and understanding how delays
evolve, making it possible for efficient measures to be taken to
counterbalance the ripple effect [31].

Dozens of studies have investigated flight delay propagation. In
the literature, researchers have explored delay propagation phe-
nomena in regions such as the United States [32,35,36], Europe
[37], and China [38]. In order to gauge the amount of propagated
delays, researchers have devised several metrics, including the
delay multiplier (DM) index [39]. In order to trace how primary
delays propagate, scientists have mainly utilized agent-based
methods to model the propagation process [32,35,37]. Because of
delays, multiple flights may simultaneously request services. To
resolve this conflict, scientists have predominantly applied the
queuing theory [36].

Delay propagation is a collective phenomenon, as air traffic
involves a variety of interacting components [5,40,41]. It is natural
and straightforward to introduce complex network theories and
tools to research on air traffic [40,42,43]. Although complex net-
work modeling for air transport has a short history [44,45], its sys-
temic view is injecting new blood into ATM. While the majority of
existing studies on delay propagation focus on the estimation of
reactionary delays, several studies on network models for delay
propagation analysis have already shown great potential
[35,36,46]. However, to the best of our knowledge, Refs.
[35,36,46] failed to make use of the spatial–temporal properties
of the constructed networks. Consequently, those works cannot
provide a comprehensive understanding of delay propagation
dynamics.

In this study, we present a dynamic network perspective of the
propagation dynamics of air traffic delays. More specifically, for a
given set of aircraft itineraries, each of which has a one-day cycle,
we model the daily traffic scenario with a spatial–temporal net-
work, given that each aircraft has a departure delay for the first
flight leg. We suggest a simple yet effective delay propagation
mechanism to transfer the delays as the aircraft implement their
rotations. In case multiple flights request services simultaneously
at the same airport due to delays, we apply our developed delay
assignment strategies to prioritize the flights. At a given time point,
we construct a spatial airport network with the delayed departure
flights as the edges. For a one-day duration, we then construct a
spatial–temporal network. Next, we analyze the degree properties
of the constructed spatial–temporal network to quantify the delay
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propagation dynamics in terms of magnitude, speed, and severity.
To verify the effectiveness of the proposed network perspective, we
carry out case studies on domestic flights in the SAR and the United
States that were operated in the last part of 2016. The experimen-
tal results demonstrate that the proposed network-based method
can provide spatial–temporal details of the delay propagation pro-
cess. The experiments also reveal that the delay propagation
dynamics of flights in the SAR differ substantially from those in
the United States in terms of magnitude, severity, and speed.
2. Related backgrounds

2.1. Spatial networks

Network modeling has proven to be a potent tool for capturing
the systemic behaviors of complex systems [44,45]. Generally
speaking, a network is a set of nodes and edges. The nodes of a net-
work denote the components of the focal network or networked
system, while the edges represent the interactions or relationships
between components. Mathematically, a network is denoted by
G ¼ V ; Ef g with n ¼ Vj j being the cardinality of the node set V ,
and m ¼ Ej j the cardinality of the edge set E. A network is generally
represented by its adjacency matrix A, with the entry aij quantify-
ing the relationship between nodes i and j.

In this work, we study the delay propagation dynamics of air
traffic. In order to capture systemic delays, we construct airport
networks with airports as the nodes. For an airport network G, if
a flight flies from airport i to airport j, then an edge eij 2 E connect-
ing nodes v i 2 V and v j 2 V is created.

The constructed airport networks can be weighted and/or direc-
ted, depending on the specific calculation purposes. As the airports
include geographical information, the constructed networks are
spatial networks [47].
2.2. Temporal networks

Complex systems in reality are usually time-evolving; that is,
their structures change over time. In order to trace their evolution,
scientists have developed an effective tool: temporal networks
[48]. Mathematically, for a given time period t0; tend½ �, a temporal
network G can be denoted by a network sequence, that is,
G ¼ Gt0 ; Gt1 ; :::; Gtend

� �
, with Gti being the snapshot at time point ti.

In this study, we construct airport networks. The edge construc-
tions of the networks depend on the air traffic demands, which are
time-evolving. Therefore, we can generate a sequence of airport
networks to form temporal airport networks. As mentioned above,
airports include geographical information. Consequently, the con-
structed airport networks are spatial–temporal networks.
2.3. Air traffic delay

The notion of delay is common in the transportation domain. In
the air traffic domain, delay is normally defined as the difference
between the scheduled and actual flight operation times. Accord-
ing to the definitions provided by the Federal Aviation Administra-
tion (FAA), a flight is considered to be delayed if it is 15 min or
more past its scheduled time [49]. For research purposes, we con-
sider a flight to be delayed in this work if its delay is positive.

The flying process of a flight generally encompasses two phases:
the ground phase, which includes the departure and approach; and
the airborne phase (from wheels off to wheels on), which covers
the flight stages of climbing, cruising, and descending. Flight delay
can occur in every phase. In the ground phase, the following five
types of delay are mainly encountered:
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� Departure delay: There is a difference between the actual and
scheduled gate-out times.

� Taxi-out delay: There is a difference between the actual and
scheduled taxi-out times.

� Taxi-in delay: There is a difference between the actual and
scheduled taxi-in times.

� Arrival delay: There is a difference between the actual and
scheduled gate-in times.

� Turn time delay: There is a difference between the actual and
scheduled turn times.

In the airborne phase, the airborne delay is determined to be the
difference between the actual and scheduled airborne times.
3. Research problem and contribution

3.1. Problem description

This work is dedicated to investigating the propagation dynam-
ics of air traffic delays by using dynamic network modeling and
analysis. Fig. 1 presents a graphical illustration of the research
problem and the core idea of the network-based approach.

Fig. 1(a) depicts an air traffic scenario in which a set of aircraft
are implementing their flight itineraries. The condition is that the
first flight leg for each aircraft has a departure delay. For example,
as shown in the bottom part of Fig. 1(a), the flight departing from
Makassar to Jakarta is delayed for 10 min. Due to the flights’ rota-
tions, the primary delays can propagate and elicit delays in other
flights. Our research purpose is to understand the delay propaga-
tion dynamics. More specifically, we aim to answer these ques-
tions: ① How much is the propagated delay? ② How long will
the delay propagation last? ③ How fast can the delay propagate?

In order to probe answers to these questions, we suggest a
dynamic network perspective. We first convert the air traffic sce-
nario into a spatial–temporal airport delay network, with the
nodes being the spatial airports and the edges being the delayed
departure flights (Fig. 1(b)). We then analyze the degree properties
of the constructed spatial–temporal networks in order to quantify
Fig. 1. A conceptual diagram of the studied problem and the core idea of the proposed d
delays. (a) A traffic scenario in which four aircraft (distinguished by color) are implemen
leg. (b) A summary of the idea of the proposed network approach for understanding the
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the delay propagation dynamics in terms of magnitude, severity,
and speed.
3.2. Research contribution

This work suggests a complex network perspective towards
understanding the delay propagation dynamics of air traffic. This
work contributes to ATM in the following aspects.

(1) It provides a fine-grained view of delay propagation
dynamics. Complementary to existing studies on delay propaga-
tion, which only provide a coarse-grained view, this work provides
a fine-grained view of spatial–temporal resolution by making use
of dynamic network modeling and analysis. The network-based
approach can trace the evolution process of delay propagation at
given airports at given times and time durations.

(2) It assists with strategic ATM. This study investigates delay
propagation dynamics in terms of magnitude, severity, and speed.
The proposed network approach can be implemented in real time.
Therefore, the outcome of this study could facilitate airlines in
enabling quality pre-assessment of flight schedules in terms of
reactionary delays, such that they could adjust the schedules
accordingly in order to mitigate air traffic delays. Furthermore,
since the network approach can trace the delay propagation pro-
cess with a spatial–temporal resolution, the outcome of this study
will assist air navigation service providers and airports to provide
better service.

(3) It contributes to CDM. CDM is recognized as a promising
paradigm for modern air traffic control. This work carries out case
studies on domestic flights in the SAR and the United States, and
reveals that only hub airports encounter significant delay propaga-
tion. As the proposed approach can estimate temporal propagated
delays in real time for given airports, aviation players can choose
the proper time to apply CDM to hub airports in order to mitigate
the impact of delay propagation. Upon the implementations of sev-
eral CDM initiatives, the proposed approach can be re-applied to
the updated traffic scenario in order to assist decision-makers with
further ATM.
ynamic network approach for understanding the propagation dynamics of air traffic
ting their flight itineraries, and each aircraft has a departure delay for the first flight
delay propagation dynamics.
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4. Research methodology

4.1. Method overview

In order to solve the research problem, we first present an over-
view of the proposed approach and delineate its procedures in
Fig. 2.

It can be seen from Fig. 2 that the core idea of the proposed
approach is to construct a spatial–temporal airport network. To
achieve this goal, we develop a delay propagation mechanism
and a delay assignment mechanism. In what follows, we will
elaborate each of the two key components in detail.

4.2. Primary departure delay

In this work, we refer to the primary departure delay as the
delay of the first flight leg in an aircraft’s itinerary. The primary
departure delay is utilized as the stimulus to elicit the reactionary
departure and arrival delays. There are two ways to work out the
primary departure delays: obtaining them from data or sampling
from a given distribution.

Here, we directly derive the primary departure delays from the
real-world flight operation data. The reasons for doing so are two-
fold. First, it is straightforward and easy to obtain the primary
departure delays from real data. Second, the sampling-based
method requires prior knowledge such as the delay distribution.

4.3. Delay propagation mechanism

The delay propagation mechanism is utilized to capture the
reactionary delays. Putting it another way, for all flights
f i 2 1; Nf½ �, the propagation mechanism is used to estimate the

actual departure time tf iAD and actual arrival time tf iAA, where Nf is
the total number of flights. The delay propagation mechanism
works on the basis of the following assumptions.

(1) No flight can depart more than 5min earlier. In real-world
scenarios, airlines can bring forward their flight plans, resulting in
earlier departures (these can be several hours ahead of schedule, as
reported in real cases). Apart from flight plan adjustment, some
flights can depart slightly earlier than scheduled once all necessary
preparation procedures—such as refueling, payload loading, and
passenger embarkation—have been done. In our model, we
hypothesize that the earliest departure cannot be more than
5 min before the scheduled departure.
Fig. 2. Flowchart of the proposed network approach for the propagation dynamics
of air traffic delays.
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(2) Departures from and arrivals at the same airport are
served by different runways. Flight departures and arrivals
require airport runway services. In this work, we assume that each
airport accommodates the departures and arrivals separately by
using different runways. In real life, some airports may only have
single runways. However, this assumption simplifies the subse-
quent modeling.

(3) The minimum time separation to alleviate the wake
turbulence is set to be 2 min. To alleviate the wake turbulence,
we fix the minimum separation time for departures/arrivals to
be 2 min. As a result, each runway can serve a maximum of
30 flights per hour. The setting of the minimum separation time
is based on the wake turbulence category [50] promulgated by
the International Civil Aviation Organization (ICAO), based on
the fact that the majority of the aircraft in this study are of med-
ium size.

(4) Delay can occur to a flight in the air. In reality, arrival
delay can occur to a flight due to various factors such as convec-
tive weather, airspace restriction, airport congestion, and so forth.
Unlike existing studies on delay analysis, which assume that
delay does not occur during the en-route phase, we introduce
the airborne delay of flights to our model. More specifically, we
assume that the airborne delay of a flight is a nonlinear function
of its departure delay and its scheduled flying time. This assump-
tion also provides the probabilities for flights to absorb delays in
the air.

Based on the above assumptions, we then estimate tf iAD and tf iAA
for all f i 2 1; Nf½ � in the following way.

(1) If f i is the first flight leg of an aircraft’s itinerary, then we

estimate tf iAD as follows:

tf iAD ¼ tf iSD þ Tf i
DD ð1Þ

where tf iSD and Tf i
DD represent the scheduled departure time and

departure delay of flight f i.
(2) If f i is an intermediate flight leg of an aircraft’s itinerary,

then we estimate tf iAD in the following ways.

tf iAD ¼ tf iSD if tf i�1
AA þ Tf i�1

TA � tf iSD
tf iAD ¼ tf i�1

AA þ Tf i�1
TA if tf i�1

AA þ Tf i�1
TA > tf iSD

(
ð2Þ

where Tf i�1
TA represents the minimum turnaround time for flight f i�1,

which is the previous leg of f i.
Note that different aircraft have different minimum turnaround

times. Normally, aircraft with larger sizes require longer minimum
turnaround times. For a given set of flight plans, we categorize the
aircraft into three classes: medium size, large size, and heavy size.
We then set the minimum turnaround times TTA respectively to 60,
90, and 120 min.

(3) Based on tf iAD, we then calculate actual arrival time of flight

tf iAA as follows:

tf iAA ¼ tf iAD þ Tf i
EF ¼ tf iAD þ Tf i

SF þ sf i ð3Þ
in which sf i is a random variable signifying the deviation between

scheduled flying time Tf i
SF and estimated flying time Tf i

EF.
In this study, we use multivariable nonlinear regression to esti-

mate sf i . Specifically, we assume that sf i is calculated as follows:

sf i ¼ a0 þ a1T
f i
DD þ a2 Tf i

SF

� �2
ð4Þ

with the parameters a0, a1, and a2 being learned from the historical
flight operation data.
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4.4. Delay assignment mechanism

Due to air traffic delays, multiple flights may request departure
services simultaneously at the same airport. Likewise, multiple
flights may arrive at the final approach fix at the same time. Con-
sequently, it is necessary to prioritize all departure and arrival
flights, and assign delays to the flights that request departure/ar-
rival services. With regard to this, we suggest the following mixed
departure and arrival delay assignment mechanisms to further

update tf iAD and tf iAA.

Algorithm 1 defines the way to update tf iAD when multiple flights
request to depart simultaneously from the same airport, as flight f i
does. In Step 6 of Algorithm 1, the variable Td represents the min-
imum time separation to avoid the wake turbulence of departures/
arrivals.

Algorithm 1. Departure delay assignment mechanism.

1. For a given airport at time t, identify the departure flight

sequence F ¼ f 1; f 2; :::; f nð Þ with tf iAD ¼ t, 8i 2 1; n½ �.
2. TF

DD ¼ tf iAD � tf iSD 8f i 2 Fj
n o

; //departure delays for all f i 2 F.

3. If size unique TF
DD

� �� �
¼¼ 1, i.e., all the flights have the

same delay, then idx ¼ SortRandom TF
DD

� �
, i.e., obtain a

sequence idx for all i 2 1; n½ � based upon the random
sorting of TF

DD; otherwise, do the following:

a. idx ¼ SortDecend TF
DD

� �
, if max TF

DD

� �
� 0;

b. idx ¼ SortAscend TF
DD

� �
, if min TF

DD

� �
� 0;

c. If min TF
DD

� �
< 0 ^max TF

DD

� �
> 0, then

i. idx1 ¼ SortAscend TF
DD

� �
� 0;

ii. idx2 ¼ find TF
DD < 0

� �
;

iii. idx ¼ idx1; idx2½ �.
4. Set F ¼ F idxð Þ; //reordered flight sequence.

5. Set tf 1AD ¼ t; //the first flight in F departs at time t.

6. Set F 0 ¼ F and tf iAD ¼ t þ Td, 8f i 2 F 0; //each of the rest flights
is delayed for Td min.

In order to update tf iAA when multiple flights request to arrive
simultaneously at the same airport, as flight f i does, we further
develop the arrival delay assignment mechanism. The proposed
arrival delay assignment mechanism works in exactly the same
manner as what is shown in Algorithm 1. Both of the mechanisms
are implemented simultaneously.

4.5. Spatial–temporal network construction

The purpose of the above exhausted delay propagation and
assignment mechanisms is to estimate the actual departure/arrival
times for all the flights. Based on the estimated actual departure
times, for a given time horizon t0; tend½ �, we construct a spatial-
temporal network G ¼ Gt0 ; Gt1 ; :::; Gtend

� �
at a time resolution of

one minute, that is, t1 � t0 ¼ 1min. Each snapshot Gti captures
the delayed flights that depart at time ti. Specifically, for network
Gti , we build the edges between their origin–destination (OD) pairs
with the weights of the edges being the departure delays (mea-
sured in minutes) of the corresponding flights that depart at time
ti. For example, if a flight departs at time ti from airport a, is 10
min later than scheduled, and is heading for airport b, then we con-
struct an edge between nodes a and b of the network Gti with the
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edge weight being 10. Note that Gti could be empty, since all the
flights could be in the air and/or on the ground at time ti.

As per FAA instructions, a flight f i is considered to be delayed if,

assuming that the departure is considered, Tf i
DD � 15. When con-

structing Gti , we construct an edge between the OD pair of flight

f i as long as Tf i
DD � 1. The benefit from doing so is that the con-

structed spatial–temporal network can analyze the delay propaga-
tion at different delay levels by extracting the corresponding
subnetwork from Gti with respect to a given delay threshold, such
as 15 min, 30 min, and so forth.

4.6. Delay propagation dynamics

In the literature, the most widely used metric for gauging reac-
tionary delay is the DM index, which can be formulated as
DM ¼ Dþ Ið Þ=I, where I and D respectively denote the primary
delays and the reactionary delays. In this work, we take the pre-

dicted departure delay tf iDD as the D for flight f i, since the prediction

of tf iDD is the outcome of the collaborative behavior of the delay
propagations of all the flights.

The DM metric is straightforward and effective for providing an
overall view of the magnitude of the reactionary delays. However,
its main advantage is also its main disadvantage. The DM metric
cannot reflect the spatial–temporal dynamics of the delay propaga-
tion process, and this is the very motivation for proposing the
spatial–temporal network-based perspective.

For the constructed spatial–temporal network G, we use Ati to
denote the adjacency matrix of its snapshot Gti . Let d be a time
duration. We further define a matrix A/d as follows:

A/d ¼
X

ti2C
Ati ð5Þ

where C ¼ t0 þ /� 1ð Þd; t0 þ /d½ � and / 2 U ¼ 1; tend � t0ð Þ=d½ �. / is
an integer within the range of U. The matrix A/d represents the
cumulative network of the snapshot Gti within time period C. As
pointed out in Subsection 4.5, the snapshot Gti could be empty. By
defining A/d we can avoid analyzing empty networks directly, since
they contribute little to the research problem.

We then analyze the spatial–temporal degree properties of A/d

and quantify the delay propagation dynamics in the following
ways.

(1) Magnitude. We quantify the delay propagation magnitude
in terms of the number of flights that suffer from reactionary
delays, hereafter denoted by DP-mag1, and the amount of delays,
hereafter denoted by DP-mag2. Let a/d

ij be the entry of A/d. Then
DP-mag1 and DP-mag2 with respect to C are calculated as follows:

DP-mag1 ¼ d/d
i1 d/d

i1 ¼ a/dij
��� j 2 1; n½ �

n o��� ���
0
; 8i 2 1; n½ �

���n o
ð6Þ

DP-mag2 ¼ d/d
i2 d/d

i2 ¼
Xn

j¼1
a/dij ; 8i 2 1; n½ �

���n o
ð7Þ

In the above equations, elements d/d
i1 and d/d

i2 respectively repre-
sent the unweighted and weighted degrees of node i of the net-
work characterized by matrix A/d. The magnitude metric
therefore captures the number of delayed flights as well as the
amount of delays each single airport will encounter during the
given time period C.

(2) Severity. Based on the definitions of magnitude, we further
define the delay propagation severity for the time window t0; tend½ �
as follows:

DP-sev1 ¼ di1 di1 ¼ max / 2 Uargd/d
i1 � d/d

l1

� ����n
�min / 2 Uargd/d

i1 � d/d
l1

� �
; 8i 2 1; n½ �

o
ð8Þ



Fig. 3. Overview of the SAR airport network constructed using six-month ADS-B
data collected for the calendar year 2016. An edge is created if there is a flight
between its two endpoints.
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DP-sev2 ¼ di2 di2 ¼ max / 2 Uargd/d
i2 � d/d

l2

� ����n
�min / 2 Uargd/d

i2 � d/d
l2

� �
; 8i 2 1; n½ �

o
ð9Þ

where the terms d/d
l1 and d/d

l2 are respectively calculated as follows:

d/d
l1 ¼ d

tend � t0

X
/
d/d
i1 ð10Þ

d/d
l2 ¼ d

tend � t0

X
/
d/d
i2 ð11Þ

One can observe from the above equations that the delay sever-
ity practically measures the time duration between the time point
from which the magnitude starts to surpass its mean and the time
point from which the magnitude starts to decrease from the mean.
Therefore, the delay severity captures the duration of time the
propagation magnitude can last.

(3) Speed. Based on the definitions of magnitude and severity,
for a given time window t0; tend½ �, we quantify the propagation
speed as follows:

DP-spe ¼ d/d dd ¼ 1
n

Xn

i¼1
d/d
i1 ; 8/ 2 U

����
� 	

ð12Þ

As can be seen from Eq. (12), d/d specifies the average delay
propagation magnitude across all the airports in terms of the num-
ber of delayed flights. Note that the definition of the delay propa-

gation speed with respect to d/d
i2 is omitted, as it has a similar form

as the definition formulated above.
5. Experimental study

5.1. Testing instances

Section 4 elaborated in detail the proposed network approach
for understanding the propagation dynamics of air traffic delays.
This section will demonstrate the applications of the proposed
approach to the real-world flight plan data.

5.1.1. Flights in the SAR
In this study, we use the flights in the SAR as the first case study.

The SAR is a subregion of Asia that consists of 11 countries with a
total land area of ~4.5 � 106 km2. After South Asia and East Asia,
SAR is now the third most populous geographical region in the
world, with a total population of over 641 million. Therefore, the
SAR plays an important role both in the world’s economic develop-
ment and in air transport (there are more than 700 airports in the
SAR).

We abstract the flight schedules for the SAR from the automatic
dependent surveillance-broadcast (ADS-B) data provided by the
Civil Aviation Authority of Singapore (CAAS). The ADS-B data pro-
vided by CAAS covers domestic and global flights and spans a per-
iod of six months (June, July, September, October, November, and
December) in the calendar year 2016. From the six-month ADS-B
data, we filter out the schedules for the flights in the SAR.

Fig. 3 displays the spatial airport network derived from the six-
month ADS-B data. The weight of an edge is equal to the number of
flights that have flown between its two connected airports. The
network shown in Fig. 3 has 139 nodes and 376 edges. For the
SAR airport network, we further calculate the degrees of the nodes.
We then rank the nodes based on their degrees.
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The top part of Table 1 summarizes the basic information for
the top 22 busiest airports in the SAR. It can be seen from Table 1
that node WMKK has the largest unweighted degree of 51, fol-
lowed by node WSSS with a degree of 42. The Malaysian airport
WMKK has the greatest number of connections with other airports
in the SAR. Although the Singapore airport WSSS is the second lar-
gest tie, the weighted degree kw values as recorded in Table 1 show
that the Indonesian airport WIII accommodates more flights than
the Singapore airport does. In general, Malaysia and Thailand have
the busiest airports in the SAR.
5.1.2. Flights in the United States
The second case study was carried out on US flights. In the liter-

ature, validations on US flight data have been widely implemented.
The key reason is that the collection strategy of US flight data is well
established and the data is available to the public. It is easy to
obtain ten-year US flight operation data from a handful of websites.

For the sake of better comparison, we obtained US domestic
flight schedules from the Bureau of Transportation Statistics
(BTS) website for the same time period as the SAR data. Based on
the six-month US domestic flight schedules, we constructed a cor-
responding airport network (Fig. 4).

The network shown in Fig. 4 has 302 nodes and 2160 edges. The
US airport network is more complicated than the SAR airport net-
work in terms of the number of nodes and edges. The bottom part
of Table 1 summarizes the basic information for the top 22 busiest
airports (sorted by their weighted degrees) in the United States.

It can be seen from Table 1 that the values of unweighted
degree k for the US airports are much larger than those for SAR air-
ports. Each of the 22 top airports in the United States has more
connections with other airports than each top airport in the SAR
does. Each airport in the SAR is connected to 2.7 airports on
average, while US airports are connected to an average of 7.2
airports. The greater numbers of airports and airport connections
lead to larger throughputs, as reflected by the weighted degree kw.
5.2. Flight itinerary construction

This work aims to investigate the propagation dynamics of reac-
tionary delays. To do so, we need to work out the flight itineraries
so as to trace the delay propagation between consecutive flight
legs. The flight operation data obtained above contains tail num-
bers for all the flights. A tail number is a unique identifier that



Table 1
Properties of the top 22 airports in the SAR and the top 22 airports in the United
States.

Region/country Airport Country City k kw

SAR WMKK Malaysia Selangor 51 70611
WIII Indonesia Tangerang 27 59199
WSSS Singapore — 42 44002
VTBS Thailand Bangkok 23 28831
VTBD Thailand Bangkok 39 27343
RPLL Philippines Manila 36 25312
VVTS Vietnam Ho Chi Minh 24 15374
WADD Indonesia Bali 15 13930
WARR Indonesia Sedati 12 12261
VTSP Thailand Phuket 11 11323
VVNB Vietnam Hanoi 24 9757
WMKP Malaysia Penang 15 9397
WBKK Malaysia Sabah 12 8664
WBGG Malaysia Sarawak 9 8566
VTCC Thailand Chiang Mai 15 7916
RPVM Philippines Cebu 14 7273
WIMM Indonesia Medan 9 7239
VTSM Thailand Koh Samui 7 5992
VVDN Vietnam Da Nang 11 5055
WAAA Indonesia Makassar 10 4861
VDPP Cambodia Phnom Penh 8 4204
RPMD Philippines Davao 6 3869

United States ATL USA Atlanta 162 379484
ORD USA Chicago 146 240736
DEN USA Denver 135 225428
LAX USA Los Angeles 83 214620
DFW USA Dallas-Fort

Worth
128 189947

SFO USA San Francisco 81 171022
PHX USA Phoenix 87 155204
LAS USA Las Vegas 74 148706
SEA USA Seattle 74 134638
IAH USA Houston 109 132419
MSP USA Minneapolis 118 129429
DTW USA Detroit 108 123411
BOS USA Boston 59 120176
MCO USA Orlando 69 115166
EWR USA Newark 87 113181
SLC USA Salt Lake City 84 108153
CLT USA Charlotte 6 107916
BWI USA Baltimore 61 97194
LGA USA New York 64 93118
JFK USA New York 58 89522
MDW USA Chicago 65 87325
SAN USA San Diego 47 78294

k: unweighted degree; kw: weighted degree.
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specifies a certain aircraft. Flights with the same tail number
correspond to the same aircraft. Based on the tail numbers of the
flights, we then construct the flight itineraries by sorting all the
flights chronologically based on their scheduled departure time.
Fig. 4. Overview of the US airport network constructed using six-month flight
schedule data collected for the calendar year 2016. An edge is created if there is a
flight between its two endpoints.
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5.3. Delay statistics overview

The SAR and the US flight schedules provide both the scheduled
and actual times of the flights, based on which we know the real
delays for the flights. In what follows, we first present the funda-
mental statistical studies on the delays.

It can be clearly seen from the upper part of Fig. 5 that the num-
ber of operated airports in the SAR in each of the studied six
months is around 130, which is almost one third of the number
operated in the United States. Furthermore, the number of monthly
operated flights in the SAR is around 50 000, which is nearly one
tenth of the number in the United States. It can also be seen from
the upper part of Fig. 5 that the flights in the SAR have smaller arri-
val and departure punctualities than those in the United States.
Nevertheless, the average flight delays in the SAR are much lower
than those in the United States.

The middle and bottom parts respectively visualize the proba-
bilistic distribution of the flight delays in the SAR and the United
States, together with the curve fittings for the distributions of the
positive delays. During the curve fittings, we have utilized three
types of distribution: the Weibull, LogNorm, and exponential
distributions, with their probabilistic distribution functions

respectively being formulated as follows: f xð Þ ¼ k
k

x
k


 �k�1e� x=kð Þk ,

f xð Þ ¼ 1
k
ffiffiffiffi
2p

p
x
e� lnx�uð Þ2= 2r2ð Þ, and f xð Þ ¼ aebx, where k, k, u, r, a, and b

are all constants.
Although the average delays vary in different months, we can

see that the delay distributions over different months in both the
SAR and the United States share many resemblances. With regard
to the curve fittings, the Weibull distribution obtains the best fit-
tings in terms of the statistical metrics of R2 and root mean squared
error (RMSE). The curve-fitting results indicate that the positive
delays obey the Weibull distributions.

5.4. Problematic days selection

The original flight schedule data is recorded by month. With
regard to the fact that flight delays on different days in a month
can possess unique properties, since air traffic is fraught with tech-
nical, operational, and meteorological issues, we analyze the delay
propagation dynamics at a resolution of one day. More specifically,
we abstract the daily flight schedules from a given monthly data as
the basic unit for subsequent analysis.

In this study, we choose four days for every month—two days
with the highest average departure delays and two days with the
lowest average departure delays—as the problematic days to be
studied. The selected days, together with their corresponding basic
information, are listed in Table 2.

5.5. Starting time point selection

When a problematic day is determined, we then extract the
24 h flight schedules from the original flight data. To do so, we
must determine the starting time point, from which we eventually
build the flight itinerary. Different selections of starting time point
could lead to different flight itineraries, which may affect the final
results.

In order to determine the starting time point, we first visualize
the six-month traffic demands over the time horizon from 00:00 to
24:00 at intervals of one hour. The statistics are shown in Fig. 6.

It can be seen from Fig. 6(a) that 20:00 p.m. can be regarded as
the peak-off hour, as there are relatively few flights, while Fig. 6(b)
suggests that the peak-off time for the US air traffic is 09:00 a.m. In
this study, we choose the peak-off hours observed in Fig. 6 as the
starting time points to respectively build the daily flight itineraries
from the SAR and US flight schedules.



Fig. 5. Delay statistics for the SAR and US flight operation data recorded in the calendar year 2016. Arr: arrival; Dep: departure; PDF: probabilistic distribution of the fight
delays; RMSE: root mean squared error.
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5.6. Reactionary delay analysis

For each selected problematic day, together with the primary
flight delays, we implement the delay propagation and assignment
mechanisms to work out the reactionary delays for the remaining
flight legs. In order to investigate the difference between the reac-
tionary delays of flights in the SAR and the United States, we calcu-
late the values of the DM metric. Furthermore, based on the
estimated reactionary delays, we calculate the classification accu-
racy for the delayed flights.

Fig. 7(a) visualizes the distributions of the values of the DM
metric when applied to the reactionary delays for the
studied 24 days. It can be seen from Fig. 7 that the majority of
the DM values are in the range 1–2, which indicates that a
primary delay of 1 min would cause a reactionary delay of around
1 min.

As for the delay accuracy, we observe from the middle part of

Fig. 7 that the delay accuracies for flights with Tf i
DD � 1 and flights

with Tf i
DD � 15 are respectively around 78% and 80% for the flights

in the SAR, while the corresponding accuracies for flights in the
United States are respectively around 72% and 85%. In the litera-

ture, the classification accuracies for delayed flights with Tf i
DD � 1

as reported in Refs. [29,30,35] are respectively 70%, 74.2%, and
DD 82.7%. The results recorded in Fig. 7 indicate that the proposed
delay propagation and assignment mechanisms make sense, and
the subsequent analysis on the delay propagation dynamics is
therefore reliable.
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5.7. Delay propagation dynamics

The DM metric is a widely applied index to quantify the delay
propagation effect. However, as can be seen from Fig. 7, the DM
metric hardly provides useful insights into the magnitude, severity,
and speed of the delay propagation dynamics, which is the very
motivation for our suggested dynamic network approach.

Based on the reactionary delays, we then construct the spatial–
temporal networks. In order to capture the delay propagation
dynamics, we construct the spatial–temporal networks at a granu-
larity of per hour. Specifically, in the network modeling process, we
set d ¼ 60 min; as a consequence, we have U ¼ 1; 24½ �.

5.7.1. Delay propagation magnitude
In this paper, we only focus on the departure delays, since the

results shown in Fig. 5 indicate that the arrival and departure
delays have an approximately linear relation. Fig. 8 exhibits the
delay propagation magnitude with respect to DP-mag1. On 18 July,
among the top eight airports in the SAR, the three airports WMKK,
WIII, and WSSS are found to be most congested, as there are about
eight delayed flights per hour at each of these airports, while there
are around three delayed flights per hour for each of the remaining
top eight airports. On 30 November, since the average delay is
smaller than that on 18 July, the top eight airports are relatively
less congested. The top three airports are still found to be the most
congested.

Regarding the US airports, it can be clearly seen from Fig. 8 that
the delay propagation magnitude is higher than that in the SAR. In



Fig. 6. Distribution of the six-month traffic demands over the time horizon from
00:00 to 24:00 (UTC time) at intervals of one hour. (a) SAR; (b) United States.

Table 2
Selected problematic days for investigating the delay propagation dynamics of flights
in the SAR and the United States.

Region/country Day Nf N1
f =Nf N15

f =Nf T
�
DD(minute

per flight)

SAR Jun, 17 1381 63.34% 32.34% 24.0
Jun, 2 1355 62.60% 29.47% 23.3
Jul, 18 1519 63.79% 31.11% 30.8
Jul, 8 1617 61.22% 29.27% 30.7
Sep, 9 1358 70.47% 43.61% 29.3
Sep, 29 1225 64.08% 32.42% 28.2
Oct, 14 1501 66.84% 31.27% 28.0
Oct, 30 1367 59.90% 30.51% 27.0
Nov, 2 1425 61.14% 32.50% 27.3
Nov, 1 1355 62.90% 32.63% 25.4
Dec, 16 1730 76.27% 43.54% 30.4
Dec, 23 1567 76.57% 42.40% 29.1
Jun, 9 1202 48.90% 16.17% 15.6
Jun, 12 911 47.59% 18.17% 16.1
Jul, 6 1379 58.67% 24.81% 18.7
Jul, 25 1519 60.22% 24.87% 19.6
Sep, 13 1186 54.13% 17.71% 16.0
Sep, 12 1250 61.02% 24.29% 16.9
Oct, 10 1306 58.61% 20.65% 17.2
Oct, 21 1470 59.30% 23.42% 17.3
Nov, 30 1514 59.74% 23.63% 15.9
Nov, 19 1450 59.07% 21.76% 16.8
Dec, 14 1454 65.91% 27.71% 17.9
Dec, 31 1224 58.30% 23.76% 18.4

United States Jun, 14 10 393 49.62% 26.23% 40.8
Jun, 28 10 280 51.38% 29.70% 40.5
Jul, 21 9936 59.07% 37.65% 57.1
Jul, 28 10 438 51.48% 30.18% 48.9
Sep, 21 9319 39.50% 19.81% 40.5
Sep, 2 10 517 44.06% 20.87% 35.7
Oct, 25 9110 38.09% 17.43% 34.9
Oct, 30 7701 41.59% 20.85% 34.5
Nov, 15 9463 41.29% 21.10% 34.8
Nov, 4 9652 41.08% 19.12% 33.0
Dec, 17 8766 76.90% 56.55% 71.8
Dec, 18 9272 77.55% 55.18% 64.0
Jun, 1 8213 42.91% 18.16% 23.5
Jun, 20 10 583 41.91% 17.87% 26.7
Jul, 12 10 113 40.20% 18.21% 27.7
Jul, 10 9728 42.37% 18.70% 27.9
Sep, 4 5931 26.32% 10.02% 22.0
Sep, 15 9916 37.11% 13.00% 22.1
Oct, 1 6314 33.96% 11.83% 20.2
Oct, 6 9314 42.14% 16.46% 21.1
Nov, 25 5363 26.60% 8.24% 18.1
Nov, 24 7505 25.99% 7.74% 20.2
Dec, 1 6924 36.52% 13.54% 22.4
Dec, 2 8980 36.98% 15.44% 24.8

N1
f : number of flights with T

�f i
DD � 1; N15

f : number of flights with T
�f i
DD � 15.

Fig. 7. (a) Distribution of the values of the DM metric and (b) the classification
accuracies for the delayed flights for the studied 24 problematic days.
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the United States, of the 40 busiest airports, about 30% are con-
gested on each of the studied days, that is, 21 July and 25 Novem-
ber, while the top two airports, namely ATL and DEN, are the most
congested, with around 30 delayed flights in each airport.

The delay propagation magnitude in terms of the number of
delayed flights shows a positive relation with the degrees of the
airports. Next, we investigate the delay propagation magnitude
in terms of the amount of delays occurring at each airport. The cor-
responding results are demonstrated in Fig. 9.

It can be seen from Fig. 9 that the WMKK airport suffers from
significant delays on 18 July (74 min on average) and 30 November
(64 min on average). Given that the airport operates at a maximum
throughput, that is, with 30 flights taking off in 1 h, each flight on
18 July has a propagated delay of 2.5 min on average. On 30
November, the average delay is decreased to 2 min, since the traffic
on that day is less congested than that on 18 July. The WIII and
WSSS airports have significant delays on both of the studied days.
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Fig. 8. Delay propagation magnitude with respect to DP-mag1. (a, b) The values of DP-mag1 for the top 22 airports operated in the SAR (a) on 18 July and (b) 30 November.
(c, d) The values of DP-mag1 for the top 40 airports operated in the United States on (c) 21 July and (d) 25 November.
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Interestingly, for some airports, such as VTCC and WMKP, even
though there are not too many delayed flights on the ground, there
are still massive delays, as flights are heavily delayed due to reac-
tionary delays.

Figs. 9(c) and (d) reveal that the delay propagation magnitude
in terms of delays for the US flights is more significant than that
of the SAR. On 21 July, the most congested airport, ATL, suffers
from huge delays. As can be seen from Fig. 9, the hourly delays
for the ATL airport are around 300 min. Putting it another way,
each flight on the ground has a propagated delay of 10 min on
average. On 25 November, the average propagated delay per flight
is 2 min. Of the investigated 22 top airports in the SAR, around 25%
have significant delays. However, around 40% of the 40 top US air-
ports suffer from departure delays.
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5.7.2. Delay propagation severity
An analysis of the spatial–temporal airport networks provides a

comprehensive understanding of the delay propagation dynamics
in terms of magnitude. Here, we continue to analyze the delay
propagation dynamics in terms of severity.

In this work, we define the delay propagation severity as the
time duration for which the propagation magnitude can last. As
the magnitude is quantified in two ways, the severity is also mea-
sured in two ways. It can be seen from the upper part of Fig. 8 that
the peak time (the time when the number of delayed flights starts
to exceed the mean value) starts at 03:00 a.m. and ends at 13:00 p.m.
for the air traffic in the SAR. The middle and bottom parts of
Fig. 8 indicate that the peak time starts at 13:00 p.m. and ends at
03:00 a.m. for the air traffic in the United States. Similar



Fig. 9. Delay propagation magnitude with respect to DP-mag2. (a, b) The values of DP-mag2 for the top 22 airports operated in the SAR on (a) 18 July and (b) 30 November.
(c, d) The values of DP-mag2 for the top 40 airports operated in the United States on (c) 21 July and (d) 25 November.
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phenomena can be observed in Fig. 9. We therefore conclude that
the delay propagation for the flights in the United States lasts
longer than that of the flights in the SAR, since the propagation
severities are 14 and 10 h, respectively.

It can be seen from the above results that the magnitude metric
helps to estimate the amount of delays for each flight and airport,
given the scheduled flight plans, while the severity metric indi-
cates the duration of time the delay propagation process can last.
With regard to this, airlines can estimate in advance whether
scheduled flight plans will suffer from significant delays by utiliz-
ing the proposed network model and applying the magnitude met-
ric. By doing so, airlines can adjust flight plans to counterbalance
the delay propagation effect. Furthermore, air traffic controllers
can utilize the proposed metrics to assist with timely monitoring
of the air traffic situation. For example, the above results show that
462
the airport ATL suffers from significant delays in terms of magni-
tude and severity. In this case, air traffic controllers may consider
to take strategic ATM measures, such as ATFM, to balance the traf-
fic demand, airspace, and airport capacities. In addition, airlines, air
traffic controllers, airports, and other stakeholders can collaborate
with each other to come up with effective CDM initiatives for bet-
ter ATM.

5.7.3. Delay propagation speed
Apart from the delay propagation dynamics in terms of

magnitude and severity, aviation workers may want to know
how fast the delay can propagate. As per the definition of
DP-spe presented in Subsection 4.6, we now calculate the
delay propagation speed for the flights in the SAR and the
United States.



Fig. 10. Delay propagation speed with respect to DP-spe. (a, b). The values of d/d for the flights operated in the SAR on (a) 18 July and (b) 30 November. (c, d) The values of d/d

for the flights operated in the United States on (c) 21 July and (d) 25 November.

Table 3
Delay propagation speeds for the flights in the SAR and United States.

Region/country Day Spd1 Spd15

SAR Jun, 17 14 8
Jun, 2 13 8
Jul, 18 17 12
Jul, 8 20 13
Sep, 9 19 14
Sep, 29 14 10
Oct, 14 18 13
Oct, 30 14 9
Nov, 2 16 12
Nov, 1 18 13
Dec, 16 22 16
Dec, 23 19 13
Jun, 12 10 6
Jun, 7 7 3
Jul, 25 14 9
Jul, 13 17 10
Sep, 13 13 9
Sep, 24 16 12
Oct, 10 14 10
Oct, 21 17 10
Nov, 19 16 10
Nov, 12 16 10
Dec, 14 16 10
Dec, 31 14 9

United States Jun, 14 148 67
Jun, 28 149 67
Jul, 21 161 82
Jul, 28 147 70
Sep, 21 136 63
Sep, 2 142 62
Oct, 25 125 56
Oct, 30 125 60
Nov, 15 135 63
Nov, 4 139 67
Dec, 17 177 118
Dec, 18 206 126
Jun, 1 139 55
Jun, 9 149 64
Jul, 12 133 59
Jul, 11 145 61
Sep, 11 69 23
Sep, 15 130 48
Oct, 1 88 30
Oct, 6 137 59
Nov, 25 77 24
Nov, 1 65 21
Dec, 1 123 48
Dec, 2 119 51

Spd1: average propagation speed for the case of TDD � 1; Spd15: average propa-
gation speed for the case of TDD � 15.
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Fig. 10 shows the delay propagation speed for the flights oper-
ated on the four days investigated above. In Fig. 10, the red solid

curves record the values of d/d with / 2 U, that is, the averaged
degrees of the spatial–temporal network characterized by matrix
A/d. Asmentioned in Subsection 4.5, the construction of the network
Gti can analyze delay at different levels. Here, we also calculate the
average degrees of the network characterized by A/d, excluding
edgeswith TDD < 15,which are representedby the blue solid curves.

Note that d/d reflects the hourly average degree of the network
characterized by matrix A/d. In order to better compare the delay

propagation speed, we further calculate the mean of d/d, which is
represented by the red and blue dashed lines in Fig. 10. Table 3

records the mean values of d/d for the selected 24 days for the
flights in the SAR and United States. It can be seen from the left
part of Table 3 that the average delay propagation speeds, Spd1,
for the flights in the SAR are around 14, which means that primary
delays can elicit delays in 14 flights per hour. When the situation in
the United States is compared with that in the SAR, the delay
propagation speeds for flights in the United States are about eight
times faster than those in the SAR.

6. Conclusion

Air traffic inevitably suffers from internal/external perturba-
tions, giving rise to air traffic delays that harm both the aviation
industry and the natural environment. Studies on how delays
happen and promising initiatives to mitigate delays are pivotal to
aviation workers in modern ATM. Air traffic delays are associated
with the high complexity of air transport systems. In order to
maximize passenger movements, airlines normally plan an aircraft
schedule with multiple flight legs during the aircraft’s rotation. As
a consequence, a delay for one flight is likely to elicit reactionary
delays for other flights, triggering the ripple effect, also known as
delay propagation.

Delay propagation is detrimental to air traffic. An understand-
ing of how delays propagate throughout air transport systems is
crucial in order to achieve optimal structural design of air transport
systems and to delay mitigation. This work presented a complex
network perspective on air traffic delay propagation dynamics.
Complementary to existing studies, the proposed network perspec-
tive can help decision-makers to acquire a comprehensive under-
standing of delay propagation dynamics in terms of magnitude,
severity, and speed.

To validate the effectiveness of the proposed methodology, we
carried out extensive case studies on flights in the SAR and the Uni-
ted States. We discovered that delay propagation dynamics for the
flights in the SAR vary considerably from those in the United
States. The proposed network-based method provides temporal
details for the delay propagation dynamics for each airport and
therefore contributes to strategic ATM and CDM.
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