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This paper synchronizes control theory with computer vision by formalizing object tracking as a sequen-
tial decision-making process. A reinforcement learning (RL) agent successfully tracks an interface
between two liquids, which is often a critical variable to track in many chemical, petrochemical, metal-
lurgical, and oil industries. This method utilizes less than 100 images for creating an environment, from
which the agent generates its own data without the need for expert knowledge. Unlike supervised learn-
ing (SL) methods that rely on a huge number of parameters, this approach requires far fewer parameters,
which naturally reduces its maintenance cost. Besides its frugal nature, the agent is robust to environ-
mental uncertainties such as occlusion, intensity changes, and excessive noise. From a closed-loop con-
trol context, an interface location-based deviation is chosen as the optimization goal during training. The
methodology showcases RL for real-time object-tracking applications in the oil sands industry. Along
with a presentation of the interface tracking problem, this paper provides a detailed review of one of
the most effective RL methodologies: actor–critic policy.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Oil sands ore contains bitumen, water, and minerals. Bitumen is
a high-viscosity hydrocarbon mixture, which can be extracted by
means of several chemical and physical processes. The product is
further treated in upgrader units or refineries [1] to obtain more
valuable byproducts (e.g., gasoline, jet fuel). Oil sands are mined
from open pits and loaded into trucks to be moved into the crush-
ers [2]. Following this, the mixture is treated with hot water for
hydro-transportation to the extraction plant. Aeration and several
chemicals are introduced to enhance this process. In the extraction
plant, the mixture is settled down in a primary separation vessel
(PSV). A water-based oil sands separation process is summarized
in Fig. 1.

During the separation process inside the PSV, three layers are
formed: froth, middlings, and tailings (Fig. 2). An interface (referred
to as the froth–middlings interface (FMI) henceforth) is formed
between the froth and middlings layer. Its level with reference to
the PSV unit influences the quality of the extraction.
To control the FMI level, it is crucial to have reliable sensors.
Traditionally, differential pressure (DP) cells, capacitance probes,
or nucleonic density profilers are used to monitor the FMI level.
However, these are either inaccurate or reported to be unreliable
[3]. Sight glasses are used to manually monitor the interface for
any process abnormalities. To utilize this observation in closed-
loop control, Ref. [3] proposed using a camera as a sensor. This
scheme utilizes an edge detection model with particle filtering
on the images to obtain the FMI level; feedback control is then
established using this model. More recently, Ref. [4] combined
edge detection with dynamic frame differencing to detect the
interface. This method directly uses the edge detection technique
to detect the interface, along with a frame-comparison mechanism
that estimates the quality of the measurement; it also detects
faults. Ref. [5] used a mixture of Gaussian distributions to model
the appearances of the froth, interface, and middlings, and pre-
dicted the interface using a spatiotemporal Markov random field.
Despite addressing several challenges utilizing models based on
the appearance or behavior of the interface, these techniques fail
to address the sensitivities to uncertain environmental conditions,
such as occlusion and excessive/non-Gaussian noise.

Supervised learning (SL) methods try to build a map from input
(i.e., image, x) to output (i.e., label, y) data by minimizing a cost
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Fig. 1. A simplified illustration of the water-based oil sands separation process. The PSV is located in the extraction unit.

Fig. 2. A schematic of the PSV. During the separation process, three layers are
formed. The camera is used to monitor the interface between the middlings and the
froth layers in order to control the FMI level optimally.
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(or loss) function. Usually, the cost function is convex, and the opti-
mal parameters are calculated by applying a stochastic gradient
descent algorithm [6,7] to the cost function. Unsupervised learning
(UL) methods, on the other hand, are used to find the hidden fea-
tures in the unlabeled data (i.e., uses x only) [8]. The goal is usually
to compress the data or to find similarities within the data. Never-
theless, UL techniques do not consider the impact of the input on
the output, even if such a causal relationship exists. In computer
vision, these methods are implemented using convolutional neural
networks (CNNs). A CNN is a parametric function that applies con-
volutional operation on the inputs. It can extract abstract features
by processing not just a pixel, but also its neighboring pixels. It is
used for classification, regression, dimensionality reduction, and
so forth [9–12]. Even though they have been used for decades
[13–16], CNNs have only lately gained significant popularity in dif-
ferent domains [17–20]. This is due to the developments that have
occurred in hardware technology [21] and data availability [22].
Parallel to the developments in computer vision, a recurrent neural
network (RNN) is used for time-series prediction, where the previ-
ous output of the network is fed back into itself [23] in what can be
considered a recursive matrix multiplication. However, vanilla
RNN [24] suffers from diminishing or exploding gradients, because
it repeatedly feeds the previous information back into itself, lead-
ing to uneven back-propagated data sharing in between hidden
layers. Therefore, it tends to fail when the data sequence is arbi-
trarily long. To overcome this issue, more complex networks such
as long short-term memory (LSTM) [25] and gated recurrent units
[26] have been proposed. These networks facilitate data transfer in
between hidden layers to make the learning more efficient. More
recently, a variant of LSTM called convolutional LSTM (ConvLSTM)
[27] was reported to improve LSTM performance by replacing
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matrix multiplications with convolutional operations. Unlike fully
connected LSTM, ConvLSTM receives an image rather than one-
dimensional data; it utilizes spatial connections that are present
within the input data and enhances estimation. Networks with
many layers are considered to be deep structures [28]. Various deep
architectures have been proposed [29–33] to enhance the predic-
tion accuracy even further. However, these structures suffer from
over-parameterization (i.e., the number of training data points is
less than the number of parameters). Several regularization tech-
niques (e.g., dropout, L2) [17] and transfer learning (also called
fine-tuning (FT)) methods [34,35] try to find a work-around to
improve the network’s performance. However, the transferred
information (e.g., network parameters) may not be general enough
for the target domain. This issue becomes significant, especially
when the training data is insufficient or their statistics are signifi-
cantly different than the data in the target domain. Moreover, effi-
cient transfer learning for recurrent networks currently remains as
an opportunity for further research.

Reinforcement learning (RL) [36] combines the advantages of
both SL and UL techniques and formalizes the learning process as
a Markov decision process (MDP). Inspired by animal psychology
[37] and optimal control [38–43], this learning scheme involves
an intelligent agent (i.e., the controller). Unlike SL or UL methods,
RL does not rely on an offline or batch dataset, but generates its
own data by interacting with the environment. It evaluates the
impacts of its actions by considering immediate consequences
and predicts the value via roll-out. Hence, it is more suitable for
real or continuous processes involving decision-making for com-
plex systems. However, in sampled data-based schemes, data dis-
tribution may be significantly different during training, which may
cause high variance of estimations [36]. Actor–critic methods have
been proposed [44–46] in order to combine the advantages of
value estimation and the policy gradient. This approach segregates
the agent into two parts: The actor decides which action to take,
while the critic estimates the goodness of that action using an
action-value [47] or state-value [48] function. These methods do
not rely on any labels or system models. Therefore, exploration
of the state or action space is an important factor that affects the
agent’s performance. In system identification [49–51], this is
known as the identification problem. Various methods have been
developed to address the exploration issue [36,48,52–58]. As a sub-
field of machine learning [59–61], RL is used in—but not limited
to—process control [2,42,61–68], the game industry [69–77],
robotics, and autonomous vehicles [78–81].

FMI tracking can be formulated as an object-tracking problem,
which can be solved in one or two steps using detection-free or
detection-based tracking approaches, respectively. Previous works
[82–84] have used RL for object detection or localization, for which
it can be combined with a tracking algorithm. In the case of such a
combination, the tracking algorithm also needs to be reliable and
fast for real-time implementation. Several object-tracking algo-
rithms have been proposed, including multiple object-tracking



Fig. 3. A general control hierarchy in the process industry. RTO: real-time
optimization; MPC: model predictive control; PID: proportional–integral–deriva-
tive controller.
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algorithms using RL [85–90]. The proposed schemes combine pre-
trained object detection with RL-based tracking or a supervised
tracking solution. These simulations were carried out under ideal
conditions [91,92]. The performance of object-detection-based
methods often depends on the detection accuracy. Even if the
agent learns to track based on a well-defined reward signal, the
researcher should ensure that the sensory information is (or the
features of the sensory information are) accurate. Model-based
algorithms often assume that the object of interest has a rigid or
a non-rigid shape [4] and that the noise or the motion has a partic-
ular pattern [3]. These assumptions may not hold when unex-
pected events occur. Therefore, a model-free approach may
provide a more general solution.

Since a CNN may extract abstract features, it is important to
analyze it after training. Common analysis techniques utilize the
information of the activation functions, kernels, intermediate lay-
ers, saliency maps, and so forth [30,93–95]. In an RL context, a pop-
ular approach has been to reduce the dimensions of the observed
features using t-distributed stochastic neighbor embedding (t-
SNE) [96] to visualize the agent in different states [72,97,98]. This
helps to cluster the behavior with respect to the different situa-
tions encountered by the agent. Another dimensionality-
reduction technique—namely, uniform manifold approximation
and projection (UMAP) [99]—projects the high-dimensional input
(which may not be meaningful in the Euclidean space) into
Riemannian space. In this way, the dimensionality of nonlinear
features can be reduced.

Fig. 3 illustrates a general control hierarchy in the process
industry. In a continuous process, each level in the hierarchy inter-
acts with each other at different sampling frequencies. Interaction
starts at the instrumentation level, which affects the upper levels
significantly. Recently, Ref. [2] proposed a solution for the execu-
tion level. However, addressing other levels remains challenging.

Here, we propose a novel interface tracking scheme based on RL
that is trained for a model-free sequential decision-making agent.
This work:
� Provides a detailed review of actor–critic algorithms;
� Focuses on the instrumentation level to improve the overall
performance of the hierarchy;
� Formulates interface tracking as a model-free sequential
decision-making process;
� Combines CNN and LSTM to extract spatiotemporal features
without any explicit models or unrealistic assumptions;
� Utilizes DP cell measurements in a reward function without
any labels or human intervention;
� Trains the agent using temporal difference learning that
allows the agent to learn continuously in a closed-loop control
setting;
� Validates robustness amidst uncertainties in an open-loop
setting;
� Analyzes the agent’s beliefs in a reduced feature space.
This paper is organized as follows: Section 2 provides a review

on actor–critic algorithms and preliminary information, interface
detection is formulated in Section 3, Section 4 presents the training
and test results in detail, and conclusions and future work are
drawn in Sections 5 and 6, respectively.
2. Review of actor–critic reinforcement learning

RL is a rigorous mathematical concept [36,39,42] in which an
agent learns a behavior that maximizes an overall return in a
dynamic environment. Similar to a human being, the agent learns
how to make intelligent decisions by considering the future
rewards. This implies contemplating temporal aspects of the
observations, unlike simple classification or regression approaches.
125
This ability allows RL to be used under uncertain conditions [40]
with irregular sampling rates. Its versatile nature makes RL adap-
tive to different environmental conditions and allows it to be
transferred from simulation environments to real processes [80].

2.1. Markov decision processes

An MDP formulates discrete sequential decision-making pro-
cesses via a tuple, M, that consists of X; U; R; P; ch i, where
x 2 X, u 2 U, r 2 R � R are the state, action, and reward, respec-
tively. P x0; r x; ujð Þ represents the system dynamics, or state transi-
tion probabilities, which may be deterministic or stochastic. It
satisfies the Markov property [100]—that is, the future state
depends solely on the current state, and does not depend on the
history prior to that. In this work, system dynamics are unknown
to the agent in order to make this approach more general. The dis-
count factor c 2 0; 1½ Þ is a weight for future rewards in order to
make their summation bounded. The stochastic policy, p u xjð Þ, is
a mapping from the observed system states to the actions.

In an MDP, the agent observes a state x0 � r0, where r0 repre-
sents the distribution of the initial states. It then selects an action
u � p u xjð Þ that carries the agent to a next state, x0 � P x0; r x; ujð Þ,
and yields a reward, r � P x0; r x; ujð Þ. By utilizing the sequence
(i.e., x, u, r, xʹ), the agent learns a policy, p, that leads to maximizing
the discounted return, G, as defined in Eq. (1) [36]:

Gt ¼ Rtþ1 þ cRtþ2 þ c2Rtþ3 þ � � � ¼
X1
k¼0

ckRtþkþ1 ð1Þ

where t and k represent discrete timestep. The state-value, vp(x),
and action-value, qp(x, u), functions are calculated using the
Bellman equations (Eqs. (2) and (3)):

vp xð Þ ¼ Ep Gt Xt ¼ xj½ � ¼ Ep Rtþ1 þ cGtþ1 Xt ¼ xj½ �
¼ Rup u xjð ÞRx0RrP x0; r x; ujð Þ r þ cvp x0ð Þ½ �;

8x 2 X

ð2Þ

qp x; uð Þ ¼ Ep Gt Xt ¼ x; Ut ¼ uj½ �
¼ Rx0RrP x0; r x; ujð Þ r þ cRu0p u0 x0jð Þqp x0; u0ð Þ½ �;

8x; u 2 X � U

ð3Þ

where E is the expectation of a random variable. After the
value functions are estimated for each state, the optimal value
(v�p xð Þ and q�p x; uð Þ) functions can be found using Eqs. (4)
and (5):
0



Table 1
A comparison of actor–critic algorithms based on the type of action spaces and the
exploration method. The state space can be either discrete or continuous for all the
algorithms.

Algorithm Action space Exploration

DDPG Continuous Noisy actions
A2C or A3C Discrete/continuous Entropy regularization
ACER Discrete/continuous Entropy regularization
PPO Discrete/continuous N/A
ACKTR Discrete/continuous N/A
SAC Continuous Entropy regularization
TD3 Continuous Noisy actions

DDPG: deep deterministic policy gradient; A2C: advantage actor–critic; A3C:
asynchronous advantage actor–critic; ACER: actor–critic with experience replay;
PPO: proximal policy optimization; ACKTR: actor–critic using Kronecker-factored
trust region; SAC: soft actor–critic; TD3: twin delayed deep deterministic policy
gradient.
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v�p xð Þ ¼max
p

vp xð Þ; 8x 2 X ð4Þ

q�p x; uð Þ ¼max
p

qp x; uð Þ

¼ E Rtþ1 þ cv� Xtþ1ð Þ Xt ¼ x; Ut ¼ uj½ �;
8x; u 2 X � U

ð5Þ

Following that, the optimal policy, p*, can be found as follows:

p� xð Þ ¼ argmax
u

q�p x; uð Þ ð6Þ

For largescale problems, linear or nonlinear function approxi-
mation techniques can be used to find the approximated value

functions, Q̂ x; u xjð Þ, V̂ x xjð Þ, or both, where x represents the
parameters of the approximated functions. These structures are
also called critics. This work focuses on the state-value estimation
and simplifies its notation as V(∙).

2.2. A review of actor–critic algorithms

Earlier approaches used value-based (critic-only) RL [71,101] to
solve control problems. In these approaches, actions are derived
directly from a value function, which has been reported to be
divergent for largescale problems [45,102]. Policy-based (actor-
only) methods [103–105] tackle this problem and can learn
stochastic behaviors by generating a policy directly from a param-
eterized function. This function is then directly optimized by using
a performance metric. However, variance of the estimation and the
extended learning time make the policy gradient impractical. Sim-
ilar to generative adversarial networks (GANs) [106], which utilize
generative and discriminative networks, actor–critic algorithms
self-supervise without any labels [44,45,107,108]. These tech-
niques combine policy and value-based methods via an actor and
a critic, respectively. This assisted estimation reduces the variance
significantly and helps in learning the optimal policy [36,55]. The
actor and the critic can be represented as two neural networks,
p u x; hjð Þ (where h represents the parameters of the actor network)
and V x xjð Þ (or Q x; u xjð Þ), respectively.

Although several model-based actor–critic schemes have been
proposed [109,110], this paper focuses on the most commonly
used model-free algorithms, as represented in Table 1. Some of
these methods use entropy regularization, whereas the others take
advantage of heuristic methods. A common example for these
methods is the e-greedy approach, in which the agent takes a ran-
dom action with a probability e 2 0; 1½ Þ. Other exploration tech-
niques include—but are not limited to—introducing additive
noise to the action space, introducing noise to the parameter space,
and utilizing an upper confidence bound. Interested readers can
see Ref. [67] for more detail.

The actor–critic algorithms are summarized as follows.

2.2.1. Deep deterministic policy gradient
This algorithm has been proposed to generalize discrete, low-

dimensional value-based approaches [71] to continuous action
spaces. The deep deterministic policy gradient (DDPG) [47] utilizes
an actor and a critic (Q) as well as a target critic (Q0) network,
which is a copy of the critic network. After observing a state,
real-valued actions are sampled from the actor network and are
mixed with a random process (e.g., the Ornstein–Uhlenbeck pro-
cess) [111] to encourage exploration. The agent stores state, action,
and reward samples in an experience replay buffer to break the
correlation between consecutive samples in order to improve
learning. It minimizes the mean square error of the loss function,
L, to optimize its critic, as shown in Eq. (7).

0
L ¼ Rt þ cQ Xtþ1; Utþ1ð Þ 	 Q Xt; Utð Þ ð7Þ
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The scheme utilizes a policy gradient to improve the actor net-
work. Since the value function is learned for the target policy based
on a different behavior policy, DDPG is an off-policy method.

2.2.2. Asynchronous advantage actor–critic
Instead of storing the experience in a replay buffer that requires

memory, the asynchronous advantage actor–critic (A2C/A3C)
scheme [48] involves local workers that interact with their envi-
ronments and update a global network asynchronously, which
inherently increases exploration. Instead of minimizing the error
based on the Q function, this scheme minimizes the mean square
error of the advantage function (A or d) for the critic update, as
shown in Eq. (8).

A ¼ d ¼ Rt þ V Xtþ1ð Þ 	 V Xtð Þ ð8Þ
In this scheme, the global critic is updated by using Eq. (9), and

the entropy of the policy is used as a regularizer in the actor loss
function to increase exploration, as shown in Eq. (10):

dxG  dxG þ acrxLd xt xLjð Þ2 ð9Þ

dhG  dhG þ aarhLd xt xLjð Þlnp ut xt; hLjð Þ
þ bp ut xt; hLjð Þlnp ut xt ; hLjð Þ ð10Þ

where initially dhG =dxG =0. A left arrow ( ) represents the update
operation; ac and aa are the learning rates for the critic and actor,
respectively; r is the derivative with respect to its subscript; and
b is a fixed entropy term that is used to encourage exploration. Sub-
scripts L and G stand for the local and global networks, respectively.
Multiple workers (A3C) can be used in an offline manner, and the
scheme can be reduced to a single worker (A2C) to be implemented
online. Even though the workers are independent, they predict the
value function based on the behavior policy of the global network,
which makes A3C an on-policy method. This work utilizes an A3C
algorithm to track the interface.

2.2.3. Actor–critic with experience replay
The actor–critic with experience replay (ACER) method [112]

addresses the sample inefficiency of the A3C by utilizing a Retrace
algorithm [113], which estimates Eq. (11):

Q ret Xt; Utð Þ ¼ Rt þ c�gtþ1 Q ret Xtþ1; Utþ1ð Þ 	 Q Xtþ1; Utþ1ð Þ� �
þ cV Xtþ1ð Þ

ð11Þ

where the truncated importance weight, �gt ¼min c; gtf g,
gt ¼ l1 Ut Xtjð Þ� �

= l2 Ut Xtjð Þ� �
, and c is a clipping constant. l1 and

l2 are the target and the behavior policies, respectively. Moreover,
this scheme utilizes stochastic dueling networks (to estimate both V
and Q in a consistent way) and a trust region policy optimization
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(TRPO) method that is more efficient than the previous method
[114]. Because of its Retrace algorithm, ACER is an off-policy
method.

2.2.4. Proximal policy optimization
The proximal policy optimization (PPO) method [115] improves

TRPO [114] by clipping the surrogate objective function, as shown
in Eq. (12):

JCLIP hð Þ ¼ E min r hð ÞAhold x; uð Þ; clip r hð Þ;1	 e;1þ eð ÞAhold x; uð Þ� �� �
ð12Þ

where h represents the policy parameters (i.e., hold represents the
old policy parameters), r hð Þ ¼ ph u xjð Þ½ �= phold u xjð Þ� �

, and e is the clip-
ping constant. A is the advantage estimate that represents how ben-
eficial the agent’s actions are, as shown in Eq. (8).

2.2.5. Actor–critic using Kronecker-factored trust region
Instead of a gradient descent [6] algorithm to optimize the actor

and critic networks, the actor–critic using Kronecker-factored trust
region (ACKTR) [116] utilizes second-order optimization, which
provides more information. It overcomes the computational com-
plexity by using Kronecker-factored approximation [117,118] to
approximate the inverse of the Fisher information matrix (FIM),
which otherwise scales exponentially with respect to the parame-
ters of the approximation. Moreover, it keeps track of the Fisher
statistics, which yields better curvature estimates.

2.2.6. Soft actor–critic
Unlike methods that use the entropy of the policy as a loss reg-

ularizer [48,114,115,119], the soft actor–critic (SAC) method
[55,120] augments the reward function with the entropy term
(as shown in Eq. (13)) to encourage exploration. This approach
has also been reported [120] to improve the robustness of the pol-
icy against model errors.

J hð Þ ¼ Rt2TE xt ; utð Þ�p R xt; utð Þ þ aH ph �ð Þ½ �f g ð13Þ
where h represents the parameters of the policy, a is a user-defined
(fixed or time-varying) weight to adjust the contribution of the
entropy, and H=E[	logp(∙)]. This scheme relies on both the Q and
V functions to utilize the soft-policy iteration. Similar to DDPG
and ACER, SAC stores the transitions in a replay buffer to address
sample efficiency. Besides enhancing the exploration, entropy maxi-
mization compensates for stability loss, which is introduced by the
off-policy approach.

2.2.7. Twin delayed deep deterministic policy gradient
The twin delayed deep deterministic policy gradient (TD3)

[121] addresses error propagation (which is a non-trivial challenge
in statistics and control) [122] due to function approximation and
bootstrapping (i.e., instead of an exact value, using an estimated
value in the update step). To achieve it, the scheme predicts two
separate action-values and prefers the pessimistic value; hence,
it avoids suboptimal policies. TD3 utilizes target networks, delays
the update to the policy function, and uses an average target value
estimate by sampling N transitions from a replay buffer to reduce
variance during learning. The scheme introduces exploration by
adding Gaussian noise to the sampled actions and performs policy
updates using the deterministic policy gradient [104].

Although the abovementioned algorithms provide general solu-
tions to control problems, they may remain inadequate for more
complex or specific tasks. Many other algorithms have been pro-
posed to address these shortcomings. For example, Ref. [123]
extended the discrete actor–critic method proposed by Ref. [44]
to continuous time and space problems via the Hamiltonian–
Jacobi–Bellman (HJB) equation [39,124]. This proposed algorithm
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was then tested in an action-constrained pendulum and a cart-
pole swing up problem. Ref. [125] employed an actor–critic algo-
rithm on a constrained MDP together with a detailed convergence
analysis. Ref. [46] showcased four incremental actor–critic algo-
rithms based on regular and natural gradient estimates. Ref.
[126] introduced a natural actor–critic (NAC) and demonstrated
its performance on the cart-pole problem as well as on a baseball
swing task. Ref. [127] presented a continuous time actor–critic
via converse HJB and tested the convergence in two nonlinear sim-
ulation environments. Ref. [128] proposed an online actor–critic
algorithm for an infinite horizon, continuous time problems with
a rigorous convergence analysis, and linear and nonlinear simula-
tion examples. Ref. [129] proposed an incremental, online, and
off-policy actor–critic algorithm. The proposal analyzed the con-
vergence qualitatively and supported it with empirical results.
Moreover, the temporal difference (TD) methods were compared
with gradient-TD methods that minimize the projected Bellman
error [36]. Ref. [130] proposed an actor–critic identifier that could
provably approximate the HJB equation without a knowledge of
the system dynamics. After the learning was complete, the scheme
showed process stability. However, knowledge of the input gain
matrix was required. Ref. [131] used a nominal controller as a
supervisor to guide the actor and to yield a safer control in a
simulated cruise-control system. Ref. [132] proposed learning the
solution of an HJB equation for a partially unknown input-
constrained system without the persistent excitation conditions
while preserving the stability. By considering Lyapunov theory,
Ref. [133] designed a fault-tolerant actor–critic algorithm and
tested its stability on the Van der Pol system. Ref. [134] formulated
an input-constrained nonlinear tracking problem by using the HJB
equation and a quadratic cost function to define the value function.
The scheme obtained an approximate value function with an
actor–critic algorithm. Ref. [135] combined classification and
time-series prediction techniques to solve an optimal control
problem and showcased the proposed algorithm on a simulated
continuous stirred-tank reactor (CSTR) and a simulated nonlinear
oscillator. The mean actor–critic algorithm [136] was proposed to
estimate the policy gradient by using a smooth Q function,
which was averaged over the actions to reduce variance; the
results were demonstrated on Atari games. Ref. [137] utilized an
event-triggered actor–critic scheme to control a heating,
ventilation, and air conditioning (HVAC) system. In addition to
these, there are more recent studies on different actor–critic
algorithms and their applications, as reported in Refs.
[2,62,67,138–145].

Several methods have been proposed to improve value estima-
tion in RL [146–148], which can be used in actor–critic algorithms.
Moreover, different techniques [112,149] have been reported to
improve the sample efficiency (i.e., to reduce the amount of data
needed to learn the optimal policy). Unlike techniques that made
use of experience replay [70] or supervised data [150], ‘‘parallel
learning” makes use of multiple randomly initialized workers (local
networks) that interact with different instances of the environment
independently to reduce the variance in the policy during learning.
These workers have the same infrastructure as a global network
and, after collecting k-samples, are used to update parameters of
the global network. This reduces the amount of memory used
and improves exploration, because the workers have independent
trajectories. Task distribution can be performed via multiple
machines [151] or multiple central processing unit (CPU) threads
of a single computer [48].

The optimal policy and the optimal critic are different in each
process, and they are often unknown a priori. Monte Carlo-type
methods calculate empirical return (given in Eq. (1)) at the end
of the process (or an episode), which may be lengthy and noisy.
Similar to Pavlovian conditioning [152] in psychology, TD learning



Fig. 4. A frame (I) obtained using a camera. (a) Sizes of the image (H�W) and the
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predicts the value of the current state. Unlike Monte Carlo meth-
ods, it makes the predictions for a small horizon, as low as one
step. This converts the infinite horizon problem into a finite hori-
zon prediction problem. Instead of calculating the expectation of
returns (as in Eq. (2)), the critic network can be updated using k-
step ahead estimation of the TD error, d, as shown in Eq. (14). This
is called policy evaluation.

d xt xLjð Þ ¼
Xk	1
i¼0

ciRtþi þ ckV xtþk xLjð Þ� �	 V xt xLjð Þ ð14Þ

where d is the TD error for state x at a discrete sampling instant, t,
given the critic parameters of the local networkxL, and k represents
the horizon length. If k approaches infinity, the summation terms
converge to the empirical return given in Eq. (1). A baseline,
V xt xLjð Þ, is used to reduce the variance compared with the policy
gradient algorithm [36].

At the end of k steps, the parameters of the global network (i.e.,
hG and xG) are updated using Eqs. (9) and (10).
cropping box (N�W); (b) sizes of the cropping boxes (N�M) and the initial
cropping box positions; (c) an example occlusion with its ratio, q.
3. Formulating the interface tracking as a sequential decision-
making process

3.1. Interface tracking

A model is a mathematical means of describing the process
dynamics that can occur either in a physical/chemical/biological
system [153] or in a video [154]. The models derived for images
often suffer from inaccuracies when there is an unexpected event
(e.g., occlusion). To overcome this, either the information from
the last valid observation is used in the next observation [4] or
the images are reconstructed [154]. Although these solutions
may substitute actual measurements for a short period of time,
prolonged exposure can deteriorate closed-loop stability. As a con-
sequence, if the FMI’s level is too low, the bitumen from the froth
layer drains into the tailings. This lowers the product quality and
creates environmental footprints. In contrast, if its level is closer
to the extraction point, the solid particles in the froth being
extracted complicate downstream operations [3]. Since deviations
in the FMI level affect the downstream processes, it is important to
regulate the FMI at an optimum point.

RL can address inaccuracies during occlusion and excessive
noise. This can be done by combining DP cell measurement or mea-
surement from any other reliable instrument with the current FMI
prediction by the agent to provide an accurate cost in the reward
function, without external labels such as bounding boxes, during
the training phase. Removing the dependence upon such labels
minimizes human error. To achieve this, an agent can move a crop-
ping box on the vertical axis over the PSV’s sight glass and compare
its center with the DP cell measurement. Based on this deviation,
the agent can move the box to an optimal position, where the cen-
ter of the box matches to that of the FMI. This deviation-
minimizing feedback mechanism is inspired from control theory,
and it can enhance an image-based estimation using the measure-
ment obtained from the real process.

Consider a grayscale image, I, sampled from a video stream as
I 2 RH�W with an arbitrary width, W, and height, H, which captures
the entire PSV. Consider a rectangular cropping box, B 2 RN�M , that
has an arbitrary width, M, and height, N, where
N : N ¼ 2ẑ	 1; ẑ > 1 2 Nf g and ẑ is the center of the rectangle.
An example image and a cropping box are shown in Fig. 4(a). This
rectangle crops I at ẑ into a size of N�M. For the sake of complete-
ness, H>N andW=M. Consider an interface measurement obtained
from a DP cell at time t as z. Note that the DP cell is used only in
offline training of the RL agent and can be replaced by other
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interface measurement sensors, which is considered to be accurate
in the offline laboratory environments.

The components of the MDP for this problem can then be
defined as follows:

States: The pixels inside the rectangle, x 2 B � X# I. These pix-
els may be thought of as N�M independent sensors.

Actions: Move the center of the cropping box up or down by 1
pixel, or freeze; u 2 U ¼ 	1; 0; 1f g.

Reward: The difference between the DP cell measurement and
the position of the center of the box (with reference to the bottom
of the PSV), at each timestep, t, given in Eq. (15).

Rt ¼ 	 zt 	 ẑtj j ð15Þ
The relation between ut and ẑt is given as Eq. (16).

ẑt ¼ ẑ0 þ
Xt	1
i¼0

ui ð16Þ

where ẑ0 is an arbitrary initial point, and the summation term rep-
resents the actions taken up to the tth instant (ui=+1 for up, ui=	1
for down).

Discount factor: c=0.99.
The goal of this agent is to generate a sequence of actions to

overlay the cropping box, B, on the vertical axis of the PSV with
the interface at its center. To achieve this, the agent needs to per-
form long-term planning and preserve the association between its
actions and the information obtained from DP cell measurement. A
flowchart of the proposed scheme is shown in Fig. 5. In addition,
Fig. 6 and Table 2 show the networks in detail. More details about
the ConvLSTM layer can be found in Ref. [27].

Unlike the previous works [4,5] that make predictions in the
state space, this approach optimizes the value and the policy-
spaces by using Eqs. (9), (10), and (14), respectively. Moreover,
the CNN and ConvLSTM layers are updated by using Eq. (17).

W Wþ 0:5� acrWLd � WLjð Þ2
þ 0:5� aarWLd � WLjð Þlnp � WLjð Þ þ bp � WLjð Þlnp � WLjð Þ ð17Þ

where W ¼ wCNN; wConvLSTM½ � represents the parameters of the CNN
and the ConvLSTM layers. This scheme trains the entire network
end-to-end by using only the TD error. Multiple workers [48] that
are initialized at different points (Fig. 4(b)) can be used to improve
the exploration and hence the generalization.
3



Fig. 5. Flow diagram for the proposed learning process. The update mechanism is shown in Eqs.(9) and (10) with the k-step policy evaluation, as shown in Eq. (14).

Fig. 6. Detailed structures of the CNN, ConvLSTM, actor, and critic networks.

Fig. 7. The experimental setup.
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After a suboptimal policy is found, the agent is guaranteed to
find the interface in a limited timestep k, independent of the initial
point, as shown in Lemma 3.1.

Lemma 3.1: At any time t, for a constant zt, with

P ¼ 1; 9k : zt 	 bz0 þPk
i¼0ui

� �
¼ 0, 8u � p � h�jð Þð Þ ^ 8x; u 2 X � Uð Þ,

as k ? N, for k 
 N < Xj j � 1ð Þ ^ 8z0; zt 2 Z � Xj jð Þ.
Proof. Assume bz0; zt � Z, k zt 	 bz0 k1 
 Xj j � 1 and the subop-

timal parameters h* andx* are obtained using an iterative stochas-
tic gradient descent over a continuous policy function p � h�jð Þ.
V � x�jð Þ is a Lipschitz continuous critic network, parameterized by
x, and estimates the value of policy p(∙) for a given state.

* ui � p � h�jð Þ; zt 	 bz0�� �� 
 zt 	 bz0 	 u0

�� �� 
 zt 	 bz0 	 u0 	 u1

�� ��
) Vp� x0 ¼ x bz0 þ u0

	 
� � 
 Vp� x bz0	 
� �
Similarly, Vp� x00 ¼ x bz0 þ u0 þ u1

	 
� � 
 Vp� x bz0 þ u0
	 
� �

* k zt 	 bz0 k1 � 1; lim
k!N�1

zt 	 bz0 þXk
i¼0

ui

 !
¼ 0

This can be extended to a variable zt 2 Z.

3.2. Robustness to occlusion via training

CNNs interpret the spatial information by considering the con-
nectivity of the pixels, which improves robustness up to a certain
point. However, it does not guarantee robustness to occlusion,
and the agent may fail even if a good policy is obtained under nor-
mal conditions. To overcome this issue, the agent may be trained
using synthetically occluded images during the training phase.
Another way is to recalibrate a policy (that was trained using
occlusion-free images) with occluded images.

An occluding object, X, with an arbitrary pixel intensity,
j 2 0; 255½ �, can be defined as X : X 2 R

H� N�qð Þ� �
, where

E X½ � ¼ j. q 2 0; 100%½ � represents the ratio of occlusion, as shown
in Fig. 4(c). If q=1, the agent observes only the occlusion in that
video frame (i.e., xt=X if q=100%). After defining its size, the ratio
of occlusion can be sampled from an arbitrary probability distribu-
tion (i.e., continuous or discrete, e.g., Gaussian, uniform, Poisson).
During training, the duration of the instance at which the occlusion
appears may be adjusted arbitrarily. These can be stochastic or
deterministic. That is, the occlusion may appear at a random (or
specific) time for a random (or particular) duration. If multiple
Table 2
Structure of the global network (the same structure as the workers).

No. Layer type Output dime

1 Convolutional 20�20�16
2 Convolutional 9�9�32
3 ConvLSTM 9�9�32
4 Fully connected (actor) 3
5 Fully connected (critic) 1
Total — —
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workers (as described in Section 2.2) are used, different occlusion
ratios at different time instances with different durations may be
introduced to each worker. This improves the diversity of the train-
ing data, which makes the process time efficient, because the agent
does not need to wait for a long time to observe different types of
occlusion.
4. Results and discussion

4.1. Experimental setup

A lab-scale setup that mimics an industrial PSV is used for the
proposed scheme. This setup allows for the movement of the inter-
face to a desired level using pumps, as shown in Fig. 7. Two DP cells
are used to measure the interface level based on the liquid density,
as described in Ref. [5].
nsion Filter size Number of parameters

8�8 1040
4�4 8224
3�3 73856
— 7776
— 2592
— 93488
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Images are obtained using D-Link DCS-8525LH camera at 15
frames per second (FPS). From the 15 FPS footages, a representative
image for each second is obtained. Hence, 80 images from 80 con-
secutive seconds are obtained with necessary down-sampling.
These images are processed to showcase the PSV portion, void of
unwanted background. They are then converted into grayscale
images. The DP cell measurements (for the same contiguous time
period as the images), which are available in terms of water head
(water-in), are converted to pixel positions, as given in Ref. [4].
After each action is taken, the video frame changes. Every action
the agent takes generates a scalar reward (Eq. (15)), which is later
utilized to calculate the TD error (Eq. (14)) that is used in training
the agent’s parameters (Eqs. (9) and (10)).

4.2. Implementation details

4.2.1. Software and network details
Both the training and the testing phases were conducted using

an Intel Core i7-7500U CPU at 2.90GHz (two cores, four threads),
8GB RAM at 2133MHz, and 64-bit Windows using Tensorflow
1.15.0. Unlike deeper networks (e.g., those in Ref. [32] that con-
sisted of tens of millions of parameters), this agent consisted of
fewer parameters, as summarized in Table 2. This prevents over-
parameterization and reduces the computational time signifi-
cantly, with the disadvantage of an inability to extract higher level
features [155].

After each action is taken, the cropping box is resized to 84�84
pixels. An Adam optimizer with a learning rate of 0.0001 is used to
optimize the parameters of the agent (including the CNN,
ConvLSTM, actor, and critic) in a sample-based manner. This
momentum-based stochastic optimization method has been
reported to be computationally efficient [156].

4.2.2. Training without occlusion
An A3C algorithm was used during the experiments to reduce

the training time, improve exploration, and achieve convergence
to a suboptimal policy during learning [48]. All of the initial net-
work parameters were sampled randomly from a Gaussian distri-
bution with zero mean and unit variance. Offline training was
performed after creating a continuous trajectory of the interface
level by manually ordering 80 unique images, as shown in Fig. 8.

This trajectory was then repeatedly shown to the agent for 470
steps for 2650 episodes (i.e., an episode consisted of 470 steps). At
any time, the agent observed only the pixels within the cropping
box. The cropping box of each agent was initialized at four different
positions, as shown in Fig. 4(b). The agent’s goal was to minimize
Fig. 8. Training results at the end of training (2650 episodes) and FT (3380
episodes). BFT: before fine-tuning; AFT: after fine-tuning.
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the deviation of the center of the cropping box with respect to
the DP cell measurements, given a maximum velocity of 1 pixel
per step. The agent was not exposed to occlusion during training
and was capable of processing 20 FPS (i.e., computational execu-
tion time) for four workers.

4.2.3. Fine-tuning with occlusion
The global network parameters were initialized using the

parameters obtained at the end of the training without occlusion.
The local networks initially shared the same parameters as the glo-
bal network. All of the training hyperparameters (e.g., learning
rate, interface trajectory) were kept unchanged. The images used
in the previous training phase were overlayed with occlusion,
whose ratio, q, was sampled from a Poisson distribution, as shown
in Eq. (18). The distribution, Pois(x, k), is given in Eq. (19).

q � qmax 	 Pois x; kð Þ
10

� 100% ð18Þ

Pois x; kð Þ ¼ e	kkx

x!
ð19Þ

Eq. (18) bounds q between 0 and qmax =80% at the beginning of
an episode. Shape factor is arbitrarily defined as k=1. In each epi-
sode, occlusion occurs at the 200th step to the following 200 steps
with a probability of 1. The intent behind FT is to make sure the
agent is robust to the occlusion. The agent, with four workers,
was trained for an arbitrary amount of 730 episodes until the
episodic cumulative reward improved.

4.2.4. Interface tracking test
For a 1000-step episode, the agent was tested using a discontin-

uous trajectory that contained previously unseen images that were
either noiseless or were laden with a Gaussian noise,
m 2 RH�W � Nð0; 1Þ, in three ways, as shown in Table 3. These
images were also occluded using a synthetic occlusion, whose con-
stant intensity was arbitrarily selected as the mean of the image
(i.e., j=128), while the occlusion ratio, q, varied linearly from
20% to 80%.

4.2.5. Feature analysis
To illustrate the effectiveness of the network, a previously

unseen PSV image was manually cropped starting from the top
of the PSV to the bottom. These manually cropped images were
then passed one by one through the CNN prior to training, the
CNN was trained as in Section 4.2.2, and the CNN was fine-tuned
as discussed in Section 4.2.3 to extract the features. These spatial
features, /s, were then collected in a buffer with the size
9�9�32�440, from which the reduced dimension (2�440) fea-
tures were obtained using UMAP [99]. These lower dimensional
features will be represented in Section 4.6.

4.3. Training

The best policies were obtained at the end of training and FT,
when there was no improvement in the cumulative reward for
500 consecutive episodes. Fig. 8 shows the trajectories using these
policies. The position of the cropping box is initialized with its
Table 3
Definition of noisy images based on their identities.

Identity of the noisy image Noisy image Condition

1 It ¼ It þ m� f t<300
2 It ¼ It � 1þ m� fð Þ 300
 t<700
3 It ¼ It � 1þ m� 2� fð Þ t
700

� represents the Hadamard product. f is the magnitude of noise.



Fig. 10. Cumulative rewards. The graph shows that the agent can learn the
occlusion and track the interface successfully.
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center at 60% of the PSV’s maximum height. At the end of this
phase, the agent tracked the interface with a negligible amount
of offset. An example obtained from the 80th step is shown in
Fig. 9(a). The green star represents where the agent thinks the
interface is for the current frame.

4.4. FT re-calibration for occlusion

FT improved the agent’s overall performance, even for the
occlusion-free images, by reducing the level-wise mean average
error (MAE) by 0.51%, as summarized in Table 4. This result indi-
cates that the agent adapted to the new environmental conditions
without forgetting the previous conditions. This was due to the
improvements in the value estimation and the policy, which
started from near-optimal points. Note that the minimum value
for the MAE is limited by the initial position of the cropping box,
as shown in Fig. 8.

Fig. 10 shows the cumulative rewards from one of the workers
during training and after fine-tuning (AFT), as shown in solid and
dash-dot lines, respectively.

Note that the initial decrease during FT was caused by the
occlusion, because the agent was not able to track the interface
level when occlusion occurred. This new feature was learned suc-
cessfully by the closed-loop reward mechanism within 400 epi-
sodes. Note that the final cumulative reward obtained at the end
of FT is almost the same as that obtained at the end of training. This
is because the cumulative reward represents only the tracking per-
formance during training and depends on the initial position of the
cropping box, as shown in Fig. 8. This value can be zero only if the
center of the box and the DP cell measurement overlap completely
at the beginning of the episode and the agent tracks the interface
without any offsets during the episode. The necessity of the FT is
more pronounced when the agent is exposed to unseen environ-
Fig. 9. (a) Training result at the 80th frame. (b) Test result AFT with 80% occlusion
and excessive noise, at the 950th step. The white boxes represent the cropping box
that the agent controls. The stars represent the center of the cropping box, and the
circles are the exact interface level. The pentagon is the bottom of the occlusion,
which looks like the FMI.

Table 4
Pixel- and level-wise MAE at the end of training and FT.

Stage MAE pixel MAE level

After training 4.9852 1.1382
AFT 4.9597 1.1324
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mental conditions such as excessive noise and occlusion, as dis-
cussed in Section 4.5.

4.5. Test

4.5.1. Before fine-tuning
The initial before fine-tuning (BFT) test was conducted at the

end of the initial training (i.e., the 2650th episode, as shown in
Fig. 10). Note that in the testing (online application) phase, DP cell
information is not being used, and the RL agent works on its own.
In fact, even if the DP cell is available, it will not be accurate in the
field application environment. Fig. 11 shows that the agent was
robust to up to 50% occlusion and additional noise prior to FT. This
is a significant improvement over the existing schemes, all of
which do not address occlusion. The reason for this improvement
is that the neural networks extract more abstract features than
edge and histogram information, in both the spatial and temporal
domains [157]. This is due to the convolutional operations that
smooth out disturbances and improve the agent’s overall perfor-
mance. On the other hand, any further increase to the occlusion
ratio resulted in failure to track the interface. Since occlusion is
of lighter intensity, the policy naturally moved toward the bottom
of the PSV (where pixels of higher intensity were abundant) to find
the interface.

4.5.2. After fine-tuning
AFT, it was found that recalibrating the agent for occlusion

improved its performance significantly, as seen from its ability to
Fig. 11. Test results: Tracking, where q is the occlusion ratio (e.g., q ¼ 0:8 means
that the image is occluded by 80%).
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track the interfacemore accurately (Fig. 11). Additional noise caused
its performance to degrade when the interface offset between the
consecutive frameswas around5%.However, the agentwas success-
ful when this interface offset was reduced to 2.5%, as shown in
Fig. 11. This is because the excessive noise corrupts the image signif-
icantly and the agent fails to locate the interface. An example frame
obtained at the 950th frame is shown in Fig. 9(b). It should be noted
that the noise is accompanied by 80% occlusion; this makes the
tracking problem more challenging, since the amount of useful
information extracted by the agent from the image is significantly
reduced—that is, only 20% of the pixels can be used to locate the
interface. This performance is due to the CNN and ConvLSTMcombi-
nation. Fig. 12 shows the agent’s beliefs (predicted by the critic)
about the states (obtained from an unseen frame) using parameters
obtained from a random network (solid), after training (dash-dot),
and AFT (dot). According to Eq. (2), this figure defines the value of
a state, assuming that the best trajectory toward the interface level
would be generated by the policy.

Fig. 12 also shows that, prior to any training, the value predicted
for any state is similar. However, during training, the agent regrets
being in disadvantegous states, and the DP cell readings reinforce
that moving the cropping box closer to the interface (i.e., a vertical
solid line) yields a better value than being further away from it. At
the end of FT, with more data, the agent further improves its
parameters—and therefore its actions—to move the cropper box
so that it becomes more accurate. This result shows that the agent
Fig. 12. Test results of value function versus deviation from the interface.

Fig. 13. Dimensionality reduction applied to the features of the states (x 2 X) obtained fr
(a) random, (b) trained, and (c) fine-tuned networks. The data points are then colored b
bottom of the tank and the FMI are highlighted on the unseen image. As the agent trains
space.
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tries to improve its actions based on a constantly changing belief
(value). Note that the increase in AFT after a deviation value of
200 corresponds to the yellow pentagon in Fig. 9, which looks like
the interface and causes an increase in the value function. How-
ever, the value obtained from that part is lower than that of the
interface, meaning that the agent is more confident when it is close
to the star, rather than to the pentagon.

4.6. Understanding the network: Feature analysis

The training and test results focused on the progress of the
learning and control abilities of the agent. These alone may not
be sufficient to explain whether the agent’s decisions are meaning-
ful given an observation in the form of an image.

Fig. 13 shows the reduced dimensionality as a two-dimensional
graph by representing the values of the corresponding cropped
images (obtained in Section 4.2.5) using the gradual intensities of
a color. The curve (from left to right) corresponds to the cropped
images from top to bottom of the PSV tank side glass, as explained
in Section 4.2.5.

The colored pentagons in Figs. 13(a)–(c) correspond to three
points in Fig. 13(d). According to the results, the features obtained
from the network prior to training are similar to each other with-
out any particular arrangement. However, as training proceeds,
features with similar values get closer. Upon combining Fig. 13
with Fig. 12, it could be inferred that the CNN was able to extract
the features in a meaningful way, despite using unlabeled data in
a model-free context, due to the RL methodology. This was possible
because the texture and pixel intensity pattern of each cropped
image was successfully converted into the value and the policy
functions by employing a CNN–ConvLSTM combination. Also, the
reward signal obtained from the DP cell (which was used as a feed-
back mechanism) trained the agent’s behavior.
5. Conclusion

This work provided a comprehensive review on actor–critic
algorithms and proposed a novel RL scheme that targets the instru-
mentation level of the control hierarchy in order to improve the
performance of the entire structure. To achieve this result,
interface tracking was formulated as a sequential decision-
making process that requires long-term planning. The agent was
composed of a CNN and ConvLSTM combination that does not
require any shape or motion models and is hence more robust to
om an unseen image. The features are obtained using the parameters obtained from
y their corresponding values. (d) Three regions that correspond to the top and the
, the extracted features from similar regions are clustered closer in the Riemannian
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uncertainties in the process conditions. Inspired from the feedback
mechanism used in control theory, the agent utilized readings from
DP cells to improve its actions. This technique removes the depen-
dencies on explicit labels that are required for SL schemes. The
agent’s performance during validation using untrained images
under occlusion and noise showed that the interface can be tracked
under up to 80% occlusion and excessive noise. An analysis of the
high-dimensional features validated the agent’s generalization of
its beliefs around its observations.

6. Future work

This work successfully demonstrated the tracking of a liquid
interface by utilizing one of the most advanced RL techniques.
The occlusion was handled by employing an agent composed of
deep CNN structures, and the tolerance was improved by FT the
policy, which showcased the adaptive nature of the proposed
method. In addition to these, an agent that can reconstruct the
occluded images may be an alternative method for future work.
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alıs�malarını Muhite Yayma ve Halk Eğitimi Yayınları Konferanslar Serisi
No: 1. Erzurum: Atatürk Üniversitesi; 1959. p. 91–103. Turkish.

[62] Wang Y, Velswamy K, Huang B. A long-short term memory recurrent neural
network based reinforcement learning controller for office heating
ventilation and air conditioning systems. Processes 2017;5(4):46.

[63] Spielberg SPK, Gopaluni RB, Loewen PD. Deep reinforcement learning
approaches for process control. In: Proceedings of the 6th International
Symposium on Advanced Control of Industrial Processes; 2017 May 28–31;
Taipei, China. New York: IEEE; 2017. p. 201–6.

[64] Pandian BJ, Noel MM. Tracking control of a continuous stirred tank reactor
using direct and tuned reinforcement learning based controllers. Chem Prod
Process Mo 2018;13(3):20170040.

[65] Shin J, Badgwell TA, Liu KH, Lee JH. Reinforcement learning overview of recent
progress and implications for process control. Comput Chem Eng
2019;127:282–94.

[66] Ruan Y, Zhang Y, Mao T, Zhou X, Li D, Zhou H. Trajectory optimization and
positioning control for batch process using learning control. Control Eng Pract
2019;85:1–10.

[67] Nian R, Liu J, Huang B. A review on reinforcement learning: introduction and
applications in industrial process control. Comput Chem Eng 2020;139:106886.

[68] Zhu L, Cui Y, Takami G, Kanokogi H, Matsubara T. Scalable reinforcement
learning for plant-wide control of vinyl acetate monomer process. Control
Eng Pract 2020;97:104331.

[69] Todorov E, Erez T, Tassa Y. MuJoCo: a physics engine for model-based control.
In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems; 2012 Oct 7–12; Vilamoura-Algarve, Portugal. New York:
IEEE; 2012. p. 5026–33.

[70] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et al.
Playing Atari with deep reinforcement learning. 2013. arXiv:1312.5602.

[71] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al.
Human-level control through deep reinforcement learning. Nature 2015;518
(7540):529–33.

[72] Jaderberg M, Czarnecki WM, Dunning I, Marris L, Lever G, Castañeda AG, et al.
Human-level performance in 3D multiplayer games with population-based
reinforcement learning. Science 2019;364(6443):859–65.

[73] Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, et al.
OpenAI Gym. 2016. arXiv:1606.01540.

http://refhub.elsevier.com/S2095-8099(21)00326-X/h0065
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0065
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0070
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0070
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0075
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0075
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0075
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0080
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0080
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0080
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0085
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0085
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0090
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0090
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0095
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0095
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0095
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0100
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0100
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0100
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0100
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0105
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0105
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0110
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0110
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0115
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0115
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0115
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0120
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0125
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0125
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0135
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0135
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0135
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0135
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0135
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0135
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0140
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0140
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0140
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0145
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0145
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0145
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0145
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0145
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0150
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0150
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0150
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0155
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0155
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0155
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0155
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0160
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0160
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0160
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0160
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0165
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0165
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0165
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0170
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0170
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0175
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0175
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0175
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0175
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0180
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0180
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0185
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0190
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0190
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0195
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0195
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0200
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0200
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0205
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0205
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0210
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0210
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0215
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0215
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0220
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0220
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0220
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0230
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0230
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0230
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0230
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0230
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0245
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0250
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0250
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0250
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0255
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0255
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0255
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0260
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0260
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0270
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0270
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0270
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0270
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0270
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0270
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0280
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0280
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0280
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0280
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0300
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0300
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0310
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0310
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0310
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0315
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0315
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0315
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0315
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0320
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0320
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0320
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0325
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0325
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0325
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0330
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0330
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0330
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0335
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0335
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0340
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0340
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0340
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0355
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0355
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0355
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0360
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0360
http://refhub.elsevier.com/S2095-8099(21)00326-X/h0360


O. Dogru, K. Velswamy and B. Huang Engineering 7 (2021) 1248–1261
[74] Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, et al. A general
reinforcement learning algorithm that masters chess, shogi, and Go through
self-play. Science 2018;362(6419):1140–4.

[75] Baker B, Kanitscheider I, Markov T, Wu Y, Powell G, McGrew B, et al. Emergent
tool use from multi-agent autocurricula. 2019. arXiv:1909.07528.

[76] Berner C, Brockman G, Chan B, Cheung V, Dębiak P, Dennison C, et al. Dota 2
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