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Lung cancer is a leading cause of cancer-related death worldwide, with a very poor overall five-year sur-
vival rate. The intrinsic limitations associated with the conventional diagnosis and therapeutic strategies
used for lung cancer have motivated the development of nanotechnology and nanomedicine approaches,
in order to improve early diagnosis rate and develop more effective and safer therapeutic options for lung
cancer. Cancer nanomedicines aim to individualize drug delivery, diagnosis, and therapy by tailoring
them to each patient’s unique physiology and pathological features—on both the genomic and proteomic
levels—and have attracted widespread attention in this field. Despite the successful application of nano-
medicine techniques in lung cancer research, the clinical translation of nanomedicine approaches
remains challenging due to the limited understanding of the interactions that occur between nanotech-
nology and biology, and the challenges posed by the toxicology, pharmacology, immunology, and large-
scale manufacturing of nanoparticles. In this review, we highlight the progress and opportunities associ-
ated with nanomedicine use for lung cancer treatment and discuss the prospects of this field, together
with the challenges associated with clinical translation.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Despite recent advances in lung cancer detection and treat-
ment, lung cancer remains the most lethal cancer worldwide,
due to the failure to detect cancer occurrence early and the lack
of effective treatments for advanced-stage patients. Lung cancer
is the most common newly diagnosed cancer type in North
America and Asia [1,2]. The primary difficulty associated with lung
cancer detection is that existing detection methods, including
bronchial biopsy and computed tomography (CT), depend heavily
on tumor size and require specific medical equipment, which is
often associated with high costs. Nanotechnology offers the pro-
mise of new detection approaches, as nanoparticle (NP) surfaces
can be modified to bind to overexpressed receptors in tumor cells,
which can act as cancer imaging contrast agents, to increase the
sensitivity and specificity of cancer detection methods [3,4]. In
addition, microfluidic arrays and array-based sensing methods that
use NPs are promising and novel cancer diagnostic approaches,
with ultralow detection thresholds, short assay times, high-
throughput capabilities, and low sample consumption [5,6].

NPs can also be used to improve lung cancer treatment.
Precision nanomedicines, which have unique properties, including
nanoscale sizes, high surface-to-volume ratios, and favorable
physicochemical characteristics, could potentially be used to
modulate the pharmacokinetic and pharmacodynamic profiles of
cancer drugs, enhancing their therapeutic indexes. These charac-
teristics are necessary properties of current precision medicines
(PMs) [7–10] because many PMs, such as nucleic acid-based
therapies and antibodies, suffer from poor targeting abilities and
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plasma stability, suboptimal pharmacokinetic properties, and
immunological toxicities, which have prohibited their clinical
translation [11,12].

An increasing number of studies have indicated the potential
benefits of precision nanomedicine techniques for the early diag-
nosis and targeted therapy of lung cancer. Therefore, a critical
review is necessary to provide a more complete understanding of
these new strategies.
2. Personalized diagnosis of lung cancer

2.1. Nanotechnology for the in vivo diagnosis of lung cancer

Successful early diagnosis of lung cancer can improve survival
rates. Conventional medical imaging technologies, such as mag-
netic resonance-guided focused ultrasound surgery (MRgFUS),
are currently limited by the insensitivity of magnetic resonance
imaging (MRI) for the visualization of small tumors [13]. NPs can
be used as imaging contrast agents to increase the resolution and
improve the anatomic definition of lesions. Recently, Wang et al.
[14] constructed an active-targeting nanosized, theranostic, super-
paramagnetic iron oxide (SPIO) platform to increase the imaging
sensitivity and energy-deposition efficiency of a clinical MRgFUS
system. The surfaces of these polyethylene glycol (PEG)-ylated
SPIO NPs were decorated with anti-epidermal growth factor recep-
tor (EGFR) monoclonal antibodies, for the targeted delivery of NPs
to EGFR-overexpressing lung cancer cells. The researchers demon-
strated that using these NPs significantly improved MRI sensitivity
for the visualization of EGFR-overexpressing lung cancer cells in a
rat model.

Quantum dots (QDs) are semiconductor nanocrystals (2–
100nm in size), with unique optical and electrical properties. Com-
pared with organic dye molecules, the bright fluorescence and high
photochemical endurance of QDs make them promising for use in
fluorescence imaging approaches [15]. Near-infrared (NIR)-
emitting QDs, which exhibit high molar excitation coefficients,
are particularly well-suited for in vivo whole-body imaging tech-
niques because NIR light penetrates the body more deeply than
light in the visible spectrum. The Papagiannaros et al. [16] pre-
pared a tumor-targeted NIR-imaging agent composed of a
cancer-specific monoclonal anti-nucleosome antibody, 2C5, cou-
pled with QD-containing polymeric micelles. They demonstrated
that this fluorescent imaging molecule exhibited excellent imaging
properties, with a tumor fluorescence intensity 1h after injection
that was two-fold that of nontargeted, QD-loaded PEG–polyethy-
lene micelles.

In addition to exploring the development of a single, powerful
imaging modality, the development of multimodal approaches
has been attempted, through the integration of several imaging
technologies, in order to overcome the individual shortcomings
of each technique [17]. For example, Xiao et al. [18] incorporated
gadolinium-doped mesoporous silica nanoparticles (MSNs)
and gold nanoparticles (AuNPs) into a single nanosystem
(Gd2O3@MCM-41@Au) and found that Gd2O3@MCM-41@Au served
as an efficient MRI contrast agent during cancer imaging and
successfully targeted EGFR molecules, for surface-enhanced Raman
scattering (SERS) detection.
2.2. Nanotechnology for the in vitro diagnosis of lung cancer

Accurate diagnoses require the determination of how and
where to collect biopsy tissue samples. Critical advances in molec-
ular biology have allowed the capture and analysis of tumor-
derived substances from body fluids [19,20]. The identification of
clinically relevant alterations is now possible at the DNA, RNA,
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and protein levels [21]. Therefore, physicians have multiple biopsy
options when evaluating lung cancer patients, including lesions in
the lungs, peripheral blood, and pleural effusion (PE). For popula-
tion screening, noninvasive analyses such as peripheral blood
analyses are preferable because tissues may not be available. In
recent years, nanotechnology has made great contributions toward
achieving the high sensitivity and high specificity that are neces-
sary for accurate diagnoses. NPs possess large surface areas that
can be linked with multiple diagnostic agents, improving the effi-
ciency and sensitivity of diagnoses. Compared with traditional
polymerase chain reaction (PCR)-based sequencing techniques,
microfluidic (lab-on-a-chip) technologies and array-based sensing
that use NPs are attractive alternatives for cancer diagnoses.

2.2.1. Tumor-derived DNA in peripheral blood
Extracellular DNA detected in the peripheral blood that shares

genetic information with the host is referred to as cell-free DNA
(cfDNA) [22], and cfDNA that originates from tumor cells is termed
circulating tumor DNA (ctDNA). Currently, the exact mechanism
through which ctDNA is released into the blood remains unknown.
ctDNA is thought to be released from apoptotic and necrotic tumor
cells or secreted from live tumor cells [23]. Cancer patients present
increased amounts of both cfDNA and ctDNA compared with
healthy controls [24]. Because ctDNA carries the genomic varia-
tions and heterogeneity that have emerged during tumor evolu-
tion, ctDNA monitoring presents an obvious possible avenue for
monitoring tumor status, progression, and the occurrence of treat-
ment resistance in cancer patients.

To achieve the goal of using ctDNA to monitor tumor progres-
sion, ctDNA must first be enriched from peripheral blood samples.
Both cfDNA and ctDNA in peripheral blood have low molecular
weights, which require improved enrichment techniques because
conventional methods for DNA isolation and extraction from
peripheral blood are better suited for DNA molecules with medium
and high molecular weights. Furthermore, the proportion of ctDNA
in cfDNA varies widely, depending on individual variations. There-
fore, isolation approaches are also necessary to distinguish ctDNA
from cfDNA. Fortunately, technological advances have already
facilitated the enrichment of rare ctDNA [25,26]. Nanomaterials
have already been developed to enrich ctDNA using specific
markers, such as epithelial cell adhesion molecule (EpCAM) and
cytokeratin (CK).

Biocompatible AuNPs [27], in combination with polymer beads
[28] and immunomagnetic beads [29], have been investigated for
this scheme. In addition, nanostructure substrates that offer
increased surface areas, such as nanotubes, nanopillars, nanowires,
and nanotextured surfaces, could facilitate increased interactions
with biomolecules, resulting in biosensing platforms that are cap-
able of capturing or isolating ctDNA. For example, after being func-
tionalized with an aptamer, nanotopographic substrates were able
to selectively capture more than 90% of cancer cells [30].
Nanostructured electric materials [31], such as the electroactive
conducting polymer polypyrrole [32] and gold (Au) nanowires
coated with polypyrrole [33], have also exhibited high efficiency
levels for the isolation of ctDNA, with high yields and purities.

Early lung cancer detection is just one potential application of
ctDNA analysis. ctDNA can reveal genetic variations associated
with lung cancer and increase the reliability of diagnoses. Thus
far, several researchers have successfully enriched ctDNA for the
performance of molecular genotyping analyses in lung cancer
patients [34,35]. A silicon nanowire substrate (SiNS) embedded
in a microfluidic chip (Fig. 1), combined with the rationally
designed, cell-based, systematic evolution of ligands by exponen-
tial enrichment (SELEX)-derived aptamers, has successfully
enhanced the differential capture of circulating tumor cells from
non-small cell lung cancer (NSCLC) patients [36].



Fig. 1. Schematic depiction of a microfluidic, circulating tumor cell chip, composed
of an aptamer-grafted silicon nanowire substrate (SiNS) and an overlaid poly-
dimethylsiloxane (PDMS) chaotic mixer. Reproduced from Ref. [36] with permission
of Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany �2016.

W. Yin, F. Pan, J. Zhu et al. Engineering 7 (2021) 1577–1585
2.2.2. Tumor-derived DNA in PE
The emergence of PE is a common clinical manifestation of lung

cancer. This excess fluid, which accumulates in the pleural cavity,
contains tumor-derived DNA. Sampling PE is a practical approach
to analyze the molecular profiles of lung cancer lesions [37]. Fur-
thermore, in some patients, PE is the initial symptom of disease,
and thus provides an early opportunity to detect tumor-derived
DNA.

The enrichment of tumor-derived DNA from PE can be difficult
because PE often contains various inflammatory and mesothelial
cells. Existing strategies for isolating tumor-derived DNA rely on
the macro-dissection, manual micro-dissection, or laser-capture
micro-dissection of smears or cell blocks. Several successful cases
using these strategies have been previously described [38,39].

2.2.3. Exosomes
Exosomes range from 30 to 150nm in size and are released dur-

ing the fusion between multivesicular endosomes (MVEs) and the
plasma membrane [40]. Exosomes can alter the functions of vari-
ous cells by regulating cell communications. A previous study indi-
cated that exosomes may be involved in the oncogenic process,
through the regulation of tumor immune responses, pre-
metastatic niches, and chemotherapeutic resistance [41]. Thus,
exosomes are potential specific targets for diagnosis and therapeu-
tic interventions. In addition, exosomes have been identified and
enriched from peripheral blood [42] and may, therefore, be clini-
cally applicable specimens for cancer analysis.

Current exosome isolation methods, such as sucrose gradient
ultracentrifugation and ultrafiltration, rely heavily on multiple-
step ultracentrifugation processes, which are tedious and time-
consuming, as well as having low efficiency for discriminating exo-
somes from other biomaterials. Similar to existing techniques for
the isolation and enrichment of ctDNA, microfluidic technologies
are being developed to capture exosomes. These technologies have
the advantages of small sample volume requirements, low costs,
short operation times, and high sensitivity [43]. The capture of tar-
geted exosomes depends on the use of microfluidic channels that
have been functionalized with antibodies, in order to enhance their
affinities for targeted exosomes. For example, He et al. [44] devel-
oped an integrated microfluidic exosome analysis platform by
combining a magnetic bead-based strategy with a multi-step
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analysis (Fig. 2). This device was able to successfully assess the
total expression and phosphorylation levels of insulin-like growth
factor 1 receptor (IGF-1R) in NSCLC patients by directly probing
plasma exosomes. In addition to specific antibodies, aptamers
[45], PEG-ylated lipids [46], and graphene oxide/polydopamine
(GO/PDA) nano-interfaces [47] have demonstrated satisfactory
performances as ligands. Aptamers are particularly stable in vari-
ous solutions, including a wide range of salt concentrations, and
under ionic and denaturing conditions. Furthermore, cancer cells
can be sorted according to physical plasticity and diameter.
3. Precision nanomedicine for lung cancer

Compared with chemotherapy, which inhibits the proliferation
of all cells, targeted cancer therapy specifically and accurately
enacts tumor suppression by targeting the specific molecules
involved in oncogenesis. The efficient and precise delivery of drugs
to target lesions is a critical factor for the success of targeted
treatments.

3.1. Drug delivery

The unique physicochemical properties of nanomaterials have
made them premier options as both drugs and drug delivery sys-
tems (DDSs) for the targeted treatment of cancer [48]. Cancers
demonstrate irregular cell growth, aided by the development of
new blood vessel networks that are highly porous, with large
spaces between endothelial cells. Taking advantage of the
anatomical and pathophysiological differences between normal
and tumor tissues, nanodrugs are designed to circulate in the blood
for long periods and to accumulate at tumor sites through the
enhanced permeability and retention (EPR) effect [49]. In addition,
nano-based DDSs have received attention for their potential to
overcome problems associated with the solubility, stability,
diffusivity, blood circulation half-time, and immunogenicity of
chemotherapy drugs and to improve the specificity of drug release
during cancer treatment [50]. At present, nano-based DDSs include
conventional liposomes, polymer NPs, dendritic polymers, and
micelles, in addition to inorganic nanomaterials such as AuNPs,
MSNs, and metal–organic frameworks. Furthermore, the favorable
physicochemical, biochemical, and electrical properties of inor-
ganic NP-based imaging contrast agents have resulted in improved
sensitivity for positron emission tomography (PET), MRI, and
single-photon emission computed tomography (SPECT) platforms,
facilitating real-time observations of cancer progression during
the treatment process.

3.1.1. Gold nanoparticles
The confirmed driver oncogene associated with NSCLC is a top

potential treatment target. During recent decades, inorganic NPs
have been widely investigated for use as drugs or DDSs in targeted
cancer treatment [51], and AuNPs have attracted particular atten-
tion due to their unique optical properties, low toxicity, and the
ease with which they can be prepared and functionalized. To
achieve the maximum accumulation of NPs in tumor tissues and
to increase efficiency, AuNPs have been modified with various
active ligands. AuNPs bound to the anti-cancer drug methotrexate
(MTX) have demonstrated high levels of tumor retention and
enhanced therapeutic efficacy in a Lewis lung carcinoma mouse
model, compared with an equal dose of free MTX, which may be
attributed to the ‘‘concentrated effect” of MTX–AuNPs [52]. EGFR
is a cell-surface receptor that is overexpressed in several tumor
types, including NSCLC. In recent years, EGFR-targeted antibodies
have become a popular targeting strategy for NSCLC treatment.
Yokoyama et al. [53] have reported that Clone 225 antibody-



Fig. 2. Integrated microfluidic exosome analysis for NSCLC patients. (a) A PDMS chip, containing a microchannel network for exosome analysis; (b) integration of the
streamlined, lab-on-a-chip, immunomagnetic isolation of exosomes, exosome lysis, protein capture, and intravesicular protein analysis. Reproduced from Ref. [44] with
permission of the Royal Society of Chemistry, �2014.
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conjugated hybrid plasmonic magnetic NPs (C225-AuFe NPs)
exhibited enhanced antitumor activity through the induction of
apoptosis and autophagy. Furthermore, a novel radioimmunothera-
nostic agent, 131I-C225-AuNPs-PEG, was successfully synthesized
(Fig. 3) and exhibited enhanced endocytosis and cytotoxicity
against high-EGFR-expressing human A549 lung carcinoma cells;
it also actively targeted an A549 tumor xenograft in a mouse
model [54]. AuNPs have exhibited enhanced internalization via
antibody-mediated endocytosis. Due to the strong and selective
Fig. 3. Scheme depicting the radioiodination of C225-AuNPs-PEG using the iodoge
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interaction that occurs between gold and sulfur groups, the use
of sulfur-containing targeted ligands, which are chemisorbed onto
the NP surface via sulfur bonds, can improve efficiency [55]. AuNPs
are also ideal carriers of micro-RNAs (miRNAs), which can further
function as specific inhibitors [56].

3.1.2. Mesoporous silica nanoparticles
Due to their large surface areas, large pore volumes, and high

levels of biochemical and physicochemical stability, MSNs have
n method. Reproduced from Ref. [54] with permission of Elsevier Ltd., �2013.
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attracted substantial interest as potential DDSs [57,58]. MSN-
coated gold nanorods (AuNRs) loaded with doxorubicin (DOX)
have been designed to act as light-mediated, multifunctional,
theranostic carriers for lung cancer treatments, and have been
shown to result in enhanced cancer cell death, due to the synergis-
tic effects of chemotherapy and hyperthermia-based treatments
[59]. A tumor microenvironment-cascade pH-responsive DDS was
constructed by functionalizing hollow MSNs (HMSNs) using
b-cyclodextrin (b-CD) and adenosine deaminase (Ada)-PEG, and
further loading them with DOX (HMSNs-b-CD/Ada-PEG@DOX).
This approach effectively resolved the ‘‘PEG dilemma” and facili-
tated the specific release of loaded drugs in cancer cells, inducing
cell apoptosis and inhibiting tumor growth with minimal toxic side
effects (Fig. 4) [60]. EGFR monoclonal antibody-capped MSNs have
been demonstrated to specifically target EGFR-mutant lung cancer
cells and to efficiently release loaded drugs in the cancer cells. The
release speed of therapeutic reagents from MSNs can also be
adjusted by developing a smart nanomedicine system.
3.1.3. Nanoscale coordination polymers and nanoscale metal–organic
frameworks

Nanoscale coordination polymers (NCPs) and nanoscale metal–
organic frameworks (NMOFs), which are constructed from the self-
assembly of metal-connecting points and organic bridging ligands,
have also been developed as DDSs for cancer therapy, due to their
tunable compositions, sizes, and shapes; ease of surface modifica-
tion; high drug-loading capacities; and intrinsic biodegradability
properties. Several reports have focused on the application of NCPs
and NMOFs as DDSs. Lipid-coated and anisamide-targeted NCPs
displayed enhanced cytotoxicity against human lung cancer cells,
compared with as-synthesized particles or free bisphosphonates
[61]. The Liu et al. [62] further constructed zinc (Zn)-
bisphosphonate NCPs carrying either 48%±3% (weight percent)
cisplatin prodrug or 45%±5% (weight percent) oxaliplatin prodrug.
The NCPs were PEG-ylated to further stabilize the particles and to
inhibit the burst release of drugs. Both NCPs demonstrated
enhanced antitumor activities when compared with free drugs in
three different tumor models. Folate (Fol)-targeted calcium
Fig. 4. Schematic illustration showing the drug delivery process of the HMSNs-b-CD/A
monium bromide; HepG2: human hepatocellular carcinoma. Reproduced from Ref. [60]
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zoledronate (CaZol) NMOFs have been fabricated by incorporating
Fol-targeted ligands into CaZol NMOFs, which possess excellent
chemical and colloidal stability under physiological conditions.
The encapsulated zoledronate was released from the NMOFs in
mid-endosomes during endocytosis and exhibited increased effi-
ciency for the inhibition of NSCLC proliferation and the induction
of apoptosis, compared with small-molecule zoledronate [63].
3.2. Nanotheranostics

Recently, the early diagnosis and targeted therapeutic results
associated with the use of nanomedicines during lung cancer have
encouraged scientists to explore ‘‘nanotheranostics,” which are
sub-micrometer-sized carrier materials that contain both
drugs and imaging agents within a single formulation [64,65].
Nanotheranostics hold the potential to contribute to the develop-
ment of personalized approaches to cancer management. Common
diagnostic agents include SPIOs, QDs, radionuclides, and heavy
elements, such as iodine. An ideal theranostic nanomedicine
would recognize a specific target, bind to specific receptors on
the targeted cell membrane, diagnose the cancer morphology,
and provide effective therapy, while simultaneously possessing
biocompatibility and biodegradability. Nanotheranostics are
expected to provide practical solutions for cancer treatments and
cures during the early stages of lung cancer.

The first example of theranostic nanomedicine, which com-
bined chemotherapeutic and photothermal therapy (PTT) in vivo,
was constructed by conjugating Taxol-loaded poly(lactide-co-
glycolic acid) (PLGA) NPs with iron oxide NPs and QDs [66]. QD/
Fe3O4/Taxol-loaded PLGA NPs can potentially serve as contrast
agents for MRIs, and AuNRs can convert NIR light into heat, in
order to simultaneously achieve the photothermal ablation of
tumor tissue and destroy spherical PLGAs, efficiently releasing
encapsulated Taxol. In vivo, AuNR/QD/Fe3O4/Taxol-loaded PLGA
NPs were intratumorally injected into transplanted tumors in mice,
resulting in the progressive reduction of tumor volumes.

The Jing et al. [67] successfully fabricated a robust theranostic
cerasome named ICG@DPDCs-177Lu for NIR fluorescence imaging
da-PEG system in a tumor microenvironment, in vivo. CTAB: N-cetyltrimethylam-
with permission of Elsevier Ltd., �2016.
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and the photothermal ablation of cancer cells by encapsulating
indocyanine green (ICG) in 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[carboxy(polyethylene glycol)2000]-1,4,
7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid monoamide
(DSPE-PEG2000-DOTA) and then chelating the radioisotope 177Lu.
ICG@DPDCs-177Lu can be used as an attractive radionuclide cancer
therapy; in vivo, the ICG@DPDCs effectively ablated cancer cells
through photothermal effects (Fig. 5).
4. Improvements in traditional lung cancer diagnosis methods
using nanomedicine

Traditionally, histological examinations of resected tumors
have been necessary in order to make reliable diagnoses. For pre-
clinical diagnoses, CT and MRI are the most commonly used
approaches. However, the use of nontargeted contrast agents dur-
ing diagnosis has intrinsic limitations, such as low sensitivity and
specificity, which can affect accurate tumor localization. NPs have
been synthesized to overcome these problems. By conjugating NPs
with other moieties, which act as markers, the morphologies of
tumors can be more clearly delineated [68].

Inorganic nanomaterials have long been used for DDSs, imaging,
tumor treatment, diagnosis, and prognosis. The most commonly
employed materials are gold, silver (Ag), silica, and iron oxides.
Several studies have focused on AuNPs, due to their biocompatible,
multifunctional, and theranostic properties. For example, silica–
gold nanoshells, modified with PEG, were synthesized for use dur-
ing PTT, which can be applied to solid tumors using NIR light [69].
Knights and McLaughlan [70] demonstrated the size-dependent
effects of AuNRs on both the photoacoustic (PA) imaging response
and pulsed-wave photothermal therapeutic efficacy. A study
demonstrated the in vivo lung cancer antitumor activity of silver
nanoparticles (AgNPs) against lung cancer cells and a xenograft
mouse model [71]. However, the toxicity of inorganic nanomateri-
als can result in harmful impacts on normal cells. Because the
mononuclear phagocyte system (MPS) is responsible for the clear-
ance of drugs, non-biodegradable inorganic NPs and toxic macro-
molecules can be difficult to clear from the human body.
Cytotoxicity tests are usually performed using trypan blue and 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assays.

To overcome the difficulties associated with inorganic NPs, bio-
compatible organic nanomaterials and ultrasmall biodegradable
nanomedicines have been developed [72,73]. Ultrasmall SPIOs
(USPIOs), for example, are biodegradable NPs that are smaller than
50nm, which allows them to pass through even the smallest blood
vessels and remain in circulation [74,75]. In addition, these NPs are
nontoxic to major MPS organs, such as the bone marrow, spleen,
Fig. 5. Structural illustration of 177Lu-labeled cerasomes encapsulating indocyanine
green (ICG@DPDCs-177Lu). CSS: cholesteryl succinyl silane. Reproduced from Ref.
[67] with permission of American Chemical Society, �2015.
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and kidney, and are easily cleared from the body; thus, these novel
nanomaterials have a potentially bright future.
5. Improvements in traditional lung cancer treatment methods,
using nanomedicine

Several lung cancer treatments are currently available, includ-
ing surgical resections, chemotherapy, and radiation; however,
none of these options are optimal for lung cancer therapy [76].
Although the surgical resection of lung cancer is a relatively effec-
tive treatment method, by the time most lung cancers are diag-
nosed, the patients have often reached an advanced stage of lung
cancer or metastasis has occurred, which can make operations dif-
ficult and sometimes unfeasible to perform. The differentiation
between tumors and surrounding normal tissues can be vague,
which poses a great challenge during surgery and increases the
likelihood of either overtreatment or relapse. Multiple-drug resis-
tance (MDR) is a major problem associated with chemotherapy,
and most chemotherapeutic drugs are toxic to both tumor cells
and normal tissues. Radiation can cause serious side effects in
patients and reduce their quality of life.

The surfaces of NPs can be modified with fluorescent dyes,
hydrophilic ligands, and specific molecules that have affinities
for unique proteins that are only expressed on the tumor surface;
these fluorescently tagged nanomaterials can then be used to
guide surgery [77,78]. NPs can increase the concentration of
chemotherapeutic drugs near tumors, either through the EPR
effect or through active-target delivery [79,80]. Angiogenic blood
vessels found in tumors differ from their normal counterparts
due to the presence of gaps between adjacent endothelial cells,
which are large enough to induce the EPR effect. Active targeting
involves the conjugation to the NP surface of either a targeting
ligand or antibodies that specifically recognize tumor cells. Many
factors, including the size, charge, surface modifications, and
angiogenesis of the tumor, the tumor microenvironment, and the
half-lives of NPs, can affect the final accumulation of NPs in
tumors. Several liposomal NPs have been used during clinical
treatments, including the most popular liposome formulation,
DOX; some are available on the market, including liposomal
daunorubicin and stealth liposomal DOX [81–83]. However, the
majority of DOX-encapsulated liposomes remain in the clinical
trial phase. By modifying the liposome surface, NPs can extend
the circulation time of liposomes [84]. Moreover, chemotherapy
drugs can be loaded into the nanoliposome capsule, thereby com-
bining chemotherapy with NPs [85]. Liposomal paclitaxel is
another example of a liposomal NP that has been used for the clin-
ical treatment of solid tumors [86–88].

NPs can enhance the response to radiation and improve
immunotherapeutic efficacy by regulating the tumor microenvi-
ronment [89,90] or integrating chemotherapies with other neoad-
juvant therapies or adjuvant treatments [91–93]. Some
nanomaterials possess unique properties that can be used to attack
cancer cells. Photodynamic therapy (PDT) [94,95] and PTT [96,97]
are based on nanomaterials with high efficacy during light-to-
heat conversions. PDT and PTT can be used as alternative treat-
ments for patients who are unable to undergo surgical resections.
The administration of both therapies requires photosensitizers
(PSs), which have low efficacies [98,99]. Coupling PSs with target-
ing molecules or encapsulating them within the cores of nanoma-
terials can improve the efficiencies of both PDT and PTT. Because of
their light-to-heat conversion properties, these NPs can also be uti-
lized to perform photoacoustic imaging (PAI) [100,101]. Combining
therapy with imaging is consistent with the theory of developing
multifunctional materials. Other novel therapies, such as ion inter-
ference and chemo-dynamic treatments, are also NP-dependent.
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6. Perspective

Tumorigenesis is a complicated process that is associated with
multiple changes in molecular biology. To date, functionalized
nanomaterials and nanotechnologies, such as microfluidic devices,
have achieved great success in improving the efficiency and speci-
ficity of ctDNA, tumor-derived DNA, and exosome isolation and
detection during the diagnosis of lung cancer. However, single
biomarkers may not be adequate for every cancer patient. As an
alternative, PM, using a panel of molecular biomarkers identified
by genomic and proteomic studies, may be more effective for the
early screening of lung cancer. In the future, identifying additional
biomarkers and developing a new generation of biosensors, with
the help of microfluidics, will facilitate decreases in the cancer
mortality rate.

In addition, precision nanomedicine is a promising tool for can-
cer treatment. Several precision nanomedicine platforms have
been developed and used during clinical cancer care. However,
concerns regarding the safety of nanomedicines persist. Thus, the
comprehensive characterization of nanomedicine products and
standards, using both in vitro and in vivo models, remains neces-
sary to predict the performance of nanomedicines when translated
to clinical applications.
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