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Subwavelength manipulation of light waves with high precision can enable new and exciting applications
in spectroscopy, sensing, and medical imaging. For these applications, miniaturized spectrometers are
desirable to enable the on-chip analysis of spectral information. In particular, for imaging-based spectro-
scopic sensing mechanisms, the key challenge is to determine the spatial-shift information accurately
(i.e., the spatial displacement introduced by wavelength shift or biological or chemical surface binding),
which is similar to the challenge presented by super-resolution imaging. Here, we report a unique ‘‘rain-
bow” trapping metasurface for on-chip spectrometers and sensors. Combined with super-resolution
image processing, the low-setting 4� optical microscope system resolves a displacement of the resonant
position within 35 nm on the plasmonic rainbow trapping metasurface with a tiny area as small as
0.002 mm2. This unique feature of the spatial manipulation of efficiently coupled rainbow plasmonic
resonances reveals a new platform for miniaturized on-chip spectroscopic analysis with a spectral
resolution of 0.032 nm in wavelength shift. Using this low-setting 4� microscope imaging system, we
demonstrate a biosensing resolution of 1.92�109 exosomes per milliliter for A549-derived exosomes
and distinguish between patient samples and healthy controls using exosomal epidermal growth factor
receptor (EGFR) expression values, thereby demonstrating a new on-chip sensing system for personalized
accurate bio/chemical sensing applications.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Imaging-based sensing technologies are major tools for visual-
izing essential biological or chemical information. However, due
to the classic optical diffraction limit, conventional optical imaging
systems are usually bulky and expensive to enable better imaging
capabilities. Ultra-slow waves on the nanoscale are of great inter-
est due to their unique potential for improved light–matter inter-
actions in miniaturized nanoplasmonic structures [1–4]. In
particular, the trapped ‘‘rainbow” storage of light in metamaterials
[5] and plasmonic graded structures [6–9] has opened up new and
attractive approaches to manipulate light on a chip. Recent inves-
tigations of various photonic nanostructures [1–14] have demon-
strated that surface dispersion properties can be tuned by
systematically varying the geometric parameters of the surface
gratings (e.g., groove depth and grating period [6–9]). The disper-
sion relations for adiabatically graded gratings vary monotonically
with position, so incoming waves at different wavelengths can be
‘‘trapped” or localized at different positions along the propagation
direction of the grating.

It is believed that this type of on-chip wavelength-splitting
functionality will result in miniaturized spectrometer platforms
(e.g., Refs. [15–17]) for future optical integration [8,9,17–21]. More
recently, a similar wavelength-splitting functionality was imple-
mented in several graded plasmonic grating structures [22–24]
and all-dielectric metasurfaces [25,26], realizing an exciting
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on-chip imaging-based sensing system [25–29]. For these imaging-
based, intensity-modulation, and/or wavelength-modulation sens-
ing mechanisms, the key challenge is to determine the spatial
information accurately [30–32], which is similar to the challenge
presented by super-resolution imaging [33]; that is, there is a need
for the capability to detect nanometric displacement in spatial
position or wavelength domain. This is the key to realizing ultra-
sensitive on-chip imaging and sensing technologies.
2. Design principles

Here, we demonstrate a plasmonic ‘‘rainbow” trapping meta-
surface to achieve super-resolution identification of the spatial
pattern shift due to plasmonic resonances that can be realized
using low-setting optical microscope imaging systems. As illus-
trated in Fig. 1(a), a shallow metallic surface grating with graded
geometric parameters is fabricated on an opaque metal film
(270 nm thick; see the next section for fabrication details).
Depending on the local geometries, different incident wavelengths
of a broadband incident light can be efficiently coupled to the sur-
face plasmon polaritons (SPPs) on the graded metasurface, result-
ing in an on-chip rainbow distribution of resonances.

Fig. 1(b) shows a scanning electron microscope (SEM) image of
a graded surface grating with the overall dimensions of
30 lm�64 lm. According to the atomic force microscope (AFM)
characterization, the average depth of the surface grating is 35.6
nm±0.4 nm (see Fig. S1 in Appendix A for characterization
results). The period of the gratings varies from 250 to 850 nm, with
a step size of about 5 nm (see Fig. S2 in Appendix A for SEM char-
acterization). Under white light illumination, we recorded the
Fig. 1. Graded ‘‘rainbow” trapping metasurface. (a) Schematic diagram of a ‘‘rainbow” tra
of 30 lm�64 lm. Bottom insets show differences in periodicity from the left edge of t
grating under white light illumination (observed by a 4� microscope; scale bar: 2
corresponding simulated side-view electric field distributions in near field (lower panel
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grating’s reflection images, demonstrating a clear rainbow color,
as shown in Fig. 1(c) (see Section S3 and Fig. S3 in Appendix A
for optical measurement details). This spatial wavelength splitting
introduced by the rainbow trapping effect [20] is sensitive to local
dielectric environment perturbation, enabling spatial displacement
imaging and sensing on a chip. To analyze the rainbow trapping
mechanism, four narrowband wavelengths (i.e., 500, 530, 590,
and 650 nm) were introduced by a liquid-crystal tunable filter to
illuminate the sample. Their corresponding grey-scale top-view
images are shown in Fig. 1(d) (upper panels of images at each
wavelength). A dark bar was clearly observed at different locations
due to the efficient coupling of SPP modes.

To reveal the physics of this graded metasurface, a two-
dimensional (2D) finite-difference time domain (FDTD) simulation
was performed to plot the near-field distribution of the launched
SPP modes, clearly showing the rainbow coupling along the graded
surface grating. As shown in the lower panels in Fig. 1(d), the side
view of the 2D electric field distribution demonstrates that the
SPPs can be launched and localized at different regions on the
graded metasurface (i.e., for a trapped rainbow [8]; see simulation
details in Section S4 in Appendix A). As a result, a dark region
appears in the far-field reflection image of the surface grating,
which agrees well with the experimental observation. Intriguingly,
the reflection dip in the far field (i.e., the top dark red arrow in
Fig. 1(d)) corresponds to the localized SPP modes on the graded
grating surface (i.e., the bottom red arrow in Fig. 1(d)). When the
incident wavelength or surface refractive index is changed, both
the near-field and far-field features change accordingly (see Sec-
tion S4). The most sensitive sensing region lies within the trapped
SPP modes region on the graded metasurface, which is slightly dif-
ferent from the far-field scattering dark region due to the unique
pping metasurface. (b) SEM images of a graded grating with the overall dimensions
he sample to the right edge (scale bar: 20 lm). (c) Reflection image of the graded
0 lm). (d) Monochromatic top-view reflection images (upper panels) and their
s) at different incident wavelengths (scale bar: 20 lm).
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coupling and scattering feature of the rainbow trapping metasur-
face (see more details in Section S4 and Fig. S4 in Appendix A).
As a result, it is possible to realize new and powerful on-chip spec-
troscopic analysis and surface sensing by monitoring the spatial
shift of the reflection dip in the far field using simple and inexpen-
sive optics.
3. Materials and methods

Fused silica wafers (Semiconductor Wafer, Inc.) were cleaned
using acetone, methanol, and deionized (DI) water by immersion
in an ultrasonic bath for 10 min at each step, respectively. A
5 nm-thick titanium (Ti) adhesion layer followed by a 270 nm-
thick gold (Au) film were deposited on the fused silica wafers using
an electron beam evaporator (AXXIS, Kurt J. Lesker Company) at a
deposition rate of 0.02 nm∙s�1. A AURIGA CrossBeam (Carl Zeiss
AG) focused ion beam (FIB)-SEM was used for FIB and SEM charac-
terization. All groove widths were set to 180 nm. Using this fabri-
cated rainbow trapping metasurface, we then developed a super-
resolution displacement spectroscopic imager.
4. Results and discussion

4.1. Trapped ‘‘rainbow” super-resolution displacement spectroscopic
imager

Here, we first demonstrated an on-chip ‘‘rainbow” spectro-
scopic imager by selecting five narrowband wavelengths to illumi-
nate the sample (Fig. 2(a)). Since the SPP modes are dependent on
the incident angle of the input light, a collimated incident light is
desirable for controlled optical coupling. Therefore, we introduced
a 4� objective lens with a small numerical aperture (NA) of 0.13
(corresponding to the largest incident angle of 7.47�) to observe
Fig. 2. Trapped ‘‘rainbow” localization images for spectral analysis observed by a 4� obje
arbitrary unit). (b) Reflection images under the illumination of five selected wavelengths.
within 0.02 pixels. Right panels: zoom-in views of 50 centroids observed at each wavel
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the reflection image. Under this condition, a dark bar was clearly
observed due to the efficient coupling of SPP modes (Fig. 2(b)).
Intriguingly, as the incident wavelength was tuned from 560 to
680 nm with a step size of 30 nm (Fig. 2(a)), the dark bar shifted
accordingly (Fig. 2(b)). Thus, by resolving the spatial position of
the dark bar, it is possible to perform on-chip spectroscopic analy-
sis. In this imaging-based apparatus, the optical diffraction gratings
and long optical paths used in conventional spectrometers for high
spectral resolution are replaced by a rainbow trapping metasurface
on the chip that can be directly imaged by charge-coupled device
(CCD) or complementary metal oxide semiconductor (CMOS) cam-
eras. Remarkably, the spectral resolution of this on-chip imager
spectrometer is well beyond the diffraction limit of the imaging
system, as demonstrated below.

In conventional spectroscopic displacement applications (e.g.,
wavelength modulation for plasmonic biosensing [34–36]), reso-
nant peak or valley positions are fitted to show the trace refractive
index change of the sensor surface. Therefore, a higher resolution
in wavelength shift identification is desirable in more sensitive
spectroscopic analysis and sensing. In the experiment shown in
Fig. 2(b), the image was obtained through a 4� microscope. At this
magnification, each pixel corresponds to a spatial dimension of
approximately 1.6 lm. Therefore, the physical resolution of the
low-setting imaging system imposes a technical limit onto this
on-chip spectrometer. In particular, the valley positions of these
dark bars are unclear due to the relatively broad bandwidth of
the grating coupler (Fig. S5 in Appendix A). To address this chal-
lenge, we borrow a concept from super-resolution imaging to iden-
tify the physical or geometric centroid of the pattern (e.g., the point
spread function was used to extract the centroid of fluorescent dye
molecules [37–39]). For each wavelength shown in Fig. 2(a), we
captured 50 frames (0.2 s per frame) and calculated their centroids
(see details in Section S6 in Appendix A). As shown in Fig. 2(c), 50
centroids of each wavelength are localized within a 0.02-pixel
ctive lens. (a) Incident spectra measured by a regular fiber-based spectrometer (a.u.:
(c) Centroid localization of 50 frames at each wavelength. All centroids are localized
ength.
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region along the x-axis. Remarkably, the standard deviations (SDs)
of the five images are all within 35 nm (see the right panel of
Fig. 2(c)). Therefore, the wavelength resolution is not limited by
the actual pixel size (i.e., �1.6 lm) or the diffraction limit
(k/(2NA), ranging from 2.04 to 2.50 lm for the incident wave-
length tuned from 560 to 680 nm), but by the extracted centroid
localization region (i.e., < 35 nm�85 nm), which is well beyond
the optical resolution in this 4� optical microscope system. For
example, the spatial distance of the two localization positions at
the wavelengths of 560 and 590 nm is approximately 8.8 lm
(indicated by the dashed line and the arrow in Fig. 2(c)). Consider-
ing the SD of the centroid localization at these two wavelengths,
the wavelength resolution of this imager can be obtained.
Next, we will perform a more finely controlled experiment to
reveal the wavelength identification capability of this rainbow
localization imaging spectrometer.

In order to reveal the potential of the trapped rainbow for
centroid localization, we fabricated a new structure with much
smaller period changes (i.e., from 460 to 540 nm with a step size
of 1 nm). As shown in Fig. 3(a), we tuned the peak wavelength
of the incident light from 548.0 to 549.5 nm with a step size of
0.3 nm. This wavelength shift resolution is close to the limit of
the fiber-based spectrometer used in this experiment [40]. Under
the illumination of these six finely separated wavelengths, we
recorded the dark bars of the graded grating using the 4� objective
lens, as shown in the right panel of Fig. 3(a). As shown in these raw
images, it is difficult to resolve the spatial shift of the dark bar
with the naked eye (detailed images are provided in Fig. S7 in
Appendix A). In contrast, the centroid localizations of the dark bars
are plotted in Fig. 3(b). Remarkably, these centroid localizations
Fig. 3. Spectral displacement resolution of the trapped rainbow localization microscopic
incident light with a peak range from 548.0 to 549.5 nm, and right panel is the 4� mic
(b) centroid localization of 50 frames at each wavelength (upper panel) and the average c
(c) left panel is the measured spectra of the incident light with a peak range from 539.0
localization at each wavelength (upper panel) and the average centroid positions (lowe
incident light with a peak range from 696.0 to 701.0 nm, and right panel is the 4� mic
centroid positions (lower panel); (g) left panel is the measured spectra of the incident ligh
reflection images; (h) centroid localization (upper panel) and average centroid positions
the rainbow surface grating pattern under the 4� (blue curve) and 20� (red curve) obje
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can be clearly separated with no spatial overlap, as shown in the
lower panel of Fig. 3(b). As the incident wavelength was tuned
from 548.0 to 549.5 nm, the centroid shifted by about 0.74 pixels,
with an estimated wavelength-shift resolution of 0.032 nm (see
details in Table S1 in Section S8 in Appendix A). The spatial limit
of detection (i.e., three times the SD) is about 0.0766 lm—much
smaller than the pixel size or diffraction limit of this 4�
microscope (�1.61 and �2.12 lm, respectively)—revealing the
super-resolution capability of the rainbow trapping grating
structure paired with the centroid data-processing method.

To further reveal the wavelength resolution, we then employed
a 20� long working distance objective lens to observe the trapped
rainbow. In this case, each pixel corresponds to a dimension of
about 0.32 lm. The NA of the lens is 0.25, corresponding to the lar-
gest incident angle of approximately 14.48�. Therefore, the dark
bar region is slightly different from the one observed by the 4�
objective lens due to the different coupling and collection angle,
as shown in Fig. 3(c). To tune the dark bar to the center of the sam-
ple, we changed the peak wavelength of the incident light from
539.0 to 540.5 nm with a step size of 0.3 nm. The corresponding
centroid localizations are plotted in Fig. 3(d), showing that the
total displacement is about 0.39 lmwhen the incident wavelength
is tuned by 1.5 nm. Remarkably, the SD of the centroid localization
region in this image is better than the 4� imaging system. The
wavelength resolution observed under this 20� objective lens is
about 0.029 nm (see details in Table S2 in Section S8 in Appendix
A). This result indicates that the resolution can be improved with
an objective lens of higher magnification.

As a control experiment, we also characterized the centroid
localization of the spectra measured by a commercial fiber-based
spectrometer. (a–d) Observation in air: (a) Left panel is the measured spectra of the
roscopic reflection images under the illumination of the six incident wavelengths;
entroid positions with their corresponding SDs (lower panel; see details in Table S1);
to 540.5 nm, and right panel is the 20� microscopic reflection images; (d) centroid
r panel). (e–h) Observation in water: (e) Left panel is the measured spectra of the
roscopic reflection images; (f) centroid localization (upper panel) and the averaged
t with a peak range from 636.0 to 641.0 nm, and right panel is the 20� microscopic
(lower panel) at these six incident wavelengths. (i) Real-time centroid movement of
ctive lens in response to different concentrations of glycerol (G)–water solutions.
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spectrometer. The SD of the measured spectra was about 0.047 nm
(corresponding to a wavelength-shift resolution of �0.020 nm; see
details in Table S5 in Section S9 in Appendix A). Therefore, our rain-
bow grating structure can realize a similar wavelength shift resolu-
tion compared with a commercial spectrometer when centroid-
based processing is implemented. Importantly, the distinguishing
feature is that the spectral information from a very small area
(i.e., the rainbow grating area in the range of 30 lm�64 lm to
50 lm�250 lm, i.e., 0.00192–0.01250 mm2) can be resolved by
the imaging-based on-chip spectrometer, indicating the potential
of 2D spectroscopic imaging, which is challenging to realize using
conventional fiber-based spectrometers.

4.2. Refractive index sensing

To demonstrate how this rainbow trapping chip could be
applied for surface biosensing, we fabricated a new graded grating
with a period that changes from 400 to 490 nm (observation
results are shown in Figs. 3(e)–(h)). As shown by the right panels
in Figs. 3(e) and (g), the dark bars were tuned to the center of
the structure in the water environment under the illumination of
696–701 nm light (for the 4� objective lens, Fig. 3(e)) and 636–
641 nm light (for the 20� objective lens, Fig. 3(g)). As a result,
the estimated wavelength-shift resolutions were approximately
0.047 nm (for the 4� objective lens in Fig. 3(f); see details in
Table S3 in Section S8 in Appendix A) and about 0.033 nm (for
the 20� objective lens in Fig. 3(h); see details in Table S4 in Sec-
tion S8 in Appendix A), which are slightly larger than the calcu-
lated resolutions in the air environment (i.e., Figs. 3(b) and (d))
due to the larger fluctuation in the liquid environment. Next, we
introduced a series of glycerol–water solutions (i.e., 0%, 3%, 6%,
and 9%) to tune the refractive index of the liquid environment
(see experimental details in Section S10 in Appendix A). As shown
in Fig. 3(i), the centroid position shifts as the bulk refractive
index changes between 0% and 9%. The noise of the data observed
by the 20� objective lens (the red curve) is 0.0131 lm, which is
slightly better than that observed by the 4� objective lens (i.e.,
0.0405 lm, the blue curve). Since the data-acquisition time for
each frame (i.e., 0.2 s∙frame�1) and the waiting period between
adjacent frames (i.e., 15 s) are both faster than the bulk refractive
index change speed, the bulk refractive index change curve can be
reflected accurately. As a result, the measured bulk refractive index
sensing resolutions are 3.29�10–4 refractive index units (RIU; for
the 4� objective lens) and 9�10–3 RIU (for the 20� objective lens).
Considering the sensor area of 0.002 mm2, this chip holds promise
for use in biosensing applications. More specifically, it can be
expected to resolve approximately 500 exosomes under the obser-
vation of a 20� objective lens (see estimation details in Section S11
in Appendix A). A better sensing performance is achievable using a
higher end light source and cameras with lower noise, which is
currently under investigation. Next, we employ this on-chip ima-
ger to demonstrate the specific sensing of biomolecules (i.e.,
exosomes).

4.3. On-chip sensing of exosomal epidermal growth factor receptor for
lung cancer diagnosis

Exosomal epidermal growth factor receptor (EGFR) has been
shown in recent studies to be a promising biomarker for lung can-
cer diagnosis [41–45], as it is overexpressed in more than 50% of
lung cancer cases. Here, we demonstrate the potential application
of the rainbow trapping chip in cancer diagnosis using lung cancer
as the disease model and exosomal EGFR as the biomarker
(Fig. 4(a); see details in Section S12 in Appendix A). As shown in
Fig. 4(b), a 2�2 graded grating array (a total of four sensor units,
with the period changing from 400 to 490 nm) was fabricated on
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the same chip. Under the illumination of a narrow band of light
at 650 nm, the dark bars on all four gratings were observed simul-
taneously in the liquid environment. A series of layers were intro-
duced on top of the sensor surface to enable the selective sensing
of exosomal EGFR (Fig. 4(c); see details of surface treatment in
Section S12). During this process, the reflection image of the four
sensor units was recorded by the far-field imager every 15 s to
monitor the surface binding events. By extracting the centroid
positions of the dark bars, the expression of exosomal EGFR is
calculated by the following:

E ¼ PEGFRþexosome � PPBS

PPBS � Pwater
ð1Þ

where Pwater, PPBS, and PEGFR+exosome are the centroid positions for
water, poly(butylene succinate) (PBS), and EGFR and exosomes,
respectively. The difference between Pwater and PPBS was used as
the normalization factor to minimize chip-to-chip variation. The
EGFR expression in exosomes from A549 non-small cell lung cancer
(NSCLC) cells was first measured (Fig. 4(d)). A549 cell-derived
exosomes at a concentration of 2�1010 exosomes per milliliter
(exosomes∙mL�1) were flowed through the biochip. Based on the
centroid movement, the exosomal EGFR expression level was deter-
mined to be 0.3357, with a high signal-to-noise ratio of 10.39. With
A549 cell-derived exosomes, the rainbow trapping chip achieved a
resolution of 1.92�109 exosomes∙mL�1, suggesting that it may
require as little as 1 lL of serum sample for the detection of exoso-
mal EGFR, as the typical exosome concentration in serum is
5�1012 exosomes∙mL�1.

Next, the levels of exosomal EGFR in serum samples from three
healthy controls and three NSCLC patients were measured (charac-
teristics of the human subjects are provided in Table S6 in Sec-
tion S13 in Appendix A). Exosomes were isolated from 80 lL of
human serum samples, resuspended in 100 lL PBS, and flowed
through the biochip at a concentration of 6�1010 exosomes∙mL�1.
Representative real-time centroid movement curves of one healthy
control and one NSCLC patient from one sensor unit are shown in
Fig. 4(e) (also see all data in Section S14 in Appendix A). An obvious
centroid shift was observed for the NSCLC patient sample, while
little centroid shift was observed for the healthy control sample.
With this 2�2 graded grating array, four measurements from four
sensor units were performed simultaneously for each sample to
improve the sensing accuracy. As shown in Fig. 4(f), good agree-
ment (with coefficients of variation <20%) among the results from
the four sensor units were observed for all six human serum sam-
ples. The average expression of exosomal EGFR in sera from the
NSCLC patients was 0.99 (indicated by the green line in Fig. 4(g)),
which was about 8.25-fold higher than that in sera from the
healthy controls (indicated by the orange line in Fig. 4(g)). Thus,
the rainbow trapping chip successfully distinguished NSCLC
patients from health controls using exosomal EGFR as the
biomarker.

Furthermore, these rainbow trapping metasurface chips can be
easily cleaned without damaging the nanostructures, and have
shown excellent regenerability for repeated usages (see more
details in Section S15 in Appendix A). These results demonstrate
that the plasmonic rainbow trapping metasurface structure holds
great potential for enabling ultra-sensitive and specific sensing of
exosomal protein biomarkers for cancer diagnosis [46], especially
using inexpensive optical systems that are conveniently assessable
in daily life (e.g., Refs. [47,48]).
5. Conclusions

In conclusion, we have developed a plasmonic graded metasur-
face chip to trap ‘‘rainbow” plasmons in the visible to near-infrared



Fig. 4. Sensor arrays for lung cancer diagnosis. (a) Schematic diagram of the rainbow trapping metasurface used in lung cancer diagnosis. (b) SEM image of a sensor array with
four identical graded metasurface structures. (c) Schematic diagram of the surface grating with captured EGFR and exosomes (PEG: polyethylene glycol). (d, e) Real-time
response of the centroid displacement upon (d) A549 and (e) healthy control 1 (blue curve) and patient 1 (red curve) sample exosome adsorption on the sensor surface.
(f) Exosomal EGFR expression of healthy controls and NSCLC patient samples measured by four sensor units on the chip. (g) Average exosomal EGFR expression of healthy
controls and NSCLC patient samples. Orange and green bars indicate the means of three samples in each group. Significantly higher expression of exosomal EGFR was
observed in the NSCLC patient samples than in those of the healthy controls (n=3; *p<0.05).
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domain. By extracting the numerical centroid of the trapped sur-
face plasmon waves, a miniaturized imager-based platform was
demonstrated for super-resolution displacement spectroscopic
analysis and surface biosensing. Using a 4� optical microscope sys-
tem, a displacement of the resonant position within 35 nm was
resolved, corresponding to a spectral resolution of 0.032 nm in
wavelength shift and a refractive index change of 5�10–4 RIU.
Remarkably, the dimensions of this unique rainbow trapping ima-
ger chip are in an area range of 0.00192–0.01250 mm2, enabling
the characterization of spectroscopic information within tiny
areas, which is impossible to do using conventional fiber-based
spectrometers.

This low-setting imaging-based spectroscopic chip was used to
detect A549-derived exosomes with a sensing resolution of
1.92�109 exosomes∙mL�1. Furthermore, we employed a 2�2
array of the rainbow chip to distinguish cancer patients from
healthy control samples using exosomal EGFR expression, thereby
successfully demonstrating the chip’s application for cancer diag-
nosis, with great potential impact on point-of-care diagnostics.
Although the accuracy of fabrication techniques sets a barrier for
broader applications in a wide spectral range (from visible to
telecommunication) [6–9], this limitation may be partially
addressed by advanced fabrication techniques and photonic topo-
logical elements [11]. Moreover, by using scalable template strip-
ping processes, it is possible to overcome the cost barrier and
improve the surface smoothness of the graded gratings for
improved coupling of SPP modes (e.g., Ref. [49]). Importantly, this
imaging-based spectroscopic displacement strategy is fully
amenable to machine learning algorithms (as is currently under
80
investigation) and could result in intelligent spectroscopic chips
on smart phones for personalized accurate biological or chemical
sensing applications [50].
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