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Inspired by the tremendous achievements of meta-learning in various fields, this paper proposes the local
quadratic embedding learning (LQEL) algorithm for regression problems based on metric learning and
neural networks (NNs). First, Mahalanobis metric learning is improved by optimizing the global consis-
tency of the metrics between instances in the input and output space. Then, we further prove that the
improved metric learning problem is equivalent to a convex programming problem by relaxing the con-
straints. Based on the hypothesis of local quadratic interpolation, the algorithm introduces two light-
weight NNs; one is used to learn the coefficient matrix in the local quadratic model, and the other is
implemented for weight assignment for the prediction results obtained from different local neighbors.
Finally, the two sub-models are embedded in a unified regression framework, and the parameters are
learned by means of a stochastic gradient descent (SGD) algorithm. The proposed algorithm can make full
use of the information implied in target labels to find more reliable reference instances. Moreover, it pre-
vents the model degradation caused by sensor drift and unmeasurable variables by modeling variable dif-
ferences with the LQEL algorithm. Simulation results on multiple benchmark datasets and two practical
industrial applications show that the proposed method outperforms several popular regression methods.
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1. Introduction

In the cement production process, it is essential to monitor the
qualityof products, suchas thefinenessof rawmeal, the free calcium
oxide content of clinkers, and so forth. However, online instrumen-
tations for these indicators are costly and require frequent regular
maintenance. In industrial practice, off-line analysis in the lab is
often implemented for these indexes every 2 h or more, which
results in untimely feedback for real-time control systems. These
problems can be solved by soft-sensing techniques [1,2].

Soft sensing is essentially a regression machine that evaluates
quality indexes in real time using other instrumental variables that
are available online. That is, given the D-dimensional input vari-
ables X ¼ x 1ð Þ; x 2ð Þ; x 3ð Þ; :::; x sð Þ� �

(where each element represents
an instance) and their corresponding output variables
Y ¼ y 1ð Þ; y 2ð Þ; y 3ð Þ; :::; y sð Þ� �

, the objective of the regression machine
is to construct an optimal mapping function using the knowledge
implied in the training data, which achieves remarkable prediction
accuracy on the test set. Successful soft-sensing applications can be
found in diversified industries such as petroleum refining [3], met-
allurgical processes [4], and energy management [5,6].

Soft-sensing models originate from multivariate statistical
regression models, including linear regression (LR), principal com-
ponent regression (PCR), partial least squares (PLS), and some vari-
ants with regularization strategies to balance the empirical error
and complexity of the model, such as least absolute shrinkage
and selection operator (LASSO) and ridge [7]. Kernel strategies
have been extensively studied and combined with the aforemen-
tioned algorithms to solve the regression problem for nonlinear
problems [8,9]. After that, machine learning methods such as k-
nearest neighbor regression (k-NNR) [10], classification and regres-
sion trees (CARTs) [11,12], and support vector regression (SVR)
[13,14] have been proposed for knowledge mining in massive data.
To improve the performance of a single tree model, bagging strate-
gies are implemented in random forest (RF) algorithms [15,16].
Similarly, the prediction accuracy of boosting algorithms can be
increased by combining a series of iteratively learned weak machi-
nes [17,18], such as gradient boosting machines (GBMs) and
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extreme gradient boosting (XGBoost). Furthermore, breakthroughs
in deep learning in image and speech recognition have caused neu-
ral networks (NNs) [19,20] to become one of the most popular
methods in the field of machine learning, especially when the data
samples are sufficient. This popularity can be attributed to NNs’
powerful feature extraction capabilities with specially designed
structures [21].

Among these algorithms, k-NNR is the simplest and one of the
most prevailing regression methods. It is widely used in machine
learning problems because it does not require an explicit model
structure or any prior knowledge for data distribution. However,
the strategy to use the average output of its k-nearest neighbors
(k-NNs) as the prediction result also leads to this method’s greatest
disadvantages. Initially, the k-NNR algorithm employed the Eucli-
dean distance metric for the measurement of sample similarities.
However, the magnitudes of the input features can vary greatly;
redundancies and correlations between variables can also be mis-
leading, resulting in anunpractical distancemetric. To copewith this
problem, a generalization of theMahalanobis distance [22]was pro-
posed, which is equivalent to a weighted Euclidean distance
between two linear projected images. However, in practical applica-
tions, the input features tend to have distinct contributions to the
output variables. The key is to develop a reliable feature extraction
model and apply the classical metrics, such as the Euclid distance
and cosine similarity, to themapped features. Locally linear embed-
ding (LLE) reconstructs the samples in a low-dimensional space
using the locally linear weighting method and achieves dimension
reduction by minimizing the reconstruction error [23]. Neverthe-
less, the adjacency relation constructed by the classical Euclidean
metric in ahigh-dimensional space cannotmeet theneedsof all clas-
sification tasks. Thus, researchers usually try to transform the input
features into a scaled space [24,25] and to get theweight coefficients
to predict the label by means of local reconstruction in the space.
However, this method is very dependent on elegant design of the
transformation model. For example, in a fuzzy transformation, the
basic function and the division of fuzzy intervals may have a great
influence on the prediction result, because themeaningful informa-
tion contained in the output labels is notmade full use of. To address
this issue, Weinberger and Saul [26] introduced the concept of
Mahalanobis distance metric learning, which allows the inverse
covariance matrix in the Mahalanobis distance to denote any posi-
tive semidefinite matrix. Similar to the idea of linear discriminant
analysis (LDA) [27], the Mahalanobis distance metric is learned by
maximizing the ratio of the average internal class distance to the
average between-class distance. Xing et al. [28] constructed a con-
vex optimization problem for metric learning by taking the average
between-class distance as the optimization target and the average
within-class distance as the constraint. This method has been
applied to semi-supervised data clustering problems.

The above methods are mainly designed for classification prob-
lems. For regression problems, Nguyen et al. [27] established a con-
vex optimization problem by maximizing the consistency of the
input and output distances over a set of constraint triplets in the
neighborhood of each instance. However, the researchers did not
elaborate the solution for a transformation matrix A in metric
learning; the weight matrix W is optimized only under the condi-
tion of a given transformation matrix A. Moreover, the tradeoff
parameter C tends to have a significant impact on the performance
of the algorithm. Linear metric learning (LML) has limited power in
feature representation, especially for high-dimensional samples
such as image and text data. Deep metric learning (DML) uses deep
neural network (DNN) models instead of linear transformations to
extract features in order to achieve metric learning [29–31]. One of
the greatest differences between LML and DML lies in the form of
the loss function. For example, Song et al. [30] minimized the dis-
tances between samples from the same class and maximized the
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distances with a margin from different classes. In general, these
methods involve the construction of triplet sets, which consist of
an anchor, a positive point, and a negative point. This implies that
the methods cannot be directly applied to regression problems.

In addition, using the average of k-NNs as the output prediction
often results in conservative result. Take the wine quality assess-
ment dataset on University of California Irvine (UCI) machine
learning repository as an example. The k-NNR algorithm does not
distinguish well between particularly high-grade or inferior wines.
So, how does an operator predict the label? First, the operator will
identify the most similar cases to the current sample in the histor-
ical data as references and then modify the label according to the
change of the input features. We summarize this process and pro-
pose the local quadratic embedding learning (LQEL) algorithm.
However, the coefficient matrix of the quadratic embedding func-
tion is difficult to obtain. Fortunately, the matrix is dependent on
the location of the expansion point—that is, the current sample
mentioned above. Thus, the coefficient matrix can be estimated
by NNs, taking the current sample as the input. However, an appro-
priate network scale must be determined; otherwise, the model
becomes over-fitted. To this end, ensemble methods to integrate
multiple NNs are utilized to improve the generalization ability of
NNs model [20,32]. The literature shows that standardizing the
output of the hidden layer in the network by batch normalization
(BN) can prevent distribution changes during the training process
[33], which accelerates the convergence of networks. It has been
pointed out that the dropout strategy can improve the generaliza-
tion ability of the NN [34]. Moreover, superimposing a certain
intensity of Gaussian noise on sample data can increase the num-
ber of training samples and thus improve the robustness of the
model [35]. In general, these approaches improve the generaliza-
tion of NNs in two ways. First, they increase the number of training
samples; second, they add constraints to the network structure,
reduce the complexity, and thus improve the network’s predictive
ability. This paper follows the latter route.

In this paper, metric learning is first accomplished to determine
the neighborhood of a certain instance by maximizing the consis-
tency of the distances between the input and output spaces. This
makes full use of the information contained in the target labels
and achieves the first step of the operators’ strategy. Then, a local
quadratic coefficient matrix is generated by a well-trained NN to
make predictions based on neighboring references; this prevents
the model degradation caused by sensor drift and unmeasured
variables by means of the differential compensation method. Fur-
thermore, the other NN assigns weights to the predictions pro-
vided by different neighbors according to their confidence, which
achieves a balance between the prediction errors and measure-
ment noises, thereby minimizing the prediction errors. The param-
eters of these two networks can be optimized by end-to-end
training with stochastic gradient descent (SGD) algorithms. Empir-
ical studies on several regression datasets, including two practical
industrial datasets from the cement production process and hydro-
cracking process, show that, in most cases, the proposed method
outperforms the popular regression methods.

The rest of this paper is organized as follows. In Section 2, a
metric learning model is introduced and the optimization problem
is proved to be equivalent to a convex optimization problem. In
Section 3, the framework of the proposed LQEL is presented. In Sec-
tion 4, several empirical studies, including a validation using actual
industrial cases, are reported. The conclusions and contributions of
this paper are summarized in Section 5.

2. Metric learning

A metric distance is a function d: X � X ! Rþ
0 that satisfies the

following, for any x ið Þ; x jð Þ; x kð Þ 2 X:
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(1) Non-negativity: d x ið Þ; x jð Þ� � � 0, the equality holds if and
only if x ið Þ � x jð Þ

(2) Symmetry: d x ið Þ; x jð Þ� � ¼ d x jð Þ; x ið Þ� �
(3) Triangle inequality: d x ið Þ; x jð Þ� �þ d x jð Þ; x kð Þ� � � d x ið Þ; x kð Þ� �
Given a set of D-dimensional input variables

X ¼ x 1ð Þ; x 2ð Þ; x 3ð Þ; :::; x sð Þ� �
and corresponding output labels

Y ¼ y 1ð Þ; y 2ð Þ; y 3ð Þ; :::; y sð Þ� �
, metric learning has to find an implied

metric function with these training data. In this metric space,
instances with similar output labels are gathered together, and dis-
similar samples are pushed far away. Studies in this field focus a
great deal of attention on Mahalanobis metric learning (MML)
[26] due to its simplicity and clarity. In addition, this problem
can usually be transformed into simple convex optimization, mak-
ing it extremely convenient to find the global optimum. The model
structure of MML is defined as follows:

d2 u� vð Þ ¼ u� vð ÞTM u� vð Þ ð1Þ

where M is a positive definite metric matrix to be learned, and u
and v are two different instances. The objective of MML is to obtain
the optimal matrix M that meets the purpose of metric learning.

We hope to use the information implied in the output labels to
guide the direction of metric learning. The basic principle is that
similar input samples lead to similar target labels. The consistency
of the distances between the input and output spaces, from a sta-
tistical point of view, can be described with the Pearson correlation
coefficient. Therefore, the optimization problem is formed as
follows:

argmin
M

J Mð Þ ¼
�Pi>jd

yð Þ
ij � d

xð Þ
ij

� �T
Md

xð Þ
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i>j
d

xð Þ
ij

� �T
Md

xð Þ
ij

	 
2
� 2

N N�1ð Þ
P
i>j

d
xð Þ
ij

� �T
Md

xð Þ
ij

" #2vuut
ð2Þ

s:t: M � 0

where d yð Þ
ij is the square distance between the ith and jth instances

in the target space, d xð Þ
ij is the difference in input space denoted as

d
xð Þ
ij � x ið Þ � x jð Þ, and N is the sample number. Since the numerator
and denominator of the objective function are homogeneous to M,
Eq. (2) can be equivalently converted to the optimization problem
shown in Eq. (3):

argmin J0
M

Mð Þ ¼ �
X

i>j
d yð Þ
ij � d

xð Þ
ij

� �T
Md

xð Þ
ij

s:t: M � 0 ð3Þ

X
i>j

d
xð Þ
ij

� �T
Md

xð Þ
ij

	 
2
� 2
N N � 1ð Þ

X
i>j

d
xð Þ
ij

� �T
Md

xð Þ
ij

	 
2
¼ 1

Here, we prove that the above problem has a unique global opti-
mal solution and that the solution can be obtained by relaxing the
constraints. The reconstructed problem after constraint relaxation
is shown in Eq. (4):

argmin J0
M

Mð Þ ¼ �
X

i>j
d yð Þ
ij � d

xð Þ
ij

� �T
Md

xð Þ
ij

s:t: M � 0 ð4Þ

X
i>j

d
xð Þ
ij

� �T
Md

xð Þ
ij

	 
2
� 2
N N � 1ð Þ

X
i>j

d
xð Þ
ij

� �T
Md

xð Þ
ij

	 
2
� 1
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Denote g Mð Þ ¼Pi>j d
xð Þ
ij

� �T
Md

xð Þ
ij

	 
2
� 2

N N�1ð Þ
P

i>j d
xð Þ
ij

� �T
Md

xð Þ
ij

	 
2
;

then, the first-order and second-order partial derivatives of g(M)
to M are as follows:

@g
@vec Mð Þ ¼ 2

X
i>j

d
xð Þ
ij

� �T
Md

xð Þ
ij � d

xð Þ
ij � d

xð Þ
ij

h i
� 4
N N � 1ð Þ

X
i>j

d
xð Þ
ij

� �T
Md
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ij

	 
 X
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d
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xð Þ
ij

h i
ð5Þ

@2g

@vec Mð Þ2
¼ 2

X
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xð Þ
ij � d

xð Þ
ij

h i
� d

xð Þ
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ij

h iT

� 4
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d
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ij
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where � is the Kronecker product, and vec(M) is the column expan-

sion ofM. For 8u 2 RD2
, the inequality in Eq. (7) shows that the func-

tion g(M) is a convex function.

uT @2g

vec Mð Þ2
u ¼ 2

X
i>j

m2
ij �

4
N N � 1ð Þ

X
i>j

mij

 !2

� 0 ð7Þ

where mij � uT � d
xð Þ
ij � d

xð Þ
ij

h i
. This implies that the constraints in Eq.

(4) cause the feasible domain to be a convex set. Meanwhile, the
second-order partial derivatives of the objective function J(M) to
M are calculated as follows:

@2J

vec Mð Þ2
¼ 0 ð8Þ

In summary, the problem in Eq. (4) is demonstrated to be a con-
vex optimization problem—that is, it has a unique global optimal
solution [36]. Denote the optimal solution as M*; it then follows
that g(M*) = 1. Otherwise, 0 < g(M*) < 1. Denote M0 =M*/g(M*) and
substitute this into Eq. (4). It is not difficult to verify that M0 is
within the feasible domain. In addition, the objective follows

J M0� � ¼ J M	ð Þ
g M	ð Þ < J M	ð Þ, which is contradictory. The conclusion indi-

cates that the problem in Eq. (3) has a unique global optimal solu-
tion, which can be obtained by solving the convex optimization
problem in Eq. (4).

3. Local quadratic embedding learning

Most k-NNR algorithms take the average weight of neighboring
outputs as the prediction result. This will lead to moderate predic-
tions, as these neighboring outputs will not exceed the maximum
and minimum intervals of the neighboring samples. Given an
instance x, its k-NNs x(1), x(2), . . ., x(K), and their corresponding out-
puts y(1), y(2), . . ., y(K), an intuitive idea is to take the linear weighted
average of neighboring labels as the prediction. However, the

result determined by by ¼PK
i¼1wiy ið Þ wi � 0;

PK
i¼1wi ¼ 1

� �
always

follows min
i

y ið Þ� � � by � max
i

y ið Þ� �
, which leads to conservative

prediction results. To address this issue, we intend to establish a
local linear mapping model between the differences in the two
spaces, along with an independent model to distinguish the relia-
bility of different neighboring predictions—that is, to assign differ-
ent weights to the predictions based on different neighbors.

The scheme of the LQEL algorithm is shown in Fig. 1. To obtain
the output label corresponding to sample x, the k-NNs are first
determined using the conclusion of the metric learning in Section 2
(the ellipse in the left of the figure). Suppose a functionF : dx ! dy
is learned to describe the mapping from the difference of input to
the difference of output in two spaces. Then, for each



Fig. 1. The scheme of LQEL.
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xj j ¼ 1;2;3; :::;Kð Þ adjacent to the instance x, the jth estimation can
be performed as follows: byj ¼ yj þF x� xj

� �
j ¼ 1;2;3; :::;Kð Þ.

Finally, the above prediction results are linearly combined with
an appropriate set of weights to obtain the final output:

by ¼
XK

j¼1
wj yj þF x� xj

� �� �
j ¼ 1;2;3; :::;Kð Þ ð9Þ

Denote the real mapping function from input to output as

g0 2 C2 : X ! R, and define g


0 xjx0ð Þ ¼ 0:5xTAx0xþ Bx0xþ Cx0 as the

second-order Taylor expansion expanded at the point x0 in the d
neighborhood, where

Ax0 ¼ r2g0 x0ð Þ

Bx0 ¼ rg0 x0ð ÞT � x0ð ÞTr2g0 x0ð Þ

Cx0 ¼ g0 x0ð Þ � rg0 x0ð ÞTx0 þ 0:5 x0ð ÞTr2g0 x0ð Þx0
Then, for 8x1; x2 2 Ud x0ð Þ, the difference in the output space can

be calculated as follows:

y1 � y2 � g


0 x1jx0ð Þ � g



0 x2jx0ð Þ

¼ 0:5 x1ð ÞTAx0x1 þ Bx0x1 þ Cx0

� �
� 0:5 x2ð ÞTAx0x2 þ Bx0x2 þ Cx0

� �
ð10Þ

¼ 0:5 x1 þ x2ð ÞTAx0 x1 � x2ð Þ þ Bx0 x1 � x2ð Þ

� x0ð ÞTAx0 þ Bx0

� �
x1 � x2ð Þ

� W x1 � x2ð Þ
where Ud x0ð Þ represents the d neighborhood of x0 in the metric

space defined in Section 2, W � ðx0ÞTAx0 þ Bx0 is the weight coeffi-
cient matrix of the linear mapping function.

The result of Eq. (10) implies that a linear model could be
designed for prediction in x0’s d neighborhood. The matrix W
expanded on different reference points can be estimated by an
independent NN—for example, using an NN N: X ! X to approxi-
mate the matrix as N x0ð Þ ¼ W . Considering that the parameter
matrices r2g x0ð Þ and rg x0ð Þ tend to be more stable than g x0ð Þ in
most practical circumstances, the NN required here should be
much simpler than the one used to estimate the output label
directly. In particular, when g0 is a quadratic function, the matrices
Ax0 and Bx0 do not change with the reference point. In this case, a
simple linear NN could work well. In general, these procedures
can effectively reduce the complexity of the model and improve
the generalization.

This strategy provides k estimation results for each instance,
one from each nearest neighbor, but the reliabilities can vary con-
siderably. From an intuitive perspective, the predictions given by
189
distant neighbors tend to have high uncertainty. This implies that
different weights should be assigned to each of the predictions.
Prediction uncertainties caused by the presence of measuring noise
can be restrained by the averaging method. Inspired by this idea,
we intend to design a machine that generates different weights
according to the relative location of the instance, which minimizes
the expectation of mean square error (MSE).

Denote the measuring noise superimposed on the output label
y ið Þ as v ið Þ, which is subject to a normal distribution
v ið Þ 
 N 0;r2

� �
. The error of the ith prediction is calculated as

follows:

ŷi � y0 ¼ y ið Þ þ x0ð ÞTAx0 þ Bx0

� �
x0 � x ið Þ� �� g x0ð Þ

� 0:5ðx ið ÞÞTAx0x
ið Þ þ Bx0x

ið Þ þ Cx0 þ v ið Þ

þ ðx0ÞTAx0 þ Bx0

� �
x0 � x ið Þ� �� g x0ð Þ ð11Þ

¼ 0:5 x ið Þ � x0
� �T

Ax0 x ið Þ � x0
� �þ v ið Þ

� e ið Þ þ v ið Þ

where ŷi is the estimation given by the ith neighbor, e(i) is the esti-
mation error, and v(i) represents the uncertainty. The target is to
obtain a set of weights that minimize the objective H(w):

minH wð Þ ¼ E
Xk

i¼1
wibyi � y0

� �2	 

¼ E

Xk

i¼1
wi e ið Þ þ v ið Þ� �h i2 �

ð12Þ

¼
Xk

i¼1
wie ið Þ

� �2
þ r2

Xk

i¼1
wi

2

s:t:
Xk

i¼1
wi ¼ 1

wi � 0 i ¼ 1;2;3; :::;Kð Þ
This problem can be solved with the Lagrange multiplier

method and the Karush–Kuhn–Tucker conditions. In this problem,
all the variables involved in Eq. (12) are e(i) and r2, and the optimal
weight groups for x0’s neighbors are determined by d ið Þ

x0
¼ x ið Þ � x0.

Instead of solving the optimization problem, an NN is introduced
here to generate different weights, whose inputs are the differ-
ences between the instance and its neighbors, that is,
d ið Þ
x0

i ¼ 1;2;3; � � � ;Kð Þ.
In summary, the specific framework of the proposed method is

shown in Fig. 2. For a certain instance x(i), the k-NNs are first deter-
mined with the results acquired by metric learning in Section 2.

Denote these samples as x ið Þ
j j ¼ 1;2;3; :::; kð Þ and the corresponding

target labels as yj
ið Þ j ¼ 1;2;3; :::; kð Þ.

Second, the coefficient matrix W 2 RD is calculated for the sam-
ple x(i) with NN I, which is used for the estimation ofbdy ið Þ ;j ¼ WT

dx ið Þ ;j ¼ WT x ið Þ � x ið Þ
j

� �
, and the jth prediction for x(i) is

calculated as byj
ið Þ ¼ y ið Þ

j þ bdy ið Þ ;j. Finally, the weight w ið Þ
j for each esti-

mation is provided by NN II, taking dx ið Þ ;j as input. The final predic-
tion byi can be achieved with a linear combination ofbyj

ið Þ j ¼ 1;2;3; � � � ;Kð Þ.
In this paper, we introduce state-of-the-art strategies for NNs,

such as BN and dropout. The MSE is employed as the loss function.
The parameters of the proposed model, including the weights and
biases in the two NNs, are optimized by the SGD algorithm.

4. Empirical learning

In order to know how well the proposed algorithm works, we
use real-world benchmark regression datasets along with two



Fig. 2. The model structure of the proposed method.
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practical industrial datasets for verification. A series of classical
approaches are briefly introduced for the purpose of comparison
with the proposed method. Finally, the experimental results are
reported with tables and figures.
Fig. 3. Process flow chart of the raw meal preparation process.
4.1. Descriptions of datasets

4.1.1. Benchmark datasets
The details of the datasets [37–39] are shown in Table 1. For

example, the red wine dataset shown in the first line contains
1599 samples. Each record contains 12 feature variables and a tar-
get label to be predicted. The objective is to establish a mathemat-
ical model to evaluate red wine quality through color, composition,
and so forth. In this case, the quality of red wine is divided into
nine grades from high to low, and only samples between the third
and eighth grades are included in the dataset.
4.1.2. Powder fineness dataset
The aim of the first practical industrial application is to make

online prediction of powder fineness in the raw meal preparation
process. The details of this technological process are presented in
Fig. 3. In the raw meal preparation process, raw materials that con-
sist of three or four minerals are transported onto the center of the
grinding table. The materials are continuously pushed outward
across the rotating grinding table due to centrifugal force. Rocks
are crushed into small particles by the squeezing of the grinding
rollers and the grinding table before leaving the grinding disk.
When high-speed hot wind enters the mill from the bottom, finer
particles are blown into the chamber, while larger particles fall to
the bottom and are transported back to the entrance of the mill by
a bucket elevator. High-speed airflow driven by an induced draft
Table 1
Details of the datasets used in this paper.

Name Prediction label Attribute
number

Sample
number

Wine quality Wine quality 12 1599
Forest fire Burned area 12 517
CASP RMSD-size of

residue
10 45730

Air quality CO concentration 14 9356
Air quality NOx concentration 14 9356
Air quality NO2 concentration 14 9356
Boston house

price
House price 13 506

CASP: critical assessment of protein structure prediction; RMSD: root mean square
deviation.
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fan brings those finer particles into a high-efficiency dynamic clas-
sifier, where unqualified particles fall back to the mill table along
the cone and get reground. Fine products gathered from cyclones
and the electric dust collector are finally transported into a homog-
enization silo for storage.

The most important indicator of this process is the fineness of
the product, which further influences the product quality and
energy consumption of the subsequent calcination process. How-
ever, samples are collected and analyzed every 2 h due to the lim-
ited capacity for manual analysis in the lab, resulting in time lags
for real-time process control and further resulting in fluctuations
in raw meal fineness. Therefore, the aim is to estimate the powder
fineness in real time with other available and relevant online vari-
ables—that is, to achieve soft sensing for raw meal fineness.

All of the variables that may affect or represent the fineness are
considered to be auxiliary variables. These include the current of
the draft fan, the current of the classifier, the current of the driven
motor, the current of the bucket elevator to transport the product,
the current of the bucket elevator to transport the rejected slags,
the differential pressure, the inlet temperature, the outlet tempera-
ture, the feed quantity, and so forth. In general, an 80 lm sieve resi-
due anda200 lmsieve residueare considered to be the indicators of
rawmeal fineness, with the former beingmore sensitive. Therefore,
thedataset is constructedwith14 auxiliary variables andoneoutput
label, with a total of 959 instances (about 4 months).
4.1.3. Hydrocracking process dataset
The simplified flow diagram of a typical hydrocracking process

is shown in Fig. 4. The feedstock is mixed with externally supplied
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hydrogen, which is heated to a specified temperature and then
enters the two cascade reactors. The first reactor is loaded with a
hydrotreating catalyst to remove most of the sulfur and nitrogen,
as well as some heavy metal compounds. The second reactor,
where the cracking reaction is completed, is loaded with hydro-
cracking catalyst. In these reactors, low-temperature hydrogen is
directly added to absorb the heat released by the exothermic reac-
tion to maintain a stable temperature. The reaction product passes
through a high-pressure separator to recycle unreacted hydrogen
and then passes through a low-pressure separator to separate
some light gases. Finally, the separation of different components
is achieved by a fractionation tower. Six kinds of products are col-
lected: light end (LE), light naphtha (LN), heavy naphtha (HN), ker-
osene (KE), diesel (DI), and bottom oil (BO).

Due to the fluctuation in product prices and changes in the mar-
ket’s supply and demand, the yield of different products must be
relocated accordingly in order to maximize the total profit. There-
fore, it is essential to accurately predict the yield of each product in
time to guide the operation optimization. In this paper, we take the
yield of DI as an example to establish a prediction model. In this
problem, the sampling period is 4 h and the dataset covers a total
of 15 months. Finally, 2052 samples with 55 related input vari-
ables, including the feed mass flow rate, volume flow of the fresh
hydrogen gas, and so forth, are collected.

4.2. User-specified parameters

Seven typical regression algorithms are involved in this work:
(1) MML-based k-NNR first adopts the MML approach proposed

in Ref. [27]. The model first defines the constraints based on tri-
plets, and then formulates the optimization problem as a convex
quadratic programming problem. In this algorithm, the number

of nearest neighbors Kk is to be determined.
(2) SVR achieves a tradeoff between structural risks and empir-

ical risks by means of the regularization coefficient C and achieves
nonlinear mapping by introducing kernel methods. In this paper,
different kernels such as the linear kernel, the Gaussian kernel,
and the polynomial kernel are compared with each other, and
the Gaussian kernel is demonstrated to be better for these regres-
sion problems. Thus, the regularization coefficient C and the kernel
parameter c are to be optimized.

(3) RF is one of the most famous bagging algorithms. It ensem-
bles multiple weak models to reduce the variance of model predic-
tions. Random row sampling and column sampling strategies
further improve the generalization ability of the model. In this

algorithm, the maximum depth drf
max and the number of estimators

Nrf
e are optimized by fivefold cross-validation.
Fig. 4. Process flowchart of the hydrocracking process.
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(4) XGBoost generates a series of estimators by fitting the resid-
ual information with weak models, which are estimated by the
second-order Taylor expansion of the loss function. The algorithm
has been demonstrated to have a stable and accurate prediction
ability in many practical application scenarios. LightGBM [40] is
one of the improved branches of XGBoost, which uses the leave-
wise splitting method and applies the histogram method for pre-
processing to accelerate computing. It has been demonstrated that
LightGBM can greatly improve computing performance while
ensuring the prediction performance. Therefore, we chose the
LightGBM as one of the comparison methods. The parameters to

be tuned include the maximum number of leaf nodes Nlgb
l , learning

rate lrlgb, and l2-norm regularization coefficient llgb2 .
(5) NNs are effective tools to solve regression problems. We

implemented strategies including BN and dropout, which have
been demonstrated to be the state of the art in various fields
[35]. To be specific, the batch size is chosen to be 30, the proportion
of dropout is 0.3, and the number of hidden neurons Nn

h is chosen
by fivefold cross-validation.

(6) Deep factorization machines (DeepFMs) [41] have made
great progress in click-through rate (CTR) prediction [42] and stock
market prediction [43] tasks. A DeepFM aims to learn both low-
and high-order feature interactions by combining the factorization
machine (FM) and a DNN. The embedding vector obtained by the
FM is used as the initial embedding state of the algorithm. We
apply it in regression problems where there is only one feature
attribute in each field. A two-layer NN is used, which includes
BN layers and dropout layers. In this algorithm, the embedding

dimension ddf
e and the number of hidden layers Ndf

h in the NN need
to be optimized by cross-validation.

(7) DML-based k-NNR algorithms aim to find essential features
by using DML algorithms and to find the most similar samples
based on these features. Since this paper solves regression prob-
lems, it is impossible to construct triplet sets [29–31]. Following
the principle that similar inputs lead to similar outputs, we employ
the loss function, as shown in Eq. (13):

L ¼
X

i–j
dy
i;j � kf x ið Þ� �� f x jð Þ� �k2� �2

ð13Þ

where dy
i;j ¼ y ið Þ � y jð Þ�� ��, f �ð Þ represents the embedding operator

obtained by metric learning. On this basis, similar points in the fea-
ture space have similar labels; then, the k-NNR algorithm can be
used to make a prediction. The parameters in this predictor include

the embedding dimension ddml
e and the number of nearest neighbors

kdml.
For the proposed LQEL algorithm, the parameters that need to

be determined include the dimension of metric embedding dlqel
e ,

the number of hidden neurons in the two employed NNs Nlqel
hs

and Nlqel
hw , and the number of neighbors klqel. In this paper, fivefold

cross-validation tests are carried out for each of these parameters
to obtain the best selection scheme. The user-specified parameters
utilized in our experiments are provided in Table 2.

The results in the table show that the number of nearest neigh-
bors in the LQEL varies with different datasets. First, it depends on
the scale of the dataset, which determines the density of the sam-
ples in the space. For example, in the critical assessment of protein
structure prediction (CASP) dataset, the instances are sufficient for
the neighbors to be better referenced for prediction. This implies
that a large number of nearest neighbors can effectively improve
the prediction ability of the model. However, for the industrial
fineness dataset, limited samples are available for modeling. In
addition, it is difficult to use the values of the instrumental vari-
ables for state representation. For example, the quantity of slag
rejection in a vertical roller mill (VRM) is often evaluated by the



Table 2
Hyper-parameters employed in case study.

Datasets MML-based

k-NNR, Kk

SVR RF LightGBM NN, llgb2
DeepFM DML-based

k-NNR
LQEL

C c drfmax
Nn

h Nrf
e Nlgb

l
lrlgb ddfe Ndf

h ddml
e kdml dlqele Nlqel

hs Nlqel
hw klqel

Wine quality 50 1 0.01 7 15 500 64 0.1 0 3 256 16 50 10 2 3 80
Forest fire 40 100 10000 3 22 200 32 0.001 1 3 128 8 10 5 1 4 100
CASP 80 1000 100 4 18 600 128 0.01 0.1 8 256 8 80 14 2 4 140
CO 60 100 0.01 3 26 200 32 0.1 0 12 128 8 20 5 1 5 20
NO2 5 100 0.01 9 22 200 32 0.1 0.5 9 128 4 10 10 1 2 50
NOx 10 100 1 9 26 200 64 0.1 0 12 128 4 10 10 2 3 20
House price 5 10000 10 7 22 50 32 0.1 0.5 9 128 16 5 20 4 3 50
Fineness 10 100 0.01 9 28 100 32 0.1 0 12 256 16 50 10 1 4 20
Hydrocracking 50 100 0.0001 7 110 50 64 0.1 1 12 256 4 50 9 2 4 50
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current of the bucket elevator, but current drift occurs when regu-
lar maintenance is carried out (approximately once every 2 days),
especially when lubricating oil is added. Therefore, it is necessary
to pay more attention to the changes in the current. Under these
circumstances, the nearest neighbors in the space may not be as
instructive as those of the CASP dataset. Therefore, the model
chooses a small number of neighboring samples for prediction.
The table also implies that the proposed LQEL model with simple
forward NNs can perform well in regression problems. Compared
with the forward NN model, there are fewer hidden neurons in
the LQEL model (no more than four), and a smaller scale of param-
eters must be estimated. This reduces the model complexity,
thereby improving the model generalization.
4.3. Performance comparison of different datasets

To compare the performance of the proposed method with the
abovementioned classical methods, a total of nine regression prob-
lems on seven datasets were used. Each experiment was repeated
30 times, and the MSE and mean absolute error (MAE) on the test
sets were recorded. Then, statistical analyses were carried out on
these indexes to validate the robustness of the algorithm.

Table 3 shows the average indexes of each algorithm on differ-
ent datasets. The best performance for each line is marked in bold.
It can be seen that, for the nine verification tests listed below, the
LQEL algorithm proposed in this paper achieves the best
performance on most of the datasets. Moreover, the LQEL
algorithm achieves a performance comparable to those of the
Table 3
Performance comparison of different algorithms.

Dataset Error MML-based k-NNR SVR RF

Wine quality MSE 0.627 0.537 0.517
MAE 0.792 0.733 0.700

Forest fire MSE 3570 3680 3730
MAE 62.4 63.4 65.7

CASP MSE 23.0 23.9 20.9
MAE 4.80 4.89 4.67

CO MSE 0.0690 0.0610 0.0617
MAE 0.263 0.247 0.261

NO2 MSE 133.0 212.0 84.3
MAE 11.50 14.60 8.81

NOx MSE 502 546 440
MAE 22.4 23.4 21.1

House price MSE 7.84 9.56 6.27
MAE 2.80 3.09 2.34

Fineness MSE 0.292 0.220 0.262
MAE 0.541 0.448 0.523

Hydrocracking MSE 0.0703 0.0843 0.0749
MAE 0.265 0.290 0.286

Bold values in each line indicate the best performance among different algorithms.
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best-performing LightGBM and RF algorithms, and it has clear
advantages when compared with other algorithms.

Moreover, to evaluate the robustness of the algorithm, it is nec-
essary to compare the distribution of the obtained indexes. The
MSE and MAE distributions of multiple repeated tests are shown
with box plots in Figs. 5 and 6, respectively. The figure implies that
the LQEL has the most remarkable stability on most datasets,
except for the wine quality, CASP, and fineness datasets. Although
the performance fluctuates slightly more than some of the other
algorithms, the overall MSE and MAE are significantly lower—that
is, the algorithms with more stable performances often sacrifice
precision as the cost. In particular, strategies such as dropout,
batch learning, and BN are implemented in both the NN and LQEL
algorithms, but the latter outperforms the former.

Figs. 7 and 8 show scatter plots of the prediction results for dif-
ferent algorithms on the two industrial datasets, in which the
abscissa is the ground truth value and the ordinate is the predic-
tion results. The coefficient of determination (R2) is marked on
the top left corner, and indicates that the LQEL algorithm shows
advantages over the other algorithms on these two soft sensing
applications. This can be attributed to two aspects:

(1) The absolute value of the variables in these industrial data-
sets cannot well describe the process state. The method proposed
in this paper makes corrections to the nearest neighbors according
to the change of auxiliary variables, which puts greater emphasis
on the differences and thus reduces the risk of the above problem.

(2) This method employs two extremely simple NNs to achieve
LQEL. One NN aims to find the coefficients of local quadratic func-
tions, and the other realizes the weight assignment for predictions
LightGBM NN DeepFM DML-based k-NNR LQEL

0.486 0.528 0.582 0.530 0.487
0.697 0.769 0.768 0.720 0.684
3620 3890 4220 4010 3470
62.9 72.2 70.0 68.5 61.8
21.6 23.8 24.7 23.6 21.5
4.65 4.89 4.87 4.80 4.59
0.0628 0.0838 0.0766 0.0635 0.0564
0.251 0.281 0.301 0.269 0.246
77.6 287.0 205.0 102.0 63.3
8.81 16.20 14.20 11.10 8.26
434 527 490 458 403
20.8 22.7 22.7 23.0 20.8
5.48 8.12 8.86 5.76 4.71
2.27 2.98 2.86 2.51 2.29
0.247 0.283 0.205 0.208 0.202
0.497 0.502 0.447 0.456 0.431
0.0381 0.0718 0.0393 0.0567 0.0307
0.195 0.264 0.200 0.234 0.181



Fig. 5. MSE box plots of algorithms tested on different datasets. MML: MML-based k-NNR; LGB: LightGBM; DML: DML-based k-NNR.

Fig. 6. MAE box plots of algorithms tested on different datasets.
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Fig. 7. Scatter plots of the prediction results for different algorithms on the fineness dataset.

Fig. 8. Scatter plots of the prediction results for different algorithms on the hydrocracking dataset.

Y. Bao, Y. Zhu and F. Qian Engineering 18 (2022) 186–196

194



Y. Bao, Y. Zhu and F. Qian Engineering 18 (2022) 186–196
given by nearest neighbors. Based on these advantages, the gener-
alization ability of the proposed algorithm can be effectively
improved.
5. Conclusions

The paper proposed an LQEL algorithm for regression problems.
MML is first improved by optimizing the consistency of the dis-
tances between samples in the input and output space. By relaxing
the constraints, the modified problem is proved to be a convex
optimization problem, while it keeps the same solution as the orig-
inal problem. Based on this, a locally quadratic embedding model is
developed, and different weights are assigned to the prediction
results to minimize the expectation of prediction error. In this
framework, two extremely simple NNs are implemented to learn
the quadratic embedding matrix and the weight assignments of
the neighboring predictions. We hope to build a unified end-to-
end model that prevents the independent two-layer optimization
from getting stuck in a local optimal. The proposed LQEL model
has the following advantages:

� A global consistency for distances in the input and output
space is achieved via improved metric learning.

� The information contained in output labels is better exploited,
which leads to a better determination of the neighborhood for
a certain instance.

� An LQEL framework was proposed based on the local quadra-
tic embedding hypothesis. Two specially designed networks
improve generalization by simplifying the model structure
from either a global or a local perspective.

� The experimental results show that the LQEL can achieve a
more precise and comparable robust prediction when light-
weight NNs are employed.
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