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a b s t r a c t

Runoff prediction is of great significance to flood defense. However, due to the complexity and random-
ness of the runoff process, it is hard to predict daily runoff accurately, especially for peak runoff. To
address this issue, this study proposes an enhanced long short-term memory (LSTM) model for runoff
prediction, where novel loss functions are introduced and feature extractors are integrated. Two loss
functions (peak error tanh (PET), peak error swish (PES)) are designed to strengthen the importance of
the peak runoff’s prediction while weakening the weight of the normal runoff’s prediction. The feature
extractor consisting of three LSTM networks is established for each meteorological station, aiming to
extract temporal features of the input data at each station. Taking the upper Huai River Basin in China
as a case study, daily runoff from 1960–2016 is predicted using the enhanced LSTM model. Results indi-
cate that the enhanced LSTM model performed well, achieving Nash–Sutcliffe efficiency (NSE) coefficient
ranging from 0.917–0.924 during the validation period (November 2005–December 2016), outperform-
ing the widely used lumped hydrological models (Australian Water Balance Model (AWBM),
Sacramento, SimHyd and Tank Model) and the data-driven models (artificial neural network (ANN), sup-
port vector regression (SVR), and gated recurrent units (GRU)). The enhanced LSTM with PES as loss func-
tion performed best on extreme runoff prediction with a mean NSE for floods of 0.873. In addition,
precipitation at a meteorological station with a higher altitude contributes more runoff prediction than
the closest stations. This study provides an effective tool for daily runoff prediction, which will benefit
the basin’s flood defense and water security management.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Among all the natural disasters, flood is the most frequent type,
and it endangers the population and property [1–3]. Floods are also
increasing in frequency and intensity due to climate change and
human activities [4]. Since ancient times, human beings have made
considerable efforts to combat floods, including structural and
non-structural methods [5]. Structural methods are the most visi-
ble flood defense measures, such as levees, bunds, dams, and weirs.
Meanwhile, the non-structural methods like flood forecasting
models and systems, which facilitate disaster preparedness plan-
ning, have played prominent roles in flood risk mitigation. With

the development of computer science and hydrological science in
recent decades, flood prediction models have been leveraged
worldwide to tackle the flood issue. However, due to its complexity
and nonlinearity, flood prediction is a non-trivial task that
demands advanced models and higher accuracy.

In general, runoff prediction and flood forecast models can be
categorized into process-based and data-driven models [6,7]. The
process-based model, which dates back to the 1960s, is a mathe-
matical formulation that explicitly represents the hydrologic state
variables and fluxes. Up to the present, numerous process-based
hydrological models, including lumped and distributed types, have
been proposed and widely applied in runoff prediction [8]. For
instance, TOPMODEL is one of the first models to explicitly use
topographic data to reflect a basin’s hydrological response
characteristics in the model formulation [9]. It was used for runoff
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prediction in different regions [10,11]. The Soil and Water Assess-
ment Tool (SWAT) [12], a semi-distributed hydrological model, has
undergone sustaining development since its establishment.
Diverse modules such as radar precipitation [13], groundwater
units [14], and snowmelt units [15] have been successively inte-
grated. SWAT model performed well on runoff prediction [16,17].
Australian Water Balance Model (AWBM) is a lumped hydrological
model that can use daily rainfall to estimate daily runoff [18,19].
Despite their widespread applications and advantage on inter-
pretability, process-based models still have some drawbacks on
flood prediction, such as over-parameterization, high complexity,
a wealth of expert knowledge, and high requirements for data.

Alternatively, the data-driven models based on statistical the-
ory can learn the relationships among influencing factors and run-
off automatically, which is not only cost-effective but also highly
efficient. A large number of data-driven models for runoff predic-
tion have been proposed and applied in practices [20], including
artificial neural network (ANN) [21], support vector machine
(SVM) [22], neuro-fuzzy [23], adaptive neuro-fuzzy inference sys-
tem (ANFIS) [24], wavelet neural network [25], and multilayer per-
ceptron (MLP), and the like. Among them, ANN is the most popular
data-driven model for runoff prediction with good generalization
ability and relatively high accuracy among all the models men-
tioned above. However, it fails in modeling the time dependency
of data sequences and predicting the peak value accurately. Time
dependency refers to the autocorrelation relationship between
the previous data and the current data in a time series, which are
often difficult to express directly in equations [26]. In comparison,
the long short-term memory (LSTM) model with a gated mecha-
nism stands out due to its excellent performance, simple architec-
ture, and superior time dependency ability.

LSTM is a deep learning model proposed by Hochreiter and Sch-
midhuber [27] to solve the complexity of information storing in the
long sequence backpropagation process. Because of the outstanding
performance on long sequence tasks, LSTM has beenwidely applied
in various fields since its inception, especially in time series. In
recent years, LSTM has attracted much attention in hydrology
[28–32]. For instance, Kratzer et al. [33] studied runoff prediction
using LSTM in 241 catchments in the Catchment Attributes and
Meteorology for Large-sample Studies (CAMELS) data set and
proved that LSTM could get good simulation results in most basins.
Meanwhile, the effectiveness of LSTM in watershed-scale transfor-
mation is also verified, which shows the great potential of LSTM.
However, peak flow prediction is still a challenge for LSTM [34,35].

The challenge of peak flow prediction mainly lies in two
aspects. One is how to identify the important input features for
runoff prediction. Another is how to optimize the model’s objective
function to achieve good prediction results. Although the LSTM
model can capture the temporal features of the input data series
(e.g., rainfall), it ignores the spatial heterogeneity of the temporal
features. Actually, in practice, the impacts of different rain gauges
on runoff prediction are different. Therefore, the structure of the
LSTM model needs to be modified and improved. LSTM generally
takes mean square error (MSE) as the loss function regarding
model optimization. However, MSE treats samples with different
prediction errors equally, which fails to emphasize the importance
of peak flow prediction. Ding et al. [36] used extreme value theory
to design a novel loss function (extreme value loss (EVL)) in the
extreme events model, whose main idea is to adjust the weights
on extreme events so that the model pays more attention to
extreme values in the parameter optimization process. Therefore,
new loss functions can be designed for LSTM to improve its ability
to deal with peak flow prediction.

Accurate flood prediction for the upper Huai River Basin is sig-
nificant for flood management of the whole Huai River Basin. The
Huai River, one of the seven major rivers in China, is located in

eastern China between the Yangtze River and Yellow River. Due
to its continental monsoon climate with a complex and variable
atmospheric system, the Huai River Basin is prone to flood, suffer-
ing floods about once per two years [37]. The upper Huai River
Basin is the essential control basin for the upper Huai River. In
the past few decades, many efforts have been made on runoff pre-
diction in the upper Huai River Basin. For instance, Liu et al. [38]
used the fully distributed model Topographic Kinematic Approxi-
mation and Integration (TOPKAPI) to predict runoff with a six-
hour time step. Lv et al. [39] constructed an LSTM model for cyclic
prediction and achieved good results for hourly flood forecasting.
However, most existing studies are fragmented, focusing on hourly
runoff prediction or flood events analysis relatively quickly but
lack continuous daily runoff prediction over a long period. Further-
more, in the context of climate change, population growth, and
economic development, the upper Huai River Basin has experi-
enced significant climate change and land-use change over the past
few decades [40,41]. Runoff prediction in the changing environ-
ment in the upper Huai River Basin is in high demand.

This study aims to propose an enhanced LSTM model to
improve the accuracy of daily runoff prediction to facilitate flood
defense. The objectives are as follows: ① to explore the trends of
the hydro-meteorological variables and land use in the upper Huai
River Basin in the last decades;② to predict runoff and flood in the
upper Huai River Basin by using a structurally improved LSTMwith
novel loss functions designed for peak flows; ③ to compare the
improved LSTM model with different existing models to proof its
outperformance on runoff prediction in the study area.

2. Study area and data acquisition

2.1. Study area

The upper Huai River Basin (as shown in Fig. 1) located in the
east of China with a drainage area of 10 190 km2 is selected as
the study area. The basin belongs to the subtropical monsoon
humid climate zone, with an average temperature of 15.43 �C.
Monsoon mainly affects precipitation, with an average annual pre-
cipitation of 1043 mm, 50 % concentrated from June to September.
The drainage system of the basin is distributed in a dendritic form,
and the average runoff depth is about 350 mm. The basin topogra-
phy is high in the west and low in the east, with an average eleva-
tion of 47 m (Fig. 1). Most of the land in the basin is cultivated, with
a small number of cities and woodland. Six meteorological stations
covering the spatial heterogeneity were set up in/around the basin.

2.2. Data acquisition

Climatic data, including daily precipitation, pan evaporation,
and temperature from 1951–2016, were collected from the China
Meteorological Data Service Center�. Daily runoff (m3�s�1) during
1951–2016 at the Xixian hydrometric station was provided by
Henan Hydrology Bureau. The SRTM1 DEM data§ with a spatial reso-
lution of 30 m was used in this study. Landsat 5 Thematic Mapper
(TM) Collection 1 Level-1 data was used for land use classification
of the study area in 1987, and Landsat 8 Operational Land Imager
(OLI) Collection 1 Level-1 data was used for that in 2016.

3. Methodology

The non-parametric rank-based Mann-Kendall test (recom-
mended by the World Meteorological Organization) [42] and linear

� https://data.cma.cn.
§ https://glovis.usgs.gov.
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regression method are applied to identify the trends of meteoro-
logical and hydrological variables. Before presenting the enhanced
LSTMmodel, the basic structure of the LSTMmodel is introduced in
Section 3.1. For comparison with the existing methods, representa-
tive models are selected and briefly introduced in Section 3.2. In
evaluating the performances of different models, specific evalua-
tion metrics are finally presented at the end of this section.

3.1. LSTM network

LSTM is developed from the recurrent neural network (RNN)
[43]. Compared with RNN, LSTM adds a forgetting mechanism,
which can also solve the gradient explosion problem. In the struc-
ture of LSTM (as shown in Fig. 2), a particular unit called a memory
cell is similar to an accumulator and a gated neuron. The next
sequential step has a parallel weight and copies its state’s actual
value and accumulation. The LSTM has a self-connection mecha-
nism controlled by a multiplication gate that learns and decides
when to clear the memory content by another unit. For better
understanding, define time as subscript t, hidden state as h, cell

state as C, input as x, the output of input gate as i, the output of for-
get gate as f , the output of output gate as o, and the output of the

reserved portion of the original loop layer as bC . r is an activation
function, such as sigmoid and Rectified Linear Unit (ReLU).

LSTM comprises three gates: input gate, output gate, and
forget gate. Its forward propagation process can be expressed by
Eqs. (1)–(3):

Input gate:

it ¼ r Wi ht�1; xt½ � þ bið Þ ð1Þ
Output gate:

ot ¼ r Wo ht�1; xt½ � þ boð Þ ð2Þ
Forget gate:

f t ¼ r Wf ht�1; xt½ � þ bf

� � ð3Þ
The cell information Ct and the hidden information ht are

updated by Eqs. (4)–(6):bCt ¼ tanh WC ht�1; xt½ � þ bCð Þ ð4Þ

Ct ¼ f t � Ct�1 þ it � bCt ð5Þ

ht ¼ ot � tanh Ctð Þ ð6Þ
where W is the weight matrix and b is the bias, which are updated
and optimized in the training process.

Compared with RNN, after adding the forgetting mechanism f t ,
the LSTM no longer passes all the historical information backward
but selectively forgets part of the historical content, memorizes
part of the historical context, and adds new input information to
the backward transfer. Then it uses the backpropagation algorithm
[44] to update the parameters and optimize the model.

3.2. Enhanced LSTM model for runoff prediction

3.2.1. Integrating feature extractor into the LSTM model
The flowchart of the enhanced LSTM model is illustrated in

Fig. 3. It includes four layers: input layer, feature extractor,

Fig. 1. River system and the distribution of hydro-meteorological stations in the upper Huai River Basin, China.

Fig. 2. The structure of the LSTM model. The subscript ‘‘t” here represents the
current time, ht�1 and Ct�1 represent the hidden state and cell state respectively
received from the previous node. In other words, C and h represent long-term and
short-term changes, respectively. The rest are intermediate variables.
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predictor, and output layer. Unlike the original LSTM model, the
enhanced LSTM model has an integrated feature extractor. The
motivation of this integration is to identify the critical features
for the runoff prediction task. For this current work, a separate
feature extractor is proposed for each meteorological station at
Xixian hydrometric station, assuming that precipitation at
different stations might contribute to different runoff generation.

A feature extractor is composed of three LSTMs. Specifically, it
takes precipitation (P), conditional cumulative precipitation
(CCP), and runoff with a step length (ô days) before the time t as
the input features. It also takes the historical period feature’s run-
off data of the same period last year. The first two LSTMs are used
to extract long-term trend features and short-term change fea-
tures, respectively. Then, the two parts of the extracted features
are spliced together to output site features through the third LSTM.

Subsequently, the output features of each station obtained from
each feature extractor and the historical runoff with a step length
of ô are spliced together using a residual connection technique.
Finally, an LSTM is used to predict runoff at time t. Historical runoff
provides constraints for boundary conditions, breaks the network’s
symmetry, and improves the characterization ability of the net-
work [45,46].

3.2.2. Designing new loss functions to improve peak runoff prediction
The MSE is generally used as the loss function for typical regres-

sion problems. The formula is as follows:

MSE ¼
Pn

t
ypret � ytð Þ2

n
ð7Þ

where ypret is the prediction and yt is the observation.
The above formulation indicates that MSE treats runoff predic-

tion errors equally no matter the runoff prediction error, either
high or low. However, the peak runoff prediction error is a concern
in flood forecasting, and the normal runoff prediction error is rela-
tively unimportant. To solve this problem, two new loss functions

are designed to increase the importance of peak loss to improve
the accuracy of peak runoff prediction.

(1) Peak error tanh (PET). Since the error of the extreme value
is more significant than that of the normal flow, the weight can be
increased for the larger error in the MSE. Therefore, a tanh function
is added alongside the MSE to amplify larger errors and reduce
small errors simultaneously. The formula is as follows:

PET ¼ tanh MSEð Þ ð8Þ
Its function curve is shown in Fig. 4. When the independent

variable is larger, the function value is also larger; when the inde-
pendent variable is smaller, the function value will correspond-
ingly become smaller. Therefore, the purpose of amplifying large
errors and reducing small errors is achieved.

(2) Peak error swish (PES). Swish is a new activation function
proposed by Google [47]. Swish is adapted to local response

Fig. 3. The framework of the enhanced LSTM model for daily runoff prediction.

Fig. 4. tanh function graph.
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normalization, and the effect of fully connected layers above 40 is
much better than other activation functions. Furthermore, it has
shown better performance than the current best activation
function on different data sets. The Swish function image is shown
in Fig. 5.

The expression of PES after fusing MSE is

PES ¼ MSEð Þ � sigmoid MSEð Þ ð9Þ

3.2.3. The training of the enhanced LSTM model
The enhanced LSTM model training adopts the mini-batch

training technique. A batch size of 64, epoch size of 200, and the
Adam optimizer are used for training the model. Three loss func-
tions, MSE, PET, and PES are used. To keep the features of each
input data within the same numerical range, the data is normalized
by using Eq. (10) as follows:

Xnorm ¼ X � Xmin
Xmax � Xmin

ð10Þ

where X is the variable, Xmin and Xmax are the minimum and maxi-
mum values of the variable X, respectively. Xnorm represents the nor-
malized data.

3.3. Selected comparative models for runoff prediction

In verifying, the effectiveness of the enhanced LSTM model on
daily runoff prediction, three data-driven models (support vector
regression (SVR), ANN, gated recurrent units (GRU)) and four
lumped hydrologic models (AWBM, Sacramento, SimHyd, and Tank
Model) are selected for comparison.

SVR is an important application of SVM [22] in regression tasks.
SVR works by finding a regression plane so that all the data in a set
are closest to that plane. To achieve the regression task of nonlin-

ear data, SVR can also use a nonlinear kernel to get a hyperplane to
fit the data. SVR is favored for its simplicity, efficiency, and superior
performance. The ANN model is an information processing system
that mimics brain functions according to biological neural net-
works [21,48]. It consists of the input layer, hidden layers, and out-
put layer. As one of the classical machine learning models, it is also
the basis for most deep learning models. Due to the high flexibility
of ANN structure, suitable network structure and loss function can
be designed according to the specific applications. ANN learning is
robust to errors in training data and has been successfully applied
to many fields.

GRU is a type of RNN [49]. In many cases, it performs simi-
larly to LSTM, but it is easier to train and essentially improves
training efficiency. SVR and ANN are both widely used and rep-
resentative traditional data-driven models. To verify the advance
of the proposed model over the traditional data-driven methods,
SVR and ANN are selected for comparison. In addition, compar-
ing the proposed model with GRU, which has a similar effect
with LSTM, can indicate the structural superiority of the
enhanced LSTM.

The AWBM is a catchment water balance model that links rain-
fall and evapotranspiration to runoff through daily or sub-daily
data [18]. It calculates rainfall losses for flood hydrological models.
The model contains five stores, including three surface stores, a
base flow store, and a surface runoff routing store. Sacramento
model is a lumped catchment water balance model with 16 param-
eters and performs at a daily time step [50]. The runoff production
can be divided into five parts: direct runoff, surface runoff, soil
flow, fast groundwater, and slow groundwater. A linear reservoir
simulated medium flow, fast groundwater, and slow groundwater.
SimHyd is a conceptual rainfall-runoff model with seven parame-
ters containing three stores for interception loss, soil moisture,
and groundwater [51]. Sugawara et al. [52] developed the tank
model to explain a catchment’s water flow phenomena. It is a
straightforward model, composing four tanks placed vertically in
series. The precipitation is poured into the top tank, and evapora-
tion is subtracted from the top tank downward. As each tank is
emptied, the evaporation gap begins at the next tank until all tanks
have been emptied. The output of the side outlets is the calculated
runoff [53]. The four classical lumped hydrological models have
been successfully applied worldwide in catchment runoff simula-
tion and prediction. Comparison with the selected lumped hydro-
logical models intends to verify the superiority of the proposed
model over the traditional physical models.

3.4. Evaluation metrics

To evaluate the performance of different (environmental) mod-
els, please refer to the literature published by Bennett et al. [54]. In
this study, the Nash–Sutcliffe model efficiency coefficient (NSE),Fig. 5. Swish function graph.

Table 1
Statistical information of trend analysis for the hydro-meteorological variables on annual and seasonal scales during 1951 and 2016 for the upper Huai River Basin, China.

Statistic Annual Spring Summer Autumn Winter

Slope Z Slope Z Slope Z Slope Z Slope Z

P (mm) �0.210 0.020 �0.190 �1.000 0.010 0.560 �0.140 �0.060 0.110 �0.130
Runoff depth (mm) �1.770 �1.270 �0.270 �1.670 �0.950 �1.500 �0.630 �0.530 0.070 0.370
Temperature (�C) 0.018a 4.710a 0.024a 2.710a 0.021a 4.180a 0.010 �0.650 0.017a 3.430a

Evp (mm) �3.960a �4.910a �0.610b �2.350b �0.410 �1.330 �2.100a �5.150a �0.840a �3.460a

D (P > 0 mm) �0.208 �2.080b �0.057 �1.640 �0.086 �2.340b 0.059 �0.200 �0.125 �2.460b

D (P > 25 mm) �0.029 �1.560 0.003 �4.570a 0.002 �0.890 �0.025 �2.500b �0.010 �5.290a

D (P > 50 mm) �0.002 �1.580 0.000 0.000 0.001 �2.810a �0.005 �2.830a 0.000 0.000
Pmax �0.250 �0.960 0.035 0.390 �0.116 �0.400 0.013 0.200 �0.044 �0.980

Zmeans the statistic value derived from the Mann–Kendall test method, Evp: pan evaporation; D (P > 0 mm), D (P > 25 mm), and D (P > 50 mm) represent the number of days
with daily precipitation large than 0 mm, 25 mm, and 50 mm, respectively; Pmax: maximum daily precipitation.
a,b indicate that the variable has a significant change at the significance level of 0.01 (2.58) and 0.05 (1.96), respectively.
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mean absolute error (MAE), root mean square error (RMSE), rela-
tive volume error (RE), qualification rate (QR), and NSEflood are
selected as the evaluation criteria. QR refers to the forecast flood
QR [55]. NSEflood refers to the average NSE for forecasting floods
(Eqs. (11–16)):

NSE ¼ 1 �
PN

t¼1 Yest
t � Yt

� �2PN
t¼1 Yt � �Yt

� �2 ð11Þ

MAE ¼
PN

t¼1 Yest
t � Yt

�� ��
N

ð12Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t¼1 Yest
t � Ytð Þ2
N

s
ð13Þ

RE ¼
PN

t¼1 Yest
t � Yt

� �PN
t¼1Yt

ð14Þ

QR ¼ m
n

� 100% ð15Þ

NSEflood ¼
Pm

t¼1NSEt

m
ð16Þ

where Yest
t is the simulated runoff by the model at the time t, Yt rep-

resents the observed runoff at the time t, Yt

�
indicates the average

value of the observed runoff, and N means the number of observa-
tions. m refers to the number of floods where the relative error
between the predicted flood peak and the real flood peak is less
than 20%, n is the total number of flood events. NSEflood refers to
NSE during floods.

4. Results and discussion

4.1. Trends of the hydro-meteorological variables

In exploring the trends of meteorological and hydrological ele-
ments in the study area, precipitation, runoff depth, temperature,
and pan evaporation during 1951–2016 are analyzed on annual
and seasonal scales using the Mann–Kendall method and linear
regression method. The statistical results are shown in Table 1. In
addition, Fig. 6 illustrates the inter-annual changes of these
hydro-meteorological variables.

In general, it can be seen that precipitation and runoff depth
have insignificant decreasing trends on the annual scale in the
upper Huai River Basin. The temperature has a clear upward trend
(0.18 �C per ten years), relatively lower than the average tempera-
ture increase rate (0.24 �C per ten years) in China during 1951–
2018 [56]. Fig. 6(b) shows that the annual pan evaporation has a
significant downward trend (3.96 mm per year). Similar to findings

Fig. 6. The inter-annual change of hydro-meteorological variables. (a) P and runoff
depth; (b) temperature and pan evaporation during 1951 and 2016 for the upper
Huai River Basin, China.

Fig. 7. Land use classification results in (a) 1987 and (b) 2016 for the upper Huai River Basin, China.
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in Han et al. [57], the evaporation paradox existed in the upper
Huai River Basin, which can be attributed to changes in solar radi-
ation, relative humidity, and wind speed.

Specifically, consistent with annual precipitation, precipitation
in spring and autumn shows insignificant downward trends, while
precipitation in summer and winter shows insignificant upward
trends. Except for runoff depth in winter (insignificant increase),
the trend of seasonal runoff depth is consistent with that on the
annual scale (insignificant decrease). The seasonal temperature
has risen significantly except for autumn. The trend of pan evapo-
ration on the seasonal scale is consistent with that on the annual
scale, but the decreasing trend in summer (0.41 mm per year) is
not significant.

In addition, the number of days for different intensities of pre-
cipitation is also studied (as shown in Table 1). The number of rain-
fall days (P > 0) shows a downward trend at the 95% confidence
level and remains consistent on the seasonal scale, especially in
summer and winter. The number of days with rainfall greater than
25 and 50 mm mainly showed a downward trend on the annual
and seasonal scales. The annual maximum rainfall also changed
insignificantly. Therefore, extreme precipitation events in the basin
did not show a noticeable change in the context of climate change.

Overall, the above results reveal that from 1951 to 2016, the
temperature in the upper Huai River Basin increased significantly,
the pan evaporation decreased significantly, and the precipitation
and runoff were stable. Although the hydro-meteorological vari-
ables change, the hydrological status remains stable in the upper
Huai River in general.

4.2. Land use change in the upper Huai River Basin

Besides climate change, land use change is another critical driv-
ing factor for the hydrological cycle. For instance, land use change
may influence runoff generation and formation processes via
changing the characteristics of the underlying surface. Different
land change patterns (e.g., afforestation, deforestation, urbaniza-
tion) exert different impacts on runoff. In recent decades, land
use change in the upper Huai River Basin needs to be investigated
to better understand the impact of land use on runoff change. To
this end, we classified land use in the upper Huai River Basin into
five types (water body, forest, residential area, farmland, and bare

land). We analyzed the land use status in 1987 and 2016 based on
Landsat images using the random forest algorithm. The land use
classification results in 1987 and 2016 are shown in Fig. 7, and

Table 2
Transition matrix of land use changes from 1987 to 2016 for the upper Huai River Basin, China (km2).

2016 land use 1987 land use

Water body Forest Residential area Farmland Bare land Total

Water body 110.786 2.4710 28.621 78.196 0.077 220.151
Forest 4.497 1446.7000 1.844 1091.665 0.001 2544.707
Residential area 3.656 17.74530 76.751 575.269 0.073 673.494
Farmland 48.270 294.1500 386.876 5594.016 0.329 6323.641
Bare land 0.843 1.1574 2.159 52.247 0.024 56.430
Total 168.052 1762.2240 496.251 7391.393 0.504 9865.830

Table 3
Performance comparison of different runoff prediction models.

Category Models NSE %ð Þ MAE(m3�s�1) RMSE(m3�s�1) RE QR (%) NSEflood %ð Þ
Data driven models LSTM (PES) 91.7 24.80 59.29 0.18 92.3 87.3

LSTM (PET) 92.4 21.03 56.82 �0.14 84.6 86.3
LSTM (MSE) 91.7 17.73 52.92 0.07 77.8 74.7
SVR 86.9 28.78 74.35 0.15 50.0 83.8
ANN 89.8 25.33 65.74 �0.05 53.8 86.7
GRU 90.4 24.35 63.87 0.16 69.2 85.8

Lumped hydrologic models AWBM 55.9 48.43 136.69 0.05 41.7 28.7
Sacramento 67.4 51.95 117.52 �0.12 66.7 68.8
SimHyd 56.1 55.26 136.38 0.07 25 38.0
Tank Model 57.7 48.70 133.84 0.30 25 32.0

Fig. 8. The observed and predicted runoff based on the enchanted LSTMmodel with
PET as loss function during November 2005–December 2016 for the upper Huai
River Basin, China.
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the transfer matrix of land use change from 1987 to 2016 is pre-
sented in Table 2.

Intuitively, Fig. 7 shows that the area of farmland has decreased,
while the residential area and forest cover have expanded obvi-
ously. Quantitatively, the area of farmland has been reduced by
about 1100 km2 in various forms, mainly converted to residential
area and forest land. The residential area has expanded by about
180 km2, which increases the impervious surface area and may
result in urban flooding. The decrease of farmland area and the
increase of forest (about 780 km2) is consistent with the ‘‘returning
cropland to the forest” initiative proposed by the Chinese govern-
ment. The initiative aims to protect the ecological environment
while developing the economy. As forests play important roles in
regulating rainfall and reducing flood peaks, the increase of the for-
est area may lead to more water for water conservation while less
water for flooding.

4.3. Runoff prediction based on the enhanced LSTM model

As precipitation data at some meteorological stations are miss-
ing during 1951 and 1959, daily runoff during 1960 and 2016 is
selected for the upper Huai River Basin prediction framework
based on the enhanced LSTM model. Specifically, data during Jan-
uary 1960–October 2005 are used for training and the remaining
data (November 2005–December 2016) for testing. To predict daily
runoff at the day (d), the input data, precipitation
(Pd�6; Pd�5; :::; Pd�1), conditional cumulative precipitation
(CCPd�6; CCPd�5; :::; CCPd�1, cumulative days are two days), runoff
(Rd�6; Rd�5; :::; Rd�1), and runoff data at the same time last year
are used. CCP means accumulated precipitation over specified

days. For instance, CCPd�1 with two cumulative days represents
the accumulated precipitation of the day d� 1 and the day d� 2.
The performances of the enhanced LSTM models on daily runoff
prediction are listed in Table 3 It can be noticed that the NSE of
overall runoff prediction based on the enhanced LSTM models all
exceeds 91%. Notably, the improved LSTM model with the loss
function of PET shows the best performance, achieving an NSE of
0.924, as demonstrated in Fig. 8.

To further assess the performance of the enhanced LSTM model
on extreme runoff (flood) prediction, QR and NSEflood are calculated
and presented in Table 3. Here, only a peak flow rate more than or
equal to 1000 m3�s�1 is regarded as a flood event. As a result, 13
flood events were identified in the test dataset. It can be found
from Table 3 that the improved LSTMwith PES as loss function per-
formed best, achieving a QR of 92.3% and NSEflood (average NSE
during the flood period) of 0.873. Based on this model, Fig. 9 dis-
plays the prediction results of nine representative flood events.

In evaluating the contributions of precipitation at different
meteorological stations to runoff prediction, the Pearson correla-
tion coefficient (PCC) was calculated between the extracted site
feature (output of feature extractor for each meteorological station
in Fig. 2) and the predicted runoff during the test period (Novem-
ber 2005–December 2016). The results are shown in Table 4. The
higher the PCC is, the more influential the feature is to runoff
prediction.

Table 4 indicates that the extracted site features have negative
correlations with predicted runoff when the loss functions of the
model are MSE and PES. In contrast, their correlations are positive
when PET is used as the loss function. The absolute value of the
correlation coefficient is the most crucial information, representing

Fig. 9. Performance evaluation on peak runoff prediction based on the improved LSTM with PES as loss function for the upper Huai River Basin, China.
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the correlation between the features extracted from the meteoro-
logical station and the predicted runoff. The data in bold indicates
the strongest correlation The positive and negative signs are deter-
mined by the parameter training process inside the model, work-
ing in coordination with the whole model and eliminating the
effect of the sign within the model itself. It can be seen that PES sig-
nificantly improves the correlation coefficient between site fea-
tures and predicted runoff, with the highest PCC of �0.672 at
station 57285. Besides, meteorological stations with high altitudes
contribute to runoff prediction than those closer to the hydromet-
ric station. For instance, stations 57390 and 57285, which are the
first and second highest altitudes, have relatively higher PCC than
those closer to the hydrometric station.

4.4. Comparison with the selected comparative models

The performances of different models are shown in Table 3. In
general, the data-driven models outperformed the lumped hydro-
logical models on daily runoff prediction. The enhanced LSTM
model achieved better results than comparative models such as
SVR, ANN, and GRU among the data-driven models. Although
GRU has a simpler structure and higher training efficiency, its over-
all performance is slightly lower than the enhanced LSTM. Their
discrepancy in performance is even more apparent in the flood
forecasting results, which indicates that the enhanced LSTM model
structure and the two loss functions (PET and PES) have improved
the model’s ability to predict runoff and flood. Specifically, for the
overall runoff, the LSTM model with PET as loss function exhibits
the highest NSE of 0.924. However, regarding the flood peak pre-
diction, the enhanced LSTM model with PES performed best,
achieving a QR of 92.3% and the NSE during the flood period
(NSEflood) of 0.873, respectively. The above results imply that the
enhanced LSTM model with PES as a loss function has more signif-
icant potential for flood forecasting.

In the training process, data is firstly normalized. So MSE is usu-
ally between zero and one. There is no problem of output satura-
tion for the PET loss function when there is a rapid rise stage,
but the rising rate gradually decreases. One possible explanation
is that PET magnifies MSE as a whole. The larger the MSE, the larger
the PET (MSE is in the range of 0–1). Therefore, when the model
optimizes the parameters, it is optimized as a whole, so the overall
prediction result of runoff is better. When the horizontal axis is
between zero and one, PES is approximately linear, but it is not.
PES reduces the MSE, but the first derivative of PES gradually
increases and approaches a constant value. Therefore, when the
MSE is close to zero, the rising rate of PES is slower, and when
the MSE is close to one, the increasing rate of PES is faster. The first
derivative increasing monotonically may be why PES has a better
effect on improving flood flow with more significant errors.

The floods in the upper reaches of the Huai River are concen-
trated from June to August, and most of them are caused by heavy
rain, which brings enormous flood control pressure to the middle

and lower reaches. To protect most social property and people’s
safety, the middle and lower reaches of the Huai River have oper-
ated part of the flood storage areas mainly for agriculture and
industry and built many reservoirs in the upper reaches. Enhanced
LSTM can timely and accurately predict the arrival time of flood
peak and the flow, which is significant to the operation of reser-
voirs and flood storage areas. On the other hand, the reservoirs also
greatly influence runoff. Therefore, some of the prediction errors
may be caused by the reservoirs. Future works could consider
the impact of the reservoirs on runoff prediction.

5. Conclusions

To improve the accuracy of runoff prediction, this study pro-
posed an enhanced LSTM model. Based on the original LSTM
model, a feature extractor is designed for discriminative feature
identification, and two novel loss functions (PET and PES) designed
for flood peak prediction are also introduced. Taking the upper
Huai River Basin as a case study, the enhanced LSTM model was
applied and evaluated for daily runoff prediction during 1960–
2016.

During the study period, the upper Huai River Basin has experi-
enced a warmer and drier climate but a relatively stable hydrologic
status. Land use has changed between 1987 and 2016, mainly from
cropland to forest and residential areas. Results indicate that the
enhanced LSTM performed well on daily runoff prediction (achiev-
ing the highest NSE of 0.924), outperforming the comparative
models (i.e., SVR, ANN, GRU, AWBM, Sacramento, SimHyd, and
Tank Model). Regarding the flood peak prediction, the enhanced
LSTM model with PES as loss function performed best with the
QR of 92.3% and the NSE during the flood period (NSEflood) of
0.873. Furthermore, there is a correlation between the meteorolog-
ical station’s extracted features and predicted runoff. The correla-
tion reveals that precipitation at a station with a high elevation
contributes more to runoff generation than those closer to the
hydrometric station. This study provides an effective tool for daily
runoff prediction, which would benefit the local basin’s flood risk
management and water security.
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