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Polymeric materials with excellent performance are the foundation for developing high-level technology
and advanced manufacturing. Polymeric material genome engineering (PMGE) is becoming a vital plat-
form for the intelligent manufacturing of polymeric materials. However, the development of PMGE is still
in its infancy, and many issues remain to be addressed. In this perspective, we elaborate on the PMGE
concepts, summarize the state-of-the-art research and achievements, and highlight the challenges and
prospects in this field. In particular, we focus on property estimation approaches, including property
proxy prediction and machine learning prediction of polymer properties. The potential engineering appli-
cations of PMGE are discussed, including the fields of advanced composites, polymeric materials for com-
munications, and integrated circuits.
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1. Introduction

Materials with excellent performances are the foundation of the
development of high-level technology and advanced manufactur-
ing. Heretofore, materials science has undergone four research
paradigms—namely, the experimental empirical, model-based the-
oretical, computational, and data-driven science paradigms [1–3].
As shown in Fig. 1, the first paradigm is based on the experimental
trial-and-error approach. In the second paradigm, scientific laws
are discovered by summarizing experimental experience and
building physical models. In the third paradigm, the microscopic
states of atoms or molecules are simulated by computers to obtain
the macroscopic properties of materials. Both theories and simula-
tions can provide accurate data from model-based theoretical
science. With the advancement of information science and artifi-
cial intelligence (AI), the fourth paradigm emerged in the early
2000s. This paradigm is a research approach that utilizes algo-
rithms to analyze large amounts of data and find the underlying
rules. Unlike the second and third paradigms, the fourth paradigm
can infer and predict unknown data based on existing experimen-
tal data. The combination of these four paradigms has resulted in
the emergence of various advanced materials. However, the first
research paradigm requires inevitable trial and error, resulting in
long research cycles for discovering materials. The fourth paradigm
based on data-driven aims to accelerate material research and
reduce the cost through virtual synthesis, property prediction,
and screening. It is evolving into a revolutionary paradigm [4–10].

Big data science is one of the foundations of interdisciplinary
disciplines, including bioinformatics, chemoinformatics, and mate-
rials informatics. As a landmark achievement of bioinformatics,
AlphaFold2 has partially surpassed human experts in predicting
the sequences and three-dimensional structures of proteins [11].
In chemoinformatics, the use of AI to drive the discovery of new
drugs is efficient and well-known. Unlike bioinformatics and
chemoinformatics, which are now well established, materials
informatics is still a rapidly growing field. As a pioneer, materials
genome engineering (MGE) is becoming a vital platform for mate-
rial intelligent manufacturing. With the development of MGE, the
customized design and preparation of materials show advantages
and potential.
2. Development of polymeric material genome engineering

The research paradigm of polymeric material genome engineer-
ing (PMGE) involves theoretical calculation, database technology,
prediction and screening, and verification, with the aim of
achieving rational design, virtual preparation, and intelligent
g, Engi-
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Fig. 1. The development of the four paradigms of materials research: experimental empirical, model-based theoretical, computational, and data-driven science paradigms.
The first paradigm requires trial-and-error, resulting in long research cycles for discovering materials. Materials research has now entered a data-driven age (the fourth
paradigm).
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manufacturing, and accelerating the design and development of
polymeric materials (Fig. 2) [1,2,12,13]. PMGE consists of the fol-
lowing three steps.

(1) Definition of polymer ‘‘genes” and design of ‘‘virtual poly-
mers.” According to certain rules based on analyses of
existing chemical data and the experience of domain experts—that
is, widely adopted theoretical models and empirical rules
[13]—factors related to material properties, such as the chemical
groups and elements comprising polymers, are defined as the so-
called ‘‘genes” of polymers. Then, a series of ‘‘virtual polymers”
can be designed by gene combining or editing (i.e., regulating the
chain composition of the polymers).

(2) High-throughput prediction and screening of polymer
properties. The quantitative structure–property relationship
(QSPR) of the polymers is built based on experimental or simula-
tion data to predict the properties of the designed ‘‘virtual poly-
mers.” Next, in-silico screening is conducted to obtain promising
new polymers according to the performance requirements.

(3) Verification. The screened polymeric materials are synthe-
sized and characterized to verify the reliability of the screening
results and to optimize the prediction model. In addition, theoret-
ical calculations with high accuracy can be used to verify the
screening results. Furthermore, gene analysis based on PMGE can
be conducted to deduce the underlying physics rules for inspiring
future structural design of polymers.

Property estimation is the key to the rational design of materi-
als. One type of prediction strategy involves finding the key fea-
tures that can evaluate material properties through data mining.
A calculable key feature is extracted as a proxy. Macroscopic prop-
erties that are difficult to be obtained accurately from the theoret-
ical calculations are transformed into calculable proxy variables.
Then, the polymeric materials can be screened by comparing the
corresponding proxy variables. For example, Sharma et al. [14]
Fig. 2. The concept and steps of PMGE. Based on the database, polymer genes are defi
screening of polymer properties are conducted via theoretical calculations or high-thro
calculations.
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utilized the band gap of polymer structures, which can easily be
calculated using density functional theory (DFT), to represent the
breakdown voltage and dielectric loss. Using the dielectric con-
stant and the band gap as screening criteria, they obtained a series
of promising all-organic polymer dielectrics.

The proxy variable strategy is sometimes empirical, however,
the data-driven method can effectively eliminate subjective influ-
ences. For example, Zhu et al. [15] analyzed the existing experi-
mental and computational data of more than 400 polymers from
the PolyInfo database. They found that the 5% decomposition tem-
perature (Td5) of polymers depends on the bond dissociation
energy (BDE) of the weakest bond in the polymer structure, where
the Pearson correlation value is close to 0.7. Thus, the BDE can be
considered a key feature for evaluating the thermal stability of
polymeric materials. Then, they employed the polymer material
genome to reconcile the contradiction between high thermal sta-
bility and low curing energy of resins [15]. The band gap calculated
by DFT was considered to be the proxy of processability. Using the
proposed prediction models of key features, two-step screening
was performed to obtain the optimal poly(silane arylacetylene)
(PSA) structure. Next, a promising PSA structure containing 2,7-
diethynyl naphthalene was screened. The experimental verifica-
tion indicated that the novel PSA resin exhibited a 5% thermal
decomposition temperature of 655 �C and a curing enthalpy of
241.9 J∙g�1, showing excellent comprehensive properties.

In addition, the ratio of bulk modulus to shear modulus (K/G)
can be used to represent the toughness of polymers. After calculat-
ing and screening the proxy K/G for toughness and the proxy BDE
for thermal stability, Gao et al. [16] obtained a novel acetylene-
terminated polyimide (ATPI) that can be used to enhance the
toughness of PSA resins through blending. For the copolymerized
resin of ATPI and PSA, the toughness is significantly improved,
while the heat resistance is maintained. As discussed above, it is
ned and virtual polymers are designed. Then, the high-throughput prediction and
ughput experiments, and the screened results are verified through experiments or
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effective and reliable to design and screen polymer materials using
a prediction model of proxy variables. The key to property proxy
prediction lies in mining the underlying relations between the tar-
get properties and the microscopic or macroscopic physical
parameters.

Machine learning (ML) can mine underlying rules from histori-
cal data and predict, infer, or classify unknown data. This is another
strategy to achieve high-throughput prediction and in-silico
screening in PMGE [17–19]. The simplified molecular-input line-
entry system (SMILES) provides a simple set of representations
that are suitable as labels for chemical data [20]. SMILES can serve
as an effective tool for translating chemistry knowledge into a
machine-friendly form that fits many text-based ML algorithms
[21]. Then, the QSPR between the inputs (e.g., SMILES, molecular
graphs, molecular fingerprints, and other molecular descriptors)
and the desired material properties can be constructed by training
the existing data using various ML algorithms. An ML model
trained on reliable experimental data can directly predict the
material property. For example, based on open databases such as
Polymer Genome and PubChem, Zhang et al. [17] utilized a multi-
layer perceptron method to establish ML prediction models for a
QSPR between the target properties (i.e., thermal decomposition
temperature and viscosity) and polymer structures (Fig. 3). By gene
combination, they obtained 368 candidate resins for screening.
Using the two ML models, the properties of the candidate resins
were predicted and screened with high throughput. Afterward, a
series of resins with optimal processability and high heat resis-
tance were obtained. The experimental verification demonstrated
that the screened resin (PSNP-MV) has excellent comprehensive
properties of processing and heat resistance.
Fig. 3. ML prediction and screening of high-performance resin. (a) ML models of therma
properties for 368 candidate resins. (b) Design of a novel PSNP-MV resin with excellent
the common logarithm of the viscosity values. Reproduced from Ref. [17] with permissi
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When the experimental data is limited or low quality, theoret-
ical calculation or simulation data can be utilized to train ML mod-
els directly. The obtained models can provide reliable property
predictions. For example, based on DFT calculation results,
Mannodi-Kanakkithodi et al. [18] built an ML model to predict
band gap and permittivity by training the calculation data. When
some data from the calculation, simulation, or database may be
low fidelity, improving the data quality with a multi-fidelity surro-
gate model is an effective strategy [22]. Deviations between low-
fidelity (e.g., simulation data) and high-fidelity (e.g., experimental)
data can be trained, allowing an ML-based model to evaluate their
differences and then improve the data quality. In addition, for the
small-data conundrum, various advanced ML strategies can be uti-
lized to avoid overfitting and improve the model generalization
ability, such as physics-informed neural networks and the
Bayesian method [23,24]. Using the above promising strategies,
the problem of lack of experimental data is settled, and the design
and screening of polymers can be realized.

Theoretical calculation can also be utilized to estimate polymer
properties and screen the target properties, but sometimes it can
be time-consuming. ML models can overcome the limitations of
theoretical calculations, especially the time-consuming computa-
tional costs of a larger chemical structure space. When the number
of polymer genes increases, the polymer structure space increases
exponentially, and it is impractical to calculate the polymer prop-
erties. An ML model can achieve the prediction of these polymer
properties in a short time. Overall, employing ML models brings
the advantages of high prediction accuracy, a short development
cycle, and broad applicability. These advantages well fit the
requirements of material design and screening in PMGE.
l decomposition temperature and viscosity, and the heat map of the comprehensive
comprehensive properties aided by ML-enhanced materials genome approach. lg g:
on.
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3. Challenges and prospects of PMGE

The development of the polymeric material genome is still in its
infancy, and many issues remain to be addressed, as discussed
below.
3.1. Gene definition and molecular structure description

The unique chain structures and complicated multiscale struc-
tures of polymers pose challenges to the gene definition and struc-
tural description of polymers. It is necessary to develop more
advanced methods for describing the structural features of poly-
mers. Existing methods, such as BigSMILES, graph representations,
molecular fingerprints, and so forth, can be modified. In addition,
new approaches from informatics or mathematics can be intro-
duced. For polymer gene definition, to balance the flexibility of
the structure design with synthesis accessibility in experiments,
polymer genes can be defined according to the synthetic routes
of the target polymer systems [13,15]. In BigSMILES, polymeric
fragments are represented by a list of repeating units enclosed
by curly brackets, making BigSMILES an excellent candidate for
indexing identifiers in a polymer database system [25]. In addition,
polymer genes should be systematically analyzed, classified, and
labeled. The rules from data mining and the experience of domain
experts should be combined to improve the accuracy and rational-
ity of polymer gene definition and structure description.

Furthermore, multiscale characteristics should be considered in
the structure description of polymers. For example, the chain infor-
mation (e.g., conformation) and aggregation state (e.g., crystalline
structure and cured crosslinked structure) can be obtained from
theoretical calculations, simulations, and experiments. Recently,
Hu et al. [26] utilized crosslinking density descriptors to predict
the performance of cured epoxy resins. In addition, polymer poly-
dispersity affects the multiscale structures of polymers, giving rise
to variations in polymer properties. Polydispersity data can be
identified, labeled, and included in the polymer database, and then
served as one of the inputs when the QSPR is established to
develop a reliable prediction model [27].
3.2. Prediction model of property proxy

It is necessary to find or establish more key features represent-
ing polymer properties, such as solvent resistance, wear resistance,
impact resistance, and interface bonding property. In addition, to
achieve the rapid prediction of polymer properties and multi-
step screening, more rapid calculation methods of proxies should
be developed, such as the molecular connectivity method and
group contribution method.
3.3. ML prediction of polymer properties

The current challenge is the lack of high-quality polymer struc-
ture–property data. In addition, the generalization ability of pre-
diction models of polymer properties is not strong, and the
multiscale structure–property relationship cannot be described
precisely. All these issues limit the applications of ML prediction
in PMGE. To address these challenges, data from open databases
can be exploited and mined through natural language processing
[28]. With the openness and sharing of the PMGE platform, more
researchers will actively input data. Beyond that, massive data
can also be obtained through high-throughput experiments and
theoretical simulations. In addition, researchers should pay atten-
tion to the utilization of low-quality experimental data. In particu-
lar, all the data should be standardized to improve the data quality.
4

Moreover, advanced algorithms can be utilized to develop ML
strategies for solving the problem of small amounts of data, such
as transfer learning, supervised learning, and active learning
[24,29]. Furthermore, introducing a prior algorithm and micro- or
nano-structural information with molecular structure descriptors
is promising for establishing ML prediction models with physical
meanings. For example, the frequency-dependence mechanism
for the polymer dielectric property can be introduced with a struc-
tural description to train the ML model. This could be beneficial in
establishing accurate multiscale structure–property relationships.

3.4. High-throughput experiments

An experimental system for high-throughput polymer synthesis
needs to be established, aiming to rapidly screen promising poly-
mers, expand databases, and optimize prediction models. Current
experimental techniques are developed from parallel synthesizers
in other fields, and equipment for the high-throughput synthesis
and characterization of polymers remains to be developed. Inter-
disciplinary research is an effective approach to this issue, involv-
ing various scientific and technological methods such as
informatization, system control, and microfluidic technology.

In addition, the synthetic accessibility of polymers and the pro-
cessing properties suitable for large-scale manufacturing should be
considered in PMGE. Beyond forward prediction and screening, it is
necessary to disassemble the performance demands of engineering
applications and then develop a reversal design strategy to realize
the double closed-loop design of PMGE. The reversal design of
polymer structures will enrich the significance of PMGE and realize
the rational design and intelligent manufacturing of polymers.

3.5. Engineering applications

As shown in Fig. 4, PMGE can accelerate the development of
polymer materials in various engineering applications, especially
when two or more properties are at odds with each other. For
example, PMGE can be applicable in the following areas.

(1) Advanced resin matrix composites. In addition to the poly-
mer resins, PMGE is being applied to the structural design and
property improvement of polymer fibers with high strength and
a high modulus. PMGE can also be employed to regulate the inter-
face bonding between resin and fiber and to optimize the process-
ability of composite materials. In addition, ML models can be
trained based on the data from finite-element simulations and
experiments of composites. With a trained ML model, the perfor-
mance of composite materials can be rapidly predicted and
screened, making it possible to realize the rational design of
advanced composites.

(2) Chemical engineering and catalysis. The rational design
and screening of various catalysts, including porous catalytic mate-
rials and polymerization catalysts, can be accelerated via an ML-
enhanced material design strategy [30]. Catalysts determine the
microstructure, macroscopic performance, and industrial efficiency
of polyolefin. Thus, the structural design of catalysts is the key to
advancing the polyolefin industry. For example, the rational design
of the active sites of the Ziegler–Natta catalyst and the configura-
tional selectivity prediction of the metallocene catalyst for propene
polymerization are still challenging. The data-driven ML approach
can provide a promising strategy for discovering and designing
polymer catalysis.

(3) Polymeric organic semiconductor materials. Such poly-
mer systems require high electron mobility, high luminescence
efficiency, high spin characteristics, high conductivity, and so forth.
It is difficult to obtain polymer materials with multiple excellent
properties using a traditional trial-and-error approach. Designing
conjugated polymers using PMGE can accelerate the research on



Fig. 4. The challenges and prospects of PMGE. Issues regarding polymer databases and genes, property prediction models, and verifications remain to be addressed through
interdisciplinary research. The materials discovered by PMGE have potential for application in the fields of chemical engineering, semiconductors, communication, and more.
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polymeric organic semiconductor materials with excellent com-
prehensive properties.

(4) Communication and integrated circuit materials. Poly-
mers used in the field of high-frequency communication technol-
ogy simultaneously require enhanced mechanical properties, heat
resistance, and electromagnetic properties. For example, the poly-
mer materials used in the sixth-generation (6G) communication
equipment should have a relatively low dielectric constant and
low dielectric loss. In addition, high-performance polymers used
in chip packaging should have high heat resistance, low thermal
expansion coefficient, high hardness, high toughness, high electri-
cal insulation, and low dielectric constant. Therefore, the above
engineering applications demand the discovery of advanced poly-
mer materials with excellent comprehensive properties, and PMGE
is undoubtedly the best choice. Through high-throughput predic-
tion and screening, PMGE can meet the goal of discovering poly-
meric materials with excellent overall performances.

4. Summary

PMGE will fuel the innovation of the next generation of materi-
als. It has the potential to lower the cost of materials research, bal-
ance the performance constraints, and even enable breakthroughs
in polymeric materials. PMGE can revolutionize traditional poly-
mer design methods and promote research progress in materials
science. However, many issues remain to be addressed, as PMGE
is still at an early stage. Interdisciplinary collaboration between
the disciplines of information, mathematics, control engineering,
and so forth can solve problems such as property prediction and
experimental verification. In the future, the double closed loop of
the forward prediction and screening, as well as the reversal
design, may be realized. We envision PMGE as a sustainable public
platform for polymer design and applications. Researchers can take
advantage of PMGE for the rational design of the processing, com-
position, and performance of new polymeric materials in the fields
of advanced composites, semiconductors, communication, and
more.
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