
Engineering xxx (xxxx) xxx
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Smart Process Manufacturing toward Carbon Neutrality—Review
Artificial Intelligence in Pharmaceutical Sciences
https://doi.org/10.1016/j.eng.2023.01.014
2095-8099/� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors.
E-mail addresses: hlli@ecust.edu.cn (H. Li), zhufeng@zju.edu.cn (F. Zhu).

Please cite this article as: M. Lu, J. Yin, Q. Zhu et al., Artificial Intelligence in Pharmaceutical Sciences, Engineering, https://doi.org/10
eng.2023.01.014
Mingkun Lu a,c, Jiayi Yin a, Qi Zhu a, Gaole Lin a, Minjie Mou a, Fuyao Liu a, Ziqi Pan a, Nanxin You a,
Xichen Lian a, Fengcheng Li a, Hongning Zhang a, Lingyan Zheng a,c, Wei Zhang a, Hanyu Zhang a,
Zihao Shen b,d, Zhen Gu a, Honglin Li b,d,e,⇑, Feng Zhu a,c,⇑
aCollege of Pharmaceutical Sciences & The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
b Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
c Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba–Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou
330110, China
d Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai 200062, China
e Lingang Laboratory, Shanghai 200031, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 September 2022
Revised 11 December 2022
Accepted 6 January 2023
Available online xxxx

Keywords:
Artificial intelligence
Machine learning
Deep learning
Target identification
Target discovery
Drug design
Drug discovery
Drug discovery and development affects various aspects of human health and dramatically impacts the
pharmaceutical market. However, investments in a new drug often go unrewarded due to the long and
complex process of drug research and development (R&D). With the advancement of experimental tech-
nology and computer hardware, artificial intelligence (AI) has recently emerged as a leading tool in ana-
lyzing abundant and high-dimensional data. Explosive growth in the size of biomedical data provides
advantages in applying AI in all stages of drug R&D. Driven by big data in biomedicine, AI has led to a
revolution in drug R&D, due to its ability to discover new drugs more efficiently and at lower cost.
This review begins with a brief overview of common AI models in the field of drug discovery; then, it
summarizes and discusses in depth their specific applications in various stages of drug R&D, such as tar-
get discovery, drug discovery and design, preclinical research, automated drug synthesis, and influences
in the pharmaceutical market. Finally, the major limitations of AI in drug R&D are fully discussed and pos-
sible solutions are proposed.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the past few decades, the pharmaceutical industry has been
limited by the extent of cutting-edge research in pharmaceutical
sciences, because the development of new drugs is a long and com-
plex process accompanied by high risks and high costs [1,2]. In
other words, the current field of drug research and development
(R&D) requires significant productivity improvements to shorten
the cycle time and cost of drug development [3]. Technologies such
as network pharmacology, RNA-sequencing (RNA-seq), high-
throughput screening (HTS), or virtual screening (VS) have all
accelerated the discovery of new targets, as well as new drugs to
some extent [4–9]. Nevertheless, these technologies have rarely
been significant contributors to the current process of new drug
discovery. Thus, there is an urgent need for new technology to
drive the development of new drugs.

As the computing power of devices grows, artificial intelligence
(AI) has been used in many real cases, such as in image classifica-
tion and speech recognition, due to its ability to learn, process, and
predict massive amounts of information [10–12]. At present, after
a long period of data accumulation, in combination with the devel-
opment of high-throughput RNA-seq technology, massive amounts
of biomedical data have been collected [13–18]. Biomedical data,
which has a high level of heterogeneity and complexity, comes
from a variety of sources, including omics data from different plat-
forms, experimental data from biological or chemical laboratories,
data generated by pharmaceutical companies, publicly disclosed
textual information, and manually collated data from publicly
available databases [19–22]. AI can be used to learn the potential
patterns in these vast amounts of biomedical data, thereby
bringing new opportunities and challenges to the pharmaceutical
sciences and industries.
.1016/j.
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The AlphaFold2 system used AI in the 14 round of the Critical
Assessment of Protein Structure Prediction (CASP14) competition
and outperformed others in accurately predicting the three-
dimensional (3D) structures of proteins [23]. Similarly, in the
Open-Graph Benchmark Large-Scale Challenge (OGB-LSC) compe-
tition, a graph neural network (GNN) combined with a transformer
model won the top rank in predicting the molecular properties cal-
culated by means of density functional theory (DFT), which is dif-
ficult and highly time-consuming using traditional methods [24].
These competitions demonstrated the strong ability of AI to ana-
lyze biological or chemical data. Due to its powerful capability to
utilize related biomedical data to understand complex biological
systems and chemical reaction spaces [25,26], AI has had a revolu-
tionary impact on all stages of drug R&D, including not only
research on proteins and small molecules but also the assisted
design of clinical trials and post-market surveillance [27]. Further-
more, in pharmaceutical companies, many state-of-the-art (SOTA)
AI models have been adopted in diverse pipelines to shorten the
R&D cycle time and decrease costs [28–30].

AI techniques in this context mainly involve machine learning
(ML) and deep learning (DL). Both ML and DL algorithms are
involved in target discovery and validation [31], drug discovery
and design [32], and preclinical drug research [33], where they
are used to analyze different data characteristics in different for-
mats. After a drug candidate is enrolled in a clinical trial [34], DL
plays a pivotal role in assisting in the design of the clinical trial
and in supervising and analyzing data from the clinical phase IV
[33]. Approved drugs have a strong impact on manufacturing
[35] and the market economy, and DL can play a part in these areas
as well. Therefore, in this review, we present a comprehensive
overview of most aspects of the use of AI in the pharmaceutical
sciences. We focus on how AI can be used to promote target dis-
covery and drug discovery (as shown in Fig. 1) and reflect on
how to further accelerate the development of this field.
2. Basic concepts of AI and its scope of application

AI was first proposed at the Dartmouth Conference in 1956 and
was defined as an algorithm that gives machines the ability to rea-
son and perform functions [36]. From perceptual machines to sup-
port vector machines (SVMs) and artificial neural networks
(ANNs), the development of AI has gone through several ups and
downs, and is currently flourishing thanks to the hardware support
that is now available. Both ML and DL fall under the category of AI;
strictly speaking, DL can be placed within the category of ML. How-
ever, our discussion of ML in this review only concentrates on tra-
ditional ML methods, such as random forest (RF) and SVMs.
2.1. The big data era

In the current big data era, gigantic amounts of biological and
clinical data have laid a foundation for the application of AI in
the field of medical and pharmaceutical research. Although AI
has been successfully and effectively applied in multiple aspects
of the drug R&D process, the quantity and quality of medical data
have become one of the main obstacles to the development of AI in
the pharmaceutical sciences. Thus far, pharmaceutical databases
with detailed and structured big data proposed by medicinal
researchers worldwide are playing a key role in promoting AI
applications in medical and pharmaceutical research.

For example, the Therapeutic Target Database (TTD) includes
the most comprehensive information about known and explored
therapeutic protein and nucleic acid targets, the targeted disease,
pathway information, and the corresponding drugs directed at
each of these targets. It provides detailed knowledge of the func-
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tions of targets, as well as their sequence, 3D structures, ligand-
binding properties, relevant enzymes, and corresponding drug
information [37]. PubChem [17] provides collective information
of chemical molecules and their activities in response to biological
assays, including molecular structure, identifiers, physicochemical
properties, patent information, and molecular toxicity. Some pop-
ular databases aimed at various pharmaceutical issues have been
proposed and are frequently used; these play significant roles in
promoting the application of AI in medical and pharmaceutical
research [38–42]. Summarizing various popular pharmaceutical
databases, Table 1 [17,18,37,43–62] provides brief information on
popular pharmaceutical databases, categorized into protein-
related, gene-related, drug-related, and disease-related databases.

2.2. ML and DL

Unlike traditional computer programming calculations, ML and
DL can learn potential patterns from the input data without expli-
cit programming. They are not limited by the format of the input
data, which is broad and can include text, images, sound, and more
(all types of data that can be encoded) [63]. Similar to the human
learning model, ML and DL can gradually recognize different fea-
tures of the data, infer the patterns lying within, and update their
model parameters through continuous iterations until a valid
model is formed.

According to the application scenarios, the models can be cate-
gorized into regression models and classification models. The dif-
ference between classification and regression tasks lies mainly in
whether the type of output variable is continuous or discrete.
Cheng and Ng [64] applied ML approaches to predict the biological
activity of per- and polyfluorinated alkyl substances (PFAS) with an
output of continuous values, and this study is a typical regression
task. Hong et al. [65] built a DL model to predict whether a protein
in a bacterium is of the type IV secreted effectors (T4SE), with an
output of discrete values (e.g., 0/1), and this study is a typical clas-
sification task.

Depending on the type of learning algorithm required to solve
the problem, models are conceptualized into three categories:
supervised learning, unsupervised learning, and reinforcement
learning. Supervised learning is a labeled-data-driven process that
trains a model on the relationship between input and its prespec-
ified output in order to predict the categories or continuous vari-
ables of future input. In comparison, unsupervised methods are
used for identifying patterns in unlabeled datasets and exploring
a dataset’s potential structures to allow clustering of the data for
further analysis. In addition, semi-supervised learning is part-
way between supervised and unsupervised learning; it accepts
only part of the labeled data to develop a training model and is
used as a potential solution for problems that lack high-quality
data [66]. Reinforcement learning performs model construction
through constant interactive learning, relying on penalties for fail-
ure or rewards for success.

2.3. Introduction to different types of ML/DL-based algorithms

ML and DL methods have been successfully applied to solve rel-
evant biomedical problems, with the adopted modeling approach
varying for different problems or even the same problems. For
example, small molecules used to be characterized as engineered
features for direct loading in several ML methods to predict the
properties; however, more recently, GNNs can also be utilized to
describe small molecules for predictions of properties [67]. Deter-
mining the function annotations of proteins is essential for the
selection of druggable proteins as potential targets. Kulmanov
et al. [68] conducted a convolutional neural network (CNN) to anno-
tate the gene ontology annotation (GOA) of proteins. Gligorijević



Fig. 1. Summary of AI applications in the pharmaceutical sciences. ADMET: absorption, distribution, metabolism, excretion, and toxicity.
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et al. [69] built a recurrent neural network (RNN) for protein func-
tion annotations, and Xia et al. [70] combined both a CNN and
RNN to predict the gene ontology (GO) label of proteins.

ML builds a special algorithm—not a specific algorithm—that
focuses on the features of the data and transforms them into
knowledge that machines can read to provide humans with new
insights. Various common algorithms exist for researchers to
choose from. The naïve Bayes (NB) algorithm is a probabilistic-
based classifier based on Bayes’ theorem and independence
assumptions between features; it is a simple and intuitive algo-
rithm [71]. An RF algorithm constructs a set of unrelated decision
trees that form a whole hierarchical structure; under model con-
struction, each tree is individually responsible for a corresponding
problem [72]. The final decision is based on the majority votes of
the decision trees. Models that make decisions based on this
approach are also commonly referred to as ensemble models.
Extreme gradient boosting (XGBoost) is a scalable ML algorithm
based on gradient boosting, which is also an ensemble model
[73]. Multi-layer perceptron (MLP) can be viewed as a directed
graph consisting of multiple node layers, each fully connected to
the next layer, so that it maps a set of input vectors to a set of out-
put vectors. SVM is one of the most widely applied ML algorithms.
An optimal hyperplane is used to classify samples, which are
3

obtained by maximizing the margins between different classes in
a specific dimensional space, with the dimensionality being deter-
mined by the number of features [74]. The k-nearest neighbor
(KNN) is regarded as ‘‘lazy learning” that classifies the sample
according to only a few neighboring samples when distinguishing
between categories [75]. In addition to the above methods, several
other ML methods such as principal component analysis (PCA),
partial least-squares (PLS), linear discriminant analysis (LDA), and
logistic regression (LR) have been applied in biomedical data pro-
cesses [76,77].

DL is popular due to its powerful generalization and feature-
extraction capabilities; its learning and prediction process is end-
to-end. Unlike the traditional ML process (which often consists of
multiple independent modules), DL obtains the output data
(output-end) directly from the input data (input-end) during the
model training process and continuously adjusts and optimizes
the model based on the error between the output and the true
value, until it meets the expected result. A deep neural network
(DNN) is a feed-forward neural network consisting of densely con-
nected input, hidden, and output layers. It achieves the feature
learning of input data by simulating nonlinear transformations
between neurons, with each layer consisting of various neurons
[78]. A CNN is a feed-forward neural network that consists of con-



Table 1
Pharmaceutical databases focusing on proteins, genes, drugs/drug targets, and diseases.

Focus Database Description Refs.

Proteins RCSB PDB PDB contains 3D structural data of large biological molecules, such as proteins and nucleic
acids

[43]

PRIDE PRIDE is a public data repository for proteomics, including protein and peptide
identifications, post-translational modifications and supporting spectral evidence

[44]

UniProt UniProt is a protein database containing protein sequences, functional information, and
an index of research papers

[18]

InterPro InterPro provides functional analysis of proteins by classifying them into families and
predicting domains and important sites

[45]

VARIDT VARIDT provides comprehensive data on all aspects of drug transporters’ variability [46,47]
Genes Ensembl Ensembl provides centralized genomic data and powerful functionalities such as gene

annotation and regulatory function predictions
[48]

UCSC Genome The UCSC Genome browser offers access to genome sequence data from a variety of
vertebrate and invertebrate species and major model organisms

[49]

GEO The GEO is a database repository of high-throughput gene expression data and
hybridization arrays, chips, and microarrays

[50]

GenBank GenBank is an annotated collection of all publicly available DNA sequences [51]
RefSeq RefSeq provides separate and linked records for the genomic DNA, gene transcripts, and

corresponding proteins for multiple organisms
[52]

EA EA collects baseline gene expression data for different species and contexts, and contains
differential studies reporting expression changes under two different conditions

[53]

Drugs/drug targets TTD TTD includes the most comprehensive information about known and explored
therapeutic protein and nucleic acid targets

[37]

ChEMBL ChEMBL is a manually curated library of bioactive compounds with drug-like properties [54]
PubChem PubChem covers collective information on chemical molecules and their activities in

response to biological assays
[17]

DrugBank DrugBank combines comprehensive drug target information with specific drug data [55]
DrugMAP DrugMAP provides a comprehensive list of interacting molecules for drugs/drug

candidates, including information on differential expression patterns
[56]

DTC DTC enables the exploration of bioactivity data, the processing of new bioactivity data,
and data curation in order to improve the understanding of DTIs

[57]

PHAROS PHAROS provides a comprehensive, integrated knowledge base for the druggable genome [58]
Diseases TCGA TCGA has over 2.5 petabytes of genomic, epigenomic, transcriptomic, and proteomic data

related to the cancer genome
[59]

DisGenNET DisGenNET contains large, publicly available collections of genes and variants associated
with human diseases

[60]

ClinVar ClinVar is a public archive of reports on relationships among human variations and
phenotypes, with supporting evidence

[61]

OMIM OMIM is an online catalog of human genes and genetic disorders [62]

PDB: Protein Data Bank; PRIDE: proteomics identification database; UniProt: universal protein; UCSC: University of California at Santa Cruz; GEO: Gene Expression Omnibus;
EA: expression atlas; DTC: drug target commons; DTIs: drug–target interactions; TCGA: The Cancer Genome Atlas; OMIM: online Mendelian inheritance in man.
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volutional (feature extraction) and pooling (dimensionality reduc-
tion) layers. The convolutional and pooling layers help to extract all
the information in a dataset without consuming too much time
and computational resources [79]. An RNN is a class of ANN in
which linked nodes form a directed or undirected graph along a
temporal sequence. An RNN includes a feedback component that
allows signals from one layer to be fed back to the previous layer.
It is the only neural network with internal memory, which helps to
address the difficulty of learning and storing long-term informa-
tion [80]. A GNN is a connectivity model that derives the depen-
dencies in a graph by means of information transfer between
nodes in the network [81,82]. A GNN updates the state of a node
according to neighbors of the node at any depth from the node;
this state is able to represent the node information. The neural net-
work architectures of the four networks described above are
shown in Fig. 2.

An autoencoder (AE), which consists of an encoder and a deco-
der, is used to learn efficient encodings of input data. The encoding,
which is generated by feeding input to the encoder, regenerates
the input by the decoder. An AE is usually used for data compres-
sion and dimensionality reduction through the representation
methods (i.e., the encoding) of a set of data [83]. A generative
adversarial network (GAN) is composed of two underlying neural
networks: a generator neural network and a discriminator neural
network. The former is used to generate content, while the latter
is used to discriminate the generated content [84]. Models can also
4

be used in combination to solve a wider range of problems. For
example, a graph convolution network (GCN) extends convolu-
tional operations from traditional data (e.g., images) to graph data
[85].

When a model fails to learn the underlying patterns in data fea-
tures effectively and loses the ability to generalize to new data,
such a problem is called model underfitting [86]. In contrast, over-
fitting occurs when the model is training and noise in the data fit-
ted as a representative feature resulting in poor predictions for
new data [87]. Compared with underfitting, model overfitting is
more difficult to deal with. Models often become overfitted due
to being overly complex or because of an underrepresentation of
data. A dataset used for a model is often divided into a training
set, validation set, and test set. These sets are respectively used
for model training, model adjustment, and model evaluation. To
put it simply, a model that works badly on both the training and
test sets is an underfitted model, while a model that works well
on the training set but badly on the test set is an overfitted model.
Typical ways to suppress overfitting include regularization, data
augmentation [88], dropout [89], early stopping, ensemble learn-
ing, and among other methods.

Researchers encountered underfitting and overfitting problems,
using only one model of traditional epidemic models or MLmodels,
when predicting the long-term trends of the coronavirus disease
2019 (COVID-19) pandemic. To address these issues, Sun et al.
[90] proposed a new model called dynamic-susceptible–



Fig. 2. Schematic network architectures for a DNN, GNN, CNN, and RNN. ReLU: rectified linear unit.
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exposed–infective–quarantined (D-SEIQ). The D-SEIQ model can
accurately predict the long-term trends of COVID-19 outbreaks
by appropriately modifying the susceptible–exposed–infective–
recovered (SEIR) model and integrating ML-based parameter
optimization under reasonable epidemiology constraints.

Different models have different evaluation criteria. In regres-
sion models, commonly used evaluation criteria include mean
squared error (MSE), root mean squared error (RMSE), and
R-squared. In classification models, the more commonly used
criteria are recall, precision, and F1-score. The receiver operating
characteristic (ROC) curve and precision-recall curve (PRC) are
the most commonly used evaluation criteria in classification mod-
els, with ROC curves taking into account both positive and negative
cases to assess the overall performance of the model, while PRCs
focus more on positive cases [91].

2.4. A brief description of molecule representation as model input

Over time, the accumulation of data on small molecules and
proteins has resulted in an extremely large data resource. Data-
bases of molecular sequences, structures, physicochemical proper-
ties, and so forth have been collected and organized by different
organizations and contain a great deal of knowledge and informa-
tion. However, the different sources and formats of the data make
it difficult to integrate the correlated data from multiple heteroge-
neous sources. Therefore, it is particularly important to adopt suit-
able methods to represent molecules in an appropriate way and to
mine the crucial information in the data on molecules by means of
AI [92]. Current AI algorithms are highly dependent on the quality
5

of the data; thus, when performing model construction, it is neces-
sary to unify the input format of molecules, such as by represent-
ing small molecules and proteins as model-readable vectors or
matrices.

At present, the representation of small molecules is generally
done using one of four main approaches. The first approach
involves knowledge-based representation. Molecular descriptors
and molecular fingerprints based on human a priori knowledge
are widely used in various ML or DL algorithms [93]. The second
approach involves direct representation based on images. CNNs
have now been used to learn rules from two-dimensional (2D) dig-
ital images. A 2D chemical digital grid of a molecule can be directly
used as input to allow a CNN model to learn the properties of the
molecule [94]. The third approach is string-based representation.
For example, a typical canonical simplified molecular-input line-
entry system (SMILES) represents small molecules in the form of
strings. Thus, CNNs and RNNs can be further used to learn molec-
ular embeddings from the string representations of chemical struc-
tures [95–97]. The fourth approach involves graph-based feature
representation. Representation methods based on graph convolu-
tion or graph attention have been widely used to explore the fea-
ture representation of small molecules. In these methods, atoms
and bonds are considered to be nodes and edges, respectively,
while new molecular representations are obtained during the con-
tinuous updating of information at individual nodes. Graph-based
representations have achieved outstanding performance in a vari-
ety of pharmaceutical learning tasks [98,99].

Protein representation methods can be basically classified into
four categories: representation based on intrinsic properties of
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sequences, representation based on physicochemical properties,
representation based on protein structure, and graph-based repre-
sentation. Sequence-based protein representation methods include
amino acid composition (AAC), dipeptide composition, autocorrela-
tion descriptors, position-specific scoring matrices (PSSMs), and
one-hot encoding [100–107]; these methods reflect the content of
various amino acids, dipeptide content, and the distribution of
amino acids on the sequence. Physicochemical property-based pro-
tein representation methods include composition, transition, and
distribution (CTD), pseudo-amino acid composition (PAAC), and
amphiphilic pseudo-amino acid composition (APAAC) [108–110],
which reflect the properties of each amino acid and the distribution
of these properties on the sequences. The two feature representa-
tion methods described above are widely used in various models,
because they can obtain protein feature representations by know-
ing only the sequence information. It is well known that the high-
level structure of a protein determines the function of that protein,
so it will sometimes directly represent the structure of proteins.
Protein representation methods based on structural properties
include topological molecular structure and protein secondary
structure and solvent accessibility (PSSSA) [111–113], which reflect
the structural properties of each amino acid in a protein and the
structural type of a protein. PSSSA is also a graph-based protein rep-
resentation. In the simplest graph, each node corresponds to a resi-
due, while the edges connect pairs of residues within a certain
distance [114]. Structure-based and graph-based protein represen-
tation methods can effectively represent the structure of a protein
and the relationships between amino acid residues in the structure,
and can be applied to a variety of novel model architectures, such as
GNNs, transformer models, and GANs [114–117].

In recent years, novel molecular representation methods have
been emerging, such as knowledge-graph-based and large-scale
pretrained-based representation methods [118,119]; these meth-
ods also excel in suitable downstream tasks. Overall, representing
the raw data of a molecule using a vector or matrix that captures
the molecule’s key features is critical for subsequent data explo-
ration and analysis.

2.5. The study of drug research and disease with distinct AI algorithms

When studying different types of drugs and performing disease
research, choosing a suitable model can maximize the potential
information of the data. Given classification or regression problems
with small datasets, ML can often achieve a satisfactory perfor-
mance in a short time. For example, a drug–protein affinity predic-
tion study based on quantitative structure–activity relationship
(QSAR)models could choose to use SVM or RFmodels (see Section 5
for more detail) [120,121]. When the amount of data is progres-
sively higher, DL algorithms are often more appropriate. For exam-
ple, for the prediction of protein-folding problems, CNN models
can better predict residues [122]. In the research area of drug de
novo design, generative models and variational autoencoders
(VAEs) can help to design molecules that align with the design
vision [123,124] (see Section 4 for more detail). Instead of selecting
models from the perspective of the tasks, studies often use the data
representation form to select an appropriate algorithm. Therefore,
researchers can often choose from different AI algorithms that are
available for the same task. When predicting the absorption, distri-
bution, metabolism, excretion, and toxicity (ADMET) properties of
molecules, CNNs, RNNs, and multi-task learning can achieve out-
standing results [125] (see Section 5 for more detail). By starting
from the relationships between data, graph-based AI algorithms
allow the modeling of unstructured data. In the pharmaceutical
sciences, there is never a lack of complex relationships. Therefore,
modeling complex interactions such as drug–drug interactions,
drug–protein interactions, protein–protein interactions (PPIs),
6

and so forth enhances the learning capability of the models [126]
(see Section 3 for more detail). When combined with representa-
tions of these entities themselves, key information about the enti-
ties can be learned at a deeper level to aid in making predictions,
while providing a more explanatory model.

Therefore, the boundaries between the use of distinct algo-
rithms have become increasingly blurred when such methods are
applied to the actual drugs and disease problems to be studied.
Depending on the type of data available and taking into account
the biological significance can be informative for model selection
and construction.
3. Target identification and validation

From a conventional standpoint, there are two paradigms for
discovering new (first-in-class) drugs [127]: phenotypic drug dis-
covery (PDD) and target-based drug discovery (TDD). Early biolog-
ical research techniques relied on microscopy, imaging, and
cellular techniques to observe the phenotypic changes in living
systems. PDD is used to screen a library of compounds or antibod-
ies by constructing an animal model or experiment that is highly
relevant to the disease. Next, the responses of cells or experimental
animals to these compounds are observed, with the aim of identi-
fying molecules with a certain level of efficacy for further struc-
tural modification and optimization [128]. With the development
of molecular biology and various sequencing techniques, research
on biological macromolecules has reached a new height. Drug dis-
covery research has entered the TDD era [129], and TDD has grad-
ually replaced PDD as the mainstream drug discovery paradigm.
TDD is centered on a ‘‘one gene, one drug, and one disease” concept
[4]. This approach relies on a highly disease-relevant target, which
could be an enzyme, protein, or other gene product, along with an
elaborate and meticulous small-molecule design for this target,
which is used to modulate the target to act as a therapeutic agent
for the disease. Although the drug discovery paradigm of PDD has
been re-emerging in recent years [128], the screened drugs often
require further target validation and mechanistic studies. There-
fore, target discovery is often the first, critical step in the drug
development phase [129]. The target discovery process involves
multifaceted research, including the study of disease-related
genes, signaling pathways, protein interactions, and small mole-
cule–protein interactions. Of particular interest is the fact that tar-
get discovery based on experimental means is difficult to carry out
quickly and widely, due to limitations in throughput, accuracy, and
cost, whereas AI-based discovery can efficiently and effectively
identify biomolecules with the potential to become drug targets.
3.1. Target identification based on omics techniques

With the advancement of high-throughput sequencing tech-
nologies, huge amounts of omics data are continuously being gen-
erated. The processing and analysis of such large-scale omics data
(genomics, transcriptomics, proteomics, metabolomics, etc.) [130–
138] have been revolutionary to biology, medicine, and pharmacol-
ogy, especially in facilitating researchers’ understanding of com-
plex biological systems and processes. Many genes or proteins
playing important roles in biological processes that may be associ-
ated with specific diseases have been identified based on omics
data [135,139–141], thereby facilitating research on drug target
discovery. For example, new candidate disease targets such as
SETD2 and VGLL4 have been uncovered using omics data. How-
ever, processing and analyzing these complex and high-
dimensional omics data is extremely challenging; thus, ML and
DL approaches can be used to learn potential knowledge from
large-scale omics datasets, which can help in the discovery of
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genes or pathways critical to biological processes [142]. Table 2
[18,44,48–50,53,143–151] provides examples of omics projects
for drugs, proteins, and diseases analysis.

Potential targets are molecules that are associated with a speci-
fic disease and have the smallest possible degree of association
with other diseases. Complex diseases such as oncological, cardio-
vascular, and immune diseases are often regulated by multiple key
genes, molecules, or signaling pathways, so it is often necessary to
unravel the connection between multiple molecules and the dis-
ease. Omics data are essential for discovering and assessing the
biological effects or toxicity of potential targets. For example, can-
cer stem cells (CSCs) cause great resistance to the treatment of lung
adenocarcinoma (LUAD). Studying the expression of stem-cell-
related genes in LUAD could provide new insights into the treat-
ment of LUAD. Zhang et al. [152] applied an unsupervised ML algo-
rithm known as one-class LR (OCLR) to the molecular datasets of
normal stem cells and their progeny to obtain the messenger
RNA (mRNA) expression-based stemness index (mRNAsi), DNA
methylation-based stemness index (mDNAsi), and epigenetic regu-
lation based mRNAsi (EREG-mRNAsi) for analyzing the LUAD cases
data in The Cancer Genome Atlas (TCGA) in order to calculate the
scores of sample stemness indices. In this process, weighted gene
co-expression network analysis (WGCNA) was used to find key
genes associated with LUAD. In the end, 13 previously overlooked
key genes with an overall association were identified, which could
be used as potential targets for the treatment of LUAD by suppress-
ing the stemness features.

Since their release, the connectivity map (CMAP) and Library of
Integrated Network-based Cellular Signature (LINCS)-L1000 data-
bases—which contain a large amount of transcriptomic data fol-
lowing drug perturbations and various other environmental
disturbances—have been used to do a great deal of research to
identify the mechanism of action and targets of small molecule
compounds, with the aim of discovering potential drugs for dis-
eases or potential targets for drugs [153–155]. The web service
PharmMapper [156–158] gathered 52 431 pharmacophore models
from TargetBank, DrugBank, BindingDB, and the potential drug tar-
get database (PDTD), and used them to identify potential target
candidates for the given probe small molecules by means of a fast
pharmacophore mapping approach. ChemMapper [159] is another
web service that aims to predict polypharmacology effects, poten-
tial protein targets, and modes of action for small molecules based
on 3D similarity computation, using a database containing
4 350 000 chemical structures with bioactivities and associated
target annotations. The iDrug [160] platform provides a versatile,
user-friendly, and efficient online tool for computer-aided drug
design (CADD) based on pharmacophore and 3Dmolecular similar-
ity searching, enabling binding sites detection, VS, and drug target
prediction in an interactive manner through a seamless interface.
DeltaNet was designed by Noh and Gunawan [161] based on the
ordinary differential equation (ODE) model for analyzing gene
transcription processes and predicting potential targets of com-
pounds. There are two versions of DeltaNet—namely, DeltaNet-
LAR and DeltaNet-LASSO—which use last angle regression (LAR)
and least absolute shrinkage and selection operator (LASSO)
regularization to solve linear regression problems, respectively.
DeltaNet outputs a predicted ranking of gene targets for further
enrichment analysis to find other key molecular targets. Zhu
et al. [162] constructed a DL-based efficacy prediction system
(DLEPS) to identify new drug candidates and discovering targets.
Trained by transcriptional profiles data, mainly from the L1000
project profiles, DLEPS uses changes in gene expression profiles
in the state of disease as input. In addition to the discovery of three
new drug candidates, DLEPS also demonstrated that mitogen-
activated protein kinase kinase (MEK)–extracellular-signal-
regulated kinase (ERK) was a critical signaling pathway in
7

nonalcoholic steatohepatitis—knowledge that can be used to
develop specific targets. The data mining analysis of such tran-
scriptomes through ML and DL can help not only to find drug
targets but also to elucidate the mode of action of drugs and
disease mechanisms [163].

The analysis of omics data has helped researchers to identify
many overlooked disease candidate targets [164]. With the
advancement of sequencing technology and deeper research, the
drawbacks of the deeper mining of only single omics data are
becoming increasingly obvious, as such mining can neither reflect
the relevance and variability of biological processes (e.g., simple
gene expression levels do not reflect true protein expression levels)
nor reveal complex biological systems and disease mechanisms
(e.g., glycolytic processes are associated with genomics, pro-
teomics, and metabolomics). In particular, disease onset often
involves multiple pathways and requires the integration of multi-
modal data. For example, genes with increased DNA copy numbers
have been found to be involved in important cancer pathways, and
somatic mutation frequency and expression levels are also impor-
tant factors in cancer drivers [143,165,166]. By integrating infor-
mation at multiple omics levels and mining the linear or
nonlinear associations through AI approaches, candidate key fac-
tors can be identified at a more in-depth level, which is crucial
for discovering candidate targets for diseases.

Complex diseases such as cardiovascular disease, schizophrenia,
cancer, and Alzheimer’s disease (AD) have many therapeutic tar-
gets, and multiple potential causative genes can be discovered
through the multi-omics features of individual patients. Jeon
et al. [31] used an SVM algorithm with a radial basis function
(RBF) kernel to construct three models to predict potential targets
specific to breast cancer (BrCa), pancreatic cancer (PaCa), and ovar-
ian cancer (OvCa), respectively. Gene essentiality, gene expression,
DNA copy number variation, somatic mutation, and PPI network
topology were the main input features, and the SVM was able to
deeply explore the association of and difference among these fea-
tures to distinguish potential drug targets from non-target pro-
teins. The model was cross-validated with ten folds and had a
high area under the ROC curve (AUROC) value and a low false-
positive rate. By using the trained model to predict 15 663 human
proteins and score the prediction results, a total of 122 global can-
cer targets were identified for all cancers (69 of which corre-
sponded to the 116 known targets that were rigorously
validated). In addition, a large number of potential targets specific
to BrCa, PaCa, and OvCa were identified. Of course, the identified
targets were only for guidance and were not true drug targets.

Moreover, using multi-omics data with PPI networks, a group
developed a network-based Bayesian algorithm framework [167]
to infer loci for an AD genome-wide association study (GWAS)
and revealed 103 AD risk genes (ARGs). This study included gene
expression data from single cell transcriptomics, gene expression
data from microarrays, and proteomics, fully demonstrating the
ability of AI approaches to integrate multi-source and multimodal
data to discover potential therapeutic targets.

ML has been instrumental in driving the learning process of
multi-omics data, but it can be overwhelmed by larger multi-
omics data and more complex problems. However, DL can handle
much larger amounts of multi-omics data and unearth deeper
associations. On the assumption that the drug inhibition of targets
and target gene knockdown (KD) should lead to the occurrence of
similar biological processes, resulting in similar mRNA expression
profiles, Pabon et al. [168] explored the direct feature correlation
and indirect feature correlation between compound-induced fea-
tures and gene KD in CMAP, and combined these features with
other features such as PPIs as inputs into the RF model to predict
drug targets. To better mine the correlation between chemical per-
turbation (CP) features and KD genetic perturbation features,



Table 2
Omics projects for analysis of drugs, proteins, and diseases.

Omics Project Introduction Data scale Applications for drug/target discovery Ref.

Genomics Ensembl Ensembl is a genome browser that can perform gene annotation, multiple alignment
calculations, regulatory function predictions, and disease data gathering

622461 regulatory features,
118 epigenomes

Mining disease genes;
disease risk prediction

[48]

UCSC Genome The UCSC Genome browser contains information on inter-genomic alignment, different
sequences, phenotypes, expression profiles, regulatory information, conservations, variants,
repetitive regions, and other information

N/A Mining disease genes;
disease risk prediction

[49]

TCGA TCGA collects and functional genomics data including mutation, copy number, mRNA and
protein expression

21773 genes,
2 730388 mutations

Discover novel molecular targets [143]

Transcriptomics GEO The GEO is a database repository of high-throughput gene expression data and hybridization
arrays, chips, and microarrays

4348 datasets,
182700 assays

Retrieve drug, gene, and disease perturbations [50]

EA EA collects baseline gene expression data in different species and contexts. It also contains
differential studies, reporting changes in expression between two different conditions

4315 studies,
153212 assays

Drug discovery and validation;
disease genes analysis

[53]

L1000 The LINCS-L1000 data repository generates gene expression signatures by treating various cell
types with perturbagens, which include a variety of small-molecule compounds, gene
overexpression and gene KD agents

�1300000 profiles Drug/target discovery;
drug repositioning

[144]

Proteomics PRIDE The PRIDE is a public data repository for proteomics, including protein and peptide
identifications, post-translational modifications, and supporting spectral evidence

19990 datasets,
152961704 protein evidence

Drug target identification [44]

UniProt UniProt is a protein database containing protein sequences, functional information, and
indexing of research papers

568002 proteins Druggable proteome analysis;
drug target identification

[18]

HPA The HPA portal is a publicly accessible database that contains millions of high-resolution
images illustrating the spatial distribution of proteins in 46 different human cell lines, 20
different cancer types, and 44 different normal human tissues

27173 antibodies targeting,
17268 unique proteins

Druggable proteome;
drug target efficacy and specificity

[145]

HPM The HPM portal is an interactive resource that incorporates the vast amount of peptide
sequencing data from the human proteome project’s draft map

17294 genes,
30057 proteins

Drug target identification;
biomarkers identification

[146]

Metabolomics HMDB The HMDB is an open-access electronic database that provides comprehensive information on
the small-molecule metabolites that have been discovered (and experimentally confirmed) in
the human body

50336 pathways,
18198 reactions,
251986 metabolites

Drug metabolism analysis [147]

Metlin Metlin is a powerful metabolite identification and information database that contains
categories of lipids, amino acids, carbohydrates, toxins, small peptides, and natural products

�860000 molecules Drug metabolism analysis [148]

KEGG pathway KEGG pathway is a collection of manually drawn pathway maps with a primary focus on
metabolic pathways and the integration of metabolic, gene, and protein pathway information

552 pathways Drug metabolism;
drug development;
disease/drug information

[149]

MetaCyc Metabolic pathways from all domains of life (MetaCyc) contains the pathways for primary and
secondary metabolism, as well as the metabolites, reactions, enzymes, and genes that go along
with them

2937 pathways,
17780 reactions,
18124 metabolites

Pathway-based target selection and validation [150]

Reactome Reactome is an open-source pathway database that provides user-friendly bioinformatics tools
for the visualization, interpretation, and analysis of pathway knowledge

2585 pathways,
14246 reactions,
11291 proteins

Simulate impact of drugs on pathway activities [151]

mRNA: messenger RNA; LINCS: Library of Integrated Network-based Cellular Signature; KD: knockdown; HPA: human protein atlas; HPM: human proteome map; HMDB: human metabolome database; KEGG: Kyoto Encyclopedia
of Genes and Genomes; N/A: not available.
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Zhong et al. [169] proposed a GCN model known as Siamese
spectral-based graph convolution network (SSGCN) to mine tran-
scriptomic data to predict compound–protein interactions (CPIs).
SSGCN constructed two parallel GCN models for the feature extrac-
tion of CP profiles and KD profiles, respectively, where CP profiles
and KD profiles were integrated with a PPI network (the attribute
values of the network nodes were gene differential expression val-
ues, and if there was an interaction between two nodes, these two
nodes were connected by an edge). Two sets of graph embedding
vectors were obtained after feature extraction, and the degree of
correlation between the CP features and KD features was obtained
by means of a simple linear regression layer. The correlation was
expressed as Pearson’s coefficient R2 and was fed to the classifier
as features along with cell line, CP time, dosage, and KD time to dis-
criminate the interaction of compounds with the corresponding
proteins. This model was subsequently validated externally and
shown to be effective in identifying potential drug targets and
facilitating drug repositioning studies.

Most of these target discovery models use end-to-end models to
directly discover druggable proteins. DL can also perform key roles
in multiple specific steps in the target discovery process, such as
predicting splicing from pre-mRNA transcript sequence using
SpliceAI [170], using scVI to predict and analyze gene expression
probabilities in single cells from transcriptomic data [171], and
using PLEDA to predict an enhancer predictor [172]. Some studies
have performed a GWAS of COVID-19, with results suggesting a
possible association with COVID-19 susceptibility in the 3p21.21
region of the chromosome. Building on these studies, Downes
et al. [173] used multiple DL approaches combined with multi-
omics data to discover that the gain-of-function risk A allele of a
single-nucleotide polymorphism (SNP), rs17713054G>A, may be
a variant that can cause disease. Further analysis revealed that leu-
cine zipper transcription factor like 1 (LZTFL1), a gene regulated by
rs17713054, was a critical gene for the development of epithelial-
mesenchymal transition (EMT). EMT is a developmental pathway
associated with lung inflammation that is frequently induced by
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) in lung cancer cell lines (CCLs) and the respiratory tract. As a
key gene in this series of biological processes, LZTFL1 could serve
as a potential therapeutic target.

The use of AI approaches can help effectively predict drug
responses in cancer cells to advance precision medicine [174–
176]. One group used elastic net regression and RF to identify
howmulti-omics data affect drug response prediction [177]. In this
study, 265 drugs across 990 CCLs were screened to construct phar-
macogenomic datasets. To comprehensively investigate the influ-
ence of different combinations of molecular data, linear and
nonlinear ML models were built. Among the genome-wide gene
expression, DNA methylation, gene copy number, and somatic
mutation data, gene expression data was the most predictive data
type in pan-cancer analysis, and genomic data (i.e., driver muta-
tions, copy number alterations, or DNA methylation data) was
the most predictive data type in cancer-specific analysis.

The importance of multi-omics data in drug response prediction
has also been demonstrated. However, most methods do not take
drug/cell line specificity, drug/cell line, or drug–protein associa-
tions into consideration. To address this issue, Peng et al. [178]
combined multi-omics data with a GCN to construct an end-to-
end model known as MOFGCN. Drug/cell line associations were
used to initially construct a heterogeneous network in which the
nodes were drugs or cell lines. The properties of the drugs were
obtained by calculating the similarity of molecular fingerprints,
and the properties of the cell lines were obtained by fusing
multi-omics data (i.e., gene expression, copy number variation,
and somatic mutation data) and calculating their similarity. The
completely constructed heterogeneous network served as the
9

input to a graph convolutional network, and the final features
were obtained by passing messages between nodes to further learn
the potential associations of drugs and cell lines. To predict drug
sensitivity, a CCL–drug correlation matrix required further recon-
struction based on a linear correlation matrix that was calculated
from the updated features of drug and cell lines. The DL framework
of predicting drug sensitivity, DeepDRK [179], integrated muta-
tions, copy number variation, DNA methylation, gene expression,
and drug screening as cell line features and extracted molecular–
protein information as drug features. Then, the two features were
spliced as the features of a CCL–drug pair and were fed into the
DNN to predict the drug sensitivity.

The combination of omics data and AI methods can help
researchers quickly obtain the information they need at the molec-
ular scale, as the various levels of omics data reflect the various
processes of life activity. Integrating and analyzing this informa-
tion can aid in the understanding of complex biological systems
and thus assist in the discovery of new drug targets.

3.2. Drug–target interactions (DTIs) discovered using chemogenomics

The identification of DTIs is currently contributing to research
in drug discovery. Newly discovered DTIs can be used to find
new targets that interact with existing drugs or to discover new
compounds that interact with a disease-related target. Therefore,
research results on DTIs are widely used in the fields of lead com-
pound discovery, new target discovery, drug repositioning, and
drug side-effect prediction [3,180,181]. Although HTS have been
developed to determine the activity of thousands of compounds
at once, they cannot catch up with AI methods in terms of either
cost consumption or the number of compounds measured. In gen-
eral, methods for predicting DTIs have been divided into three
main approaches: ligand-based methods, structure-based meth-
ods, and chemogenomic methods. Each of these three methods
has its own advantages and disadvantages, with the third method
being the most widely applicable and popular. Therefore, this sec-
tion focuses on reviewing chemogenomic methods, while the other
two methods are covered in Section 4.

The chemogenomic approach not only uses drug-related and
target-related information but also connects this information to
multiple sources of biomedical information in order to better pre-
dict DTIs. Publicly accessible database resources contain a large
amount of structured and unstructured biomedical data to support
access to information. ML and DL can extract relevant functional
information and reduce the noise from this large amount of hetero-
geneous data in order to discover new protein targets precisely and
efficiently. Table 3 [37,54,55,57,58,182–191] lists some currently
high-quality public databases.

Prediction of DTIs is usually regarded as a binary classification
problem. It is very convenient to use an ML approach to predict
DTIs, which usually only requires obtaining the SMILES of small
molecules and the sequences of target proteins. These sequences
are converted into feature vectors via different rules and are later
used as inputs to a model to predict their final classification. These
molecules and proteins are characterized in a variety of ways and
often contain information about the physicochemical properties of
the molecules and proteins, as well as their structure. A number of
toolkits and libraries for molecule and protein representations
have been developed and are listed in Table 4 [192–215]. For
example, small molecules characterized using MACCS fingerprints
were spliced with protein vectors characterized by CTD descriptors
and used as inputs to an SVM to predict DTIs [216]. The occurrence
of a DTI is influenced by numerous factors and corresponds to mul-
tidimensional features that represent the structure and properties
of the molecule and protein. It is hoped that the model can find out
more about the mechanism of DTI from these features and then
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give classification judgments based on information. Such problems
have also been treated as regression problems; DeepDTA is a CNN
model that used the SMILES of small molecules with sequences of
proteins to predict the affinity of small molecules with proteins
[217]. Using only single-feature representation does not fully char-
acterize small molecules or proteins, so some studies have used
multiple descriptors to characterize small molecules and proteins
and have integrated these features as vectors of inputs to predict
DTIs. This improves the classification performance of the model
to a certain extent [218]. In order to enable researchers to more
conveniently use DL to make predictions about DTIs, Huang et al.
[219] proposed DeepPurpose, which implements more than 50
DL models (including CNN, MLP, RNN, etc.). DeepPurpose can
encode proteins in seven distinct ways, including MLP on AAC,
PAAC, conjoint triad, quasi-sequence descriptors, CNN on amino
acid sequences, RNN on top of CNN, and transformer encoder on
substructure fingerprints. For compounds, there are eight enco-
ders, including MLP on Morgan, PubChem, Daylight and RDKit 2D
fingerprint, CNN on SMILES strings, RNN on top of CNN, trans-
former encoders on substructure fingerprints, and a message-
passing GNN on a molecular graph. Those encoding methods just
use SMILES and the amino acid sequence as input. In this way,
researchers can conveniently predict DTIs using different encoding
methods on different models.

The abovementioned studies were able to obtain a good perfor-
mance using only the SMILES sequence and amino-acid sequence
of proteins. At the same time, it is important to integrate various
data sources to predict DTI, such as drug–drug interactions, PPIs,
and drug–disease associations. Bleakley and Yamanishi [220] con-
structed a bipartite graph on DTI [221,222] and applied an SVM
model for DTI prediction in a later work. The four datasets con-
structed in this work have become the gold standard datasets for
later DTI prediction models. Inspired by this work, there have been
a proliferation of network-based approaches to predict DTI. A com-
putational pipeline called DTINet was then developed that inte-
grated multiple heterogeneous data sources to construct
networks on DTI [223]. In this study, four drug similarity networks
were constructed based on ① drug–drug interaction networks,
② drug–disease association information, ③ drug side-effect asso-
ciation information, and ④ chemical structure information. Simi-
larly, three protein similarity networks were constructed based
on ① PPIs, ② protein–disease associations, and ③ genomic
sequences. Using these similarity networks, a network diffusion
algorithm (random walk with restart (RWR)) was first applied on
individual networks separately, and the feature vectors were opti-
mized. The low-dimensional vector representations obtained after
this learning process contained information derived from various
heterogeneous data sources and were able to better represent
the drug/protein-specific properties. The obtained vectors were
then used to discover new DTIs according to their spatial corre-
spondence with drugs and proteins.

The use of DL models allows for the integration of heteroge-
neous data from multiple sources while providing a comprehen-
sive characterization of drugs or biomolecules. Zeng et al. [224]
proposed a framework called deepDTnet to integrate heteroge-
neous data sources for the prediction of DTI. In this study,
15 networks—including genomics, GOA, protein-related similarity,
and drug-related similarity—were integrated to construct a hetero-
geneous network connecting drug targets and disease information.
A DNN for graph representation (DNGR) algorithm was developed
to obtain the informative vector of both drugs and targets based on
the constructed network. However, the lack of negative samples in
public databases led to difficulties in the model training process;
thus, a PU-matrix completion algorithm was employed to infer
whether two drugs shared a target. The results showed that com-
bining the heterogeneous data to re-represent the drug and target
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without a descriptor or fingerprint achieved an excellent
performance.

As mentioned before, the emergence of large-scale knowledge
of omics data, systems biology, chemistry, pharmacology, and so
forth is providing new perspectives for DTI prediction. However,
the integration of heterogeneous data from multiple sources
undoubtedly introduces a huge amount of noise and does not solve
the ‘‘cold-start” problem well. Here, knowledge graphs (KG) stand
out with their powerful ability to integrate heterogeneous infor-
mation. By leveraging the interactions of phenotype, drug, target,
and gene, a KG can help to further understand the molecular mech-
anism of a disease and to explore potential drug targets. Recent
studies have integrated resources from several databases (Drug-
Bank, TTD, ChEMBL, BindingDB, SIDER, GO, etc.) to construct KG
such as BioKG, PharmKG, Hetionet, and Drug Repurposing (DRKG)
[30,225]. A KG usually represents knowledge as a triple, which is
composed of a head entity, relation, and tail entity. In the field of
DTI recognition, the KG embedding (KGE) model is often used to
represent entities and relations by means of low-rank vectors, in
what is also known as the representation learning of KGs. The rep-
resentation vectors obtained by a KG can be further used for link
prediction to discover drug–target relationships [30]. A KG typi-
cally integrates a huge amount of data with dozens or even hun-
dreds of relationships. The vectors obtained via a KG often
contain a certain exact positioning and relationship of this entity
in the biological network, but not its own structure or physical
and chemical properties. The same is true for proteins. To address
this issue, Ye et al. [118] developed a framework called KGE_neural
factorization machine (NFM) that performs DTI prediction using a
KGE technique combined with a recommendation system tech-
nique. In this process, an accurate entity vector is first obtained
from the potential information learned from the heterogeneous
network via KGE. Next, the structural information of the drug
and target is obtained from molecular fingerprints and protein
descriptors. Finally, multimodal information is extracted using
aNFM, and the DTIs are predicted using DL methods. This approach
was tested for ‘‘cold-start” scenarios of drugs or proteins and
achieved a SOTA performance, particularly for protein ‘‘cold-
start” scenarios.

In addition to the aforementioned methods for predicting DTIs,
similarity-based [226] and matrix decomposition-based methods
[227] can be used, among others, and have contributed greatly to
DTI prediction in the past. With the development of DL,
network-based methods, feature-based methods, and so forth are
now being used in combination, bringing the advantages of each
method into play to better predict DTIs and discover new targets
[228,229]. Based on recent studies in the field, DTI research
methods can be roughly classified into six groups; Table 5
[217,221,223,226,227,230–247] provides a brief summary of the
relevant strategies.

Future research should integrate omics data more closely with
biomedical data networks for a more accurate characterization of
drugs or proteins. Moreover, similarity approaches have a crucial
effect on DTI prediction, and combining multiple similarity results
may improve model performance. One common problem in model
training is the unavailability of accurate negative datasets. Accu-
rate DTI data in publicly available data sources are rigorously
experimentally validated, and the experimental validation process
for each one is exhaustive; however, most failed experiments will
not be reported. Furthermore, manually validated data is time-
consuming, and a large amount of data has not been validated
for exact interactions. Therefore, the dataset used for DTIs should
always use the latest and most comprehensive drug–target data-
base, such as TTD and DrugBank, and additional inactive experi-
mental data should be open-sourced to improve the current DTI
data system.



Table 3
Databases for DTIs research.

Database Description Focus Items Relations Target
scale

Drug
scale

Ref.

Protein or
target

Drug or
chemical

Disease Gene Pathway or
mechanism

TTD TTD is a database providing information about known and explored
therapeutic proteins and nucleic acid targets, along with the targeted
disease, pathway information, and corresponding drugs directed at
each of these targets

Drug,
target

p p p p p
Drug–drug,
drug–target,
drug–disease

3 578 38 760 [37]

ChEMBL ChEMBL is a manually curated library of bioactive compounds with
drug-like properties. Data on chemicals, biological activity, and
genomics are integrated

Drug,
target

p p p
—

p
Drug–target,
drug–disease

15 072 14 293 [54]

DrugBank The DrugBank database combines comprehensive drug target
information with specific drug data

Drug,
target

p p p
—

p
Drug–drug,
drug–target,
drug–disease

4 563 14 748 [55]

DTC DTC is a platform that enables the exploration of bioactivity data, the
processing of new bioactivity data, and data curation in order to
improve the understanding of DTIs

Drug,
target

p p
— — — Drug–target 1 007 4 276 [57]

Pharos Pharos is a database that provides a comprehensive, integrated
knowledge base for the druggable genome in order to illuminate the
part of the genome that has not been well described or annotated

Target,
disease

p p p p
— Drug–target,

drug–gene,
drug–disease

20 412 1 737 [58]

Comparative
Toxicogenomics
Database

Comparative Toxicogenomics Database is a database that aims to
increase understanding about how environmental exposures impact
human health. It offers manually curated data on links between
chemicals, genes, and proteins, as well as between diseases and
chemicals

Drug, gene,
disease

p p p p
Drug–target,
drug–gene,
drug–disease

N/A 1 498 [182]

GtoPdb GtoPdb is a database of ligand-activity–target interactions that
contains quantitative data on pharmacological targets and the
experimental and prescribed medications that affect them

Drug,
target

p p p
— — Drug–target,

drug–disease
3 002 11 348 [183]

DrugCentral DrugCentral is an online resource for drug information that provides
details on pharmaceutical products, active ingredients, chemical
entities, pharmacological modes of action and indications, and
pharmacologic actions

Drug,
target,
disease

p p p
—

p
Drug–target,
drug–disease

N/A 4 714 [184]

TDR Targets TDR Targets is a database that contains information on targets, drugs,
and/or biologically active molecules of interest and can be used to
prioritize targets across the whole genome

Target,
disease

p p
—

p p
Drug–target,
drug–gene

254
986

238 286 [185]

DockCoV2 DockCoV2 is a drug database with 3 548 compounds. It predicts the
binding affinity of SARS-CoV-2 related proteins and 67 human proteins

Drug,
target

p p
— — — Drug–target 7 3 109 [186]

KEGG Drug KEGG Drug is a comprehensive drug information repository for
approved drugs, containing information on therapeutic targets, drug
metabolism, and other molecular interaction networks

Drug
p p p p p

Drug–drug,
drug–target

N/A 11 952 [187]

PDID The PDID contains a large number of potential and native protein–drug
interactions in the structural human proteome

Drug,
protein

p p
— — — Drug–target 3 746 51 [188]

SIDER SIDER includes information on approved drugs and ADRs, drug side-
effect frequency and side-effect categories, and drug–target relations

Drug, side-
effect

p p p
— — Drug–side effect,

drug–disease
5 868 1 430 [189]

Open Targets The Open Targets platform is a comprehensive platform for identifying
and prioritizing potential therapeutic drug targets. It generates and
scores target–disease connections. It also includes annotation
information on targets, diseases, phenotypes, drugs, and their
interactions

Target,
disease

p p p
— — Drug–target,

drug–disease
61 524 12 854 [190]

PDTD The PDTD is a protein database for target identification containing
1 186 protein entities that cover 831 known or potential drug targets.
It also provides annotations including protein and active site
structures, related diseases, biological functions, and associated
regulating (signaling) pathways

Target,
disease,
biological
function,
pathway

p
—

p
—

p
Target–disease,
target–pathway,
target–biological
function

1 186 N/A [191]

GtoPdb: guide to pharmacology database; TDR: tropical disease research; PDID: protein–drug interaction database; SIDER: side-effect resource; ADR: adverse drug reaction.
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4. SOTA application of AI to modern drug design

Drugdiscovery is a long-termandpainstakingprocess. In thepast
decades, techniques such as HTS and combinatorial chemistry, as
well as other techniques, played an important role in the discovery
of lead compounds. Further structuralmodifications of the obtained
lead compounds were then developed to reduce toxicities and
improve efficacy. As these techniques gradually increased in popu-
larity, however, their various disadvantages were gradually
revealed. Similarly, in the 1980s, CADD was no less popular than
today’s AI. For example, QSARwerewidelyused as soon as theywere
proposed. However, in those days, QSAR-basedmodelswere limited
by theavailable computingpower, dataset size, andother issues, and
their predictive performances were never satisfactory [248–250].

In recent years, the advancement of computing power has dri-
ven the rapid development of AI, while positively promoting the
development of computational chemistry and pharmacology. For
example, various ML and DL methods were used in various Kaggle
competitions to improve the predictive performance of QSAR
methods, all of which achieved high performance [78]. As men-
tioned above, DL allows the identification of new molecular
representations instead of relying solely on off-the-shelf and
expert-derived chemical signatures. AI algorithms relying on rich
biomedical data show promising prospects in areas such as bioac-
tivity prediction, VS of drugs, and de novo drug design.

Before going into details, it is necessary to briefly introduce the
concepts of structure–activity relationships (SARs) and QSARs.
These two concepts are frequently used in drug design using ML
and DL methods and are powerful aids in the design, optimization,
and development of drugs. SARs are based on the assumption that
molecules with similar structures have similar activity. In drug dis-
covery, QSARs are based on various molecular characterization
methods (e.g., molecular descriptors and molecular fingerprints)
and mathematical models to describe the mathematical relation-
ship between the structure of a molecule and its specific biological
activity. A QSAR model assumes that the structure of a compound
determines its physicochemical properties and biological activity;
therefore, quantitative relationships can be established between
the structure of a compound and its physicochemical properties,
biological activity, toxicological effects, and so forth. The QSAR
analysis process usually includes the preparation of preliminary
datasets, the calculation and selection of molecular descriptors,
the establishment of relevant models, and the evaluation and val-
idation of model results [248,251].
4.1. Cutting-edge techniques facilitating VS

VS has endured for the past decade or so. In order to reduce the
number of compounds that actually need to be measured and
increase the efficiency of lead compound discovery, the in silico
approach is used to simulate the interaction between a target
and a small molecule and predict the affinity between the two
before a bioactivity test is performed [252]. VS methods are often
classified into structure-based VS (SBVS) or ligand-based VS (LBVS)
[253–255]. The combination of AI and VS has brought a new dyna-
mism to the field. A variety of molecular characterization
approaches combined with various novel model architectures have
provided new insights into the discovery of new compounds [9].

SBVS selects potential ligands based on the 3D conformation of
the protein and scores the ligand’s ability to bind to the protein
based on the inputted knowledge of biophysical methods, resulting
in a ranking of drug candidates. Previously, simulations using var-
ious docking software were the dominant approach and resulted in
many algorithms, such as Monte Carlo (MC) algorithms [256] and
12
molecular dynamics (MD) algorithms [252,257,258]. A primary
limitation of the simulation results is the construction of the scor-
ing function, which must take many factors into account along
with their plausibility as parameters. AI takes these many factors
as features of the data, implicitly learns the relationship between
the features and the experimental results, extracts useful nonlinear
mapping relationships from them, and gives a final score. A VS
method known as ID-Score [120] selected nine classes of property
descriptors (i.e., van der Waals interaction, hydrogen-bonding
interaction, electrostatic interaction, p-system interaction, metal–
ligand bonding interaction, desolvation effect, entropic loss effect,
shape matching, and surface property matching) as features, used
2278 compounds as the training set, and used a support vector
regression (SVR) algorithm to fit the binding affinity of small mole-
cules to proteins. The results showed that ID-Score can correctly
distinguish structurally similar ligands, demonstrating its use as
a powerful tool for assessing structure-based drug–protein affinity.

In another study, a CNN was used to score protein ligands.
Unlike traditional methods, CNNs are powerful enough to accept
3D representations of protein–ligand interactions as input. During
the training of the model, the CNN learns the key features affecting
binding from the 3D representation, which is used to determine
the correct or incorrect binding pose and known binders and non-
binders. Xie et al. [259] took a different perspective to improve the
efficiency of lead compound discovery by combining an SVM clas-
sification model with a docking-based VS method. More specifi-
cally, they developed an SVM model to distinguish inhibitors of
the target from non-inhibitors and performed a docking-based VS
on this basis. This combination greatly improved the hit rate and
enrichment factor of the VS. In contrast to the work by Xie et al.
[259], Pereira et al. [260] developed DeepVS, which uses a DL
approach to optimize docking-based VS. In this study, a directory
of useful decoys (DUD) [261] was used as the benchmark dataset
to evaluate the method. Dock [262] and Autodock Vina1.1.2
[263] were used as docking programs to generate protein–com-
pound complexes. Then, essential processing of the protein–com-
pound complexes was done and the results were fed into the
CNN model as input. The CNN model extracted the key features
from this essential data and used them to evaluate the score of
the ligands. The results showed that the proposed DeepVS
achieved advanced performance on VS.

In comparison with the SBVS approach, which is limited by the
structural information of the target protein, LBVS can make full use
of the known ligand bioactivity data and screen a large database of
compounds to discover potential lead compounds. Therefore,
AI-based VS tends to favor LBVS. The starting point of LBVS is the
assumption that structurally similar compounds have similar
biological activities; thus, the AI methods used in this field include
both regression models for activity prediction and classification
models based on compound similarity.

QSAR is widely used in LBVS because of its use of mathematical
models to relate molecular structures to quantitative biological
activities. NB, RF, and SVM are very popular algorithms in LBVS.
AbdulHameed et al. [264] screened a database with nearly 2000
compounds using a QSAR-based model with an NB algorithm and
using the physicochemical properties of the molecules as features.
Finally, it was found that activators of pregnane X receptor (PXR)
tend to be hydrophobic, while the in vitro and in vivo activities
are often consistent. Profile-QSAR 2.0 was presented to predict
the activity of compounds [265]. Compared with the earlier profile
QSAR (pQSAR) 1.0 method, the pQSAR 2.0 method used the histor-
ical activity values of the compounds as variables. The optimized
pQSAR used an RF model to predict the IC50 values, achieving
the same accuracy as the medium-throughput four-concentration
IC50 measurements. Chen and Visco [266] created a pipeline inte-



Table 4
Toolkits and libraries for analyzing small molecules and proteins.

Toolkits Introduction Main tools Refs.

RDKit RDKit is a cheminformatics toolkit that offers a variety of implementations for
studies using cheminformatics, including algorithms for creating molecular
fingerprints, searching for molecular structures, and building 2D to 3D
structures

Generating molecular fingerprints, molecular structure searching, 2D to 3D
structure construction, generation and manipulation of chemical formats

[192]

OpenBabel OpenBabel is a toolkit that provides a number of features, including the creation
of multiple molecular fingerprint types, format conversion between different
chemical formats, structure and substructure searches based on graph
isomorphism, and tools for organic chemistry

Generation of several types of molecular fingerprints, conversion between
various chemical formats, structure and substructure searching based on graph
isomorphism, organic chemistry tools

[193]

DayLight toolkit DayLight toolkit provides the creation of SMILES strings, graph-based
substructure search, analysis of 2D and 3D chemical structures, and creation of
several kinds of fingerprint

Generation of SMILES strings, graph-based substructure search, analyzing 2D
and 3D structures of compounds, generation of different types of fingerprints

[194]

CDK The CDK is a library that provides tools for creating and modifying different
chemical formats, doing substructure searches, using graph theory techniques to
find chemical structures, and creating 3D structures

Generation and manipulation of chemical formats, substructure searching,
implementation of graph theory algorithms for chemical structure searching, 3D
structure generation

[195]

OpenEye toolkit OpenEye toolkit offers a variety of features, including handling representations
of different chemical formats, shape similarity and grouping algorithms based
on 2D structure, and 2D visualization of molecular structure

Handling representations of several chemical formats, 2D structure-based shape
similarity, clustering methods and 2D molecular structure rendering

[196]

ChemmineR ChemmineR is a framework for the R language and an environment for
statistical computing, including implementations of algorithms for handling
multiple compound representations, 2D structural similarity searching,
compound library clustering algorithms, classification algorithms, and
visualization techniques

Implementations of algorithms for handling different types of compound
representations, 2D structural similarity searching, clustering algorithms for
compound libraries, classification algorithms, visualization methods

[197]

Indigo Indigo is a cheminformatics toolkit that offers a variety of utilities, including the
ability to work with SMILES strings, use the SMARTS to search for structure and
substructure, and create several kinds of fingerprints

Manipulation of SMILES strings, structure and substructure searching
generation of various types of fingerprints

[198]

SHAFTS
and eSHAFTS

SHAFTS is a fast 3D similarity calculation tool that adopts a hybrid similarity
metric of molecular shape and label chemistry groups by pharmacophore
features to calculate and rank the 3D similarity of small molecules. eSHAFTS
provides a user-friendly graphical working environment based on SHAFTS

Fast 3D structural similarity searching for small molecules, provides a graphical
user interface

[199–201]

PROFEAT PROFEAT is a web server that uses the structural and physicochemical properties
of amino acids to compute protein descriptors from input protein sequences.
Biological networks, ligand–protein interactions, PPIs with ligands, and ligand–
protein interactions are all computed as descriptors as well

Computing protein descriptors [202]

BLAST BLAST finds regions of similarity between biological sequences. The program
compares nucleotide or protein sequences to sequence databases and calculates
the statistical significance

Pairwise sequence alignments/database search [203]

ClustalW ClustalW is a program for multiple sequence alignment that uses guide trees to
compare sequence similarities between three or more sequences. It is a very
sensitive progressive technique that can be applied to divergent protein
sequences and makes use of sequence weighting and position-specific gap
penalties

Multiple sequence alignments [204]

Dali Dali is an online server that evaluates protein 3D structures based on distance
matrices. It accomplishes comparisons against PDB structures as well as
pairwise and all-against-all multiple comparisons. It calculates RMSD scores but
assesses similarities using Dali Z-scores, where scores greater than 2 indicate a
substantial structural similarity

Protein structure alignments [205]

MultiProt MultiProt is an online structural alignment tool that can be used for the
simultaneous alignment of multiple protein structures. It does not require the
alignment of all the input molecules; instead, it finds the common geometrical
cores between them by detecting high-scoring partial multiple alignments

Simultaneous alignment of multiple protein structures [206]

(continued on next page)
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Table 4 (continued)

Toolkits Introduction Main tools Refs.

TM-align TM-align is a structural alignment tool that is used to compare protein
structures without using sequence order information. It combines dynamic
programming iterations with a TM-score rotation matrix

Comparison of protein structures [207]

PocketShape PocketShape is a 3D structure-based evaluation method for exploring protein
binding site similarity; it depends on structure-based alignment and is capable
of detecting common patterns or residue reservation between binding sites,
which are not required to possess continuous residues or be homologous

3D similarity calculation of protein binding sites [208]

RCSB PDB RCSB PDB comparison tool is an online tool that computes pairwise sequence
comparisons using the blast2seq, Needleman–Wunsch or Smith–Waterman
algorithms and pairwise structure comparisons using the FATCAT, CE,
Mammoth, TM-Align, or TopMatch algorithms

Pairwise structure/sequence alignments [209]

SiteEngine SiteEngine is a structural similarity measurement tool created for the prediction
of potential protein binding sites based on the similarity of their geometrical
and physicochemical properties with known binding sites

Prediction of potential binding sites of proteins [210]

APoc APoc is a large-scale, sequence-order-independent structure alignment tool for
comparing experimentally confirmed or computationally predicted protein
pockets. It makes use of an algorithm that creates initial alignments from
gapless alignments, secondary structure alignments, fragment alignments, and
local contact pattern alignments

Comparison of predicted protein pockets [211]

eMatchSite eMatchSite is a sequence-order-independent local alignment tool that is used to
align and compare the ligand binding sites of computationally generated protein
models. It makes extensive use of evolutionary data gleaned from entropy and
secondary structure profiles of weakly homologous templates in complexes
with ligands

Ligand binding sites [212]

FragHMMent FragHMMent is a bioinformatics tool that predicts residue–residue contacts in a
protein sequence. It makes use of local protein structure descriptors, predicted
secondary structure, and HMMs trained on homologous sequences

Prediction of residue-residue contacts [213]

PSIPRED PSIPRED is a web server that predicts secondary structures of proteins from their
amino acid sequences

Prediction of protein secondary structure [214]

SCREEN SCREEN is an online tool that locates and describes protein surface cavities. It
creates a set of cavities for each structure and calculates each cavity’s geometric
and electrostatic properties

Predicts cavities of protein surfaces [215]

CDK: chemistry development kit; SMARTS: simple modular architecture research tool; RMSD: root-mean-square deviation; HMMs: hidden Markov models;
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Table 5
Popular methods for DTI identification and the algorithms applied.

Method Abbreviations Algorithms Description Ref.

Similarity/distance-based
methods

SITAR Similarity-based inference of drug targets A new scoring method for drug–gene associations based on drug–drug and gene–gene similarity measures [226]
MDTI MultiviewDTI A model based on normalized spectral clustering that integrates drug similarity network data and target

similarity network data from two views
[230]

LPLNI, LPLNI-II Label propagation method with linear neighborhood
information

An algorithm for predicting novel interactions between known drugs and targets by using drug–drug linear
neighborhood similarity and old DTIs

[231]

WNN-GIP Weighted nearest neighbors-Gaussian interaction
profile (GIP)

An algorithm that uses a weighted nearest-neighbor procedure to infer the profile of a new drug from the
interaction profile of a known compound

[232]

Feature-based BGL Bipartite graph learning A supervised learning model of a bipartite graph that integrates chemical and genomic spaces into a unified
space called the ‘‘pharmacological space”

[221]

Boosting SimBoost, SimBoostQuant A method that can predict continuous values of drug and target binding affinity, thereby integrating the
overall interaction profile from true-negative to true-positive interactions; SimBoostQuant evaluates the
confidence of predicted affinity by computing prediction intervals to determine the domain of applicability
metrics

[233]

BE-DTI Bagging-based ensemble method A DTI prediction model using dimensionality reduction and active learning [234]
Matrix factorization NRLMF Neighborhood regularized Logistic matrix factorization A DTI prediction method combining logical matrix factorization and neighborhood regularization [235]

PMF Probabilistic matrix factorization A DTI prediction model that uses a collaborative filtering algorithm and does not require 3D shape similarity [227]
VB-MK-LMF Variational Bayesian multiple kernel logistic matrix

factorization
A DTI prediction model that simultaneously possesses the advantages of multi-kernel learning, weighted
observations, Laplacian regularization, and explicit modeling of binary DTI probabilities

[236]

LRE, SLRE, MLRE Low-rank embedding A method for inpainting and minimizing reconstruction error in the embedding space via the low-rank
representation of the dataset, thereby preserving point-wise linear reconstruction; SLRE is an arbitrary-view-
based low-rank embedding single-view method, and MLRE is a multi-view-based method

[237]

Network-based methods NBI Network-based inference A DTI prediction model using topological similarity of drug–target bipartite networks [238]
NRWRH Network-based random walk with restart on the

heterogeneous network
A DTI prediction method that aggregates three different networks into heterogeneous networks and
implements a random walk

[239]

NetCBP Network-consistency-based prediction method A semi-supervised learning model utilizing both labeled and unlabeled interaction data [240]
DTINet A DTI prediction computational pipeline capable of parsing topological properties of drug nodes in

heterogeneous networks
[223]

Hybrid methods DT-Hybrid Domain-tuned hybrid An NBI approach with domain-based knowledge including drug and target similarity [241]
MGRNNM Multi-graph regularized nuclear norm minimization A DTI prediction method incorporating multiple graph Laplacians on drugs and proteins into the framework [242]
RBM Restricted Boltzmann machine A two-layer graphical model that integrates multiple types of DTI and predicts unknown DTI [243]
LRF-DTI LASSO-based RF method A DTI prediction method that inputs the lasso-processed feature vector into an RF classifier [244]

DL DeepDTIs DL in predicting DTIs A DL approach to predict the interaction of a new drug with an existing target or a new target with an
existing drug using unsupervised pre-training to extract representations from raw input descriptors

[245]

DeepConv-DTI DL with convolution-DTI A DL approach for large-scale prediction of DTI using CNN on raw protein sequences to capture local residue
patterns of proteins

[246]

DeepDTA Deep DT binding affinity prediction A DL-based model that predicts DTI binding affinity using only sequence information for proteins and drugs [193]
DeepTrans Deep transcriptome data A DL model modeled as a binary classification task that predicts potential DTIs using transcriptome data

from the Lincs-L1000 database
[247]
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grating QSAR with an SVM model to identify the inhibitors of
Cathepsin L. They used a signature—a descriptor based on frag-
ments—as the model’s input. After optimizing the model, nine
out of 12 screened compounds were experimentally confirmed.
ANNs are another commonly used tool in QSAR studies. Myint
et al. [267] reported an ANN-based QSAR method called
fingerprint-based ANN (FANN)-QSAR that uses three different
molecular fingerprints: ECFP6, FP2, and MACCS. The well-trained
model was used to predict the affinity of cannabis ligands and
found compounds with a good affinity for CB2. In another group
study, the minimal inhibitory concentration (MIC) of quinolones
was determined by using topological descriptors in an ANN
[268]. As more DL methods have gradually been used for QSAR-
related studies, researchers have found that DL tends to outper-
form ML in both single-task and multi-task learning [269–271].

QSAR methods are not the only tools used for LBVS [272–274].
Li et al. [275] used multiple ML methods to construct classification
models to select liver X receptor (LXR) agonists. During this pro-
cess, optimized property descriptors and topological fingerprints
were used to characterize small molecules in the database and
constitute a total of 324 models with four algorithms: NB, SVM,
KNN, and recursive partitioning (RP). The top 15 models were
selected for evaluation, and ten models were found to have an
accuracy of more than 90%. In another study, an SVM with NB
was used to identify butyrylcholinesterase (BuChE) inhibitors
[276]. Initially, 1870 descriptors were selected; after analysis,
activity-related descriptors were then selected to reduce noise. A
better performance was eventually achieved. There are also
numerous examples of self-organizing mapping (SOM) being used
in LBVS [277]. For example, Hristozov et al. [278] used SOM as a
model to recognize and exclude compounds that are unlikely to
have specific biological activity. The power of SOM has also led
to its use in some software [279].

With the rapid increase in the number of known compounds in
recent years, DL architecture has been found to be more suitable
for processing large compound datasets. One group trained with
existing HTS data and used a molecular graph as input to a neural
network to learn molecular representations [280]. Compounds
with similar representations were then assigned in the neighboring
hyperdimensional feature space. After learning the features, the
similarity to drug molecules in a large compound library was mea-
sured using cosine similarity, and the small molecules in the
library were ranked and filtered to obtain lead compounds. Unlike
the use of graph models to generate the features of small mole-
cules, adversarial AEs (AAE) were used by Kadurin et al. [281] to
construct a small molecule feature generator. Based on the
obtained features, 72 million compounds in PubChem were
screened to discover potential anticancer drug molecules. CNNs
are widely used in image recognition; thus, for the purpose of
using CNNmodels in drug research, molecules or proteins are often
characterized in the form of matrices. Xu et al. [282] directly used
images of molecules as input to CNN models to screen for inhibi-
tors of chemistry development kit 4 (CDK4) and achieved better
effects than competing models. The use of DL for LBVS has been
increasingly studied in recent years, and models such as RNN
[283] and RL [284] have been used for drug discovery, providing
more opportunities and benefits for LBVS.

Overall, efficient lead compound discovery through VS is still a
huge challenge, as there is no satisfactory way to address issues
such as the activity cliff. AI algorithms are powerful tools that
can be used not only for SBVS but also for LBVS to help break
through the relevant challenges and assist in de novo drug design.
As the complexity of algorithms increases and high-quality data
becomes available in future, bottlenecks in existing technologies
will continue to be broken, facilitating the discovery of new drugs.
16
4.2. Recent progress in de novo drug design

The aim of drug design is to design drugs with specific proper-
ties that satisfy specific criteria, including efficacy, safety, reason-
able chemical and biological properties, and structural novelty. In
recent years, de novo drug design with the help of deep generative
models and reinforcement learning algorithms has been consid-
ered to be an effective means of drug discovery. This approach
can bypass the drawbacks of the traditional empirical-based drug
design paradigm and allow computers to learn the drug targets
and molecular features by themselves to generate compounds that
meet specific requirements at a faster and less costly rate
[285–287].

De novo drug design according to protein structure used to be
the dominant approach. In this approach, whether designing new
molecules directly from protein structures or making reasonable
inferences from the properties of known ligands, the correspond-
ing ligands are designed according to the spatial and electric
potential constraints of the target protein binding pocket in order
to discover molecules with specific properties. A huge limitation
of these early approaches was that the resulting new molecules
were not chemically accessible—that is, their structures were prac-
tically impossible to synthesize or extremely difficult to produce,
or the molecules had poor druggability. In addition, many de novo
drug design approaches utilize fragments of molecules with known
properties for molecular assembly, and use large libraries of molec-
ular fragments to generate and design molecules with novel struc-
tures while ensuring that the molecules can be synthesized.
However, this approach relies on chemical knowledge to replace
or add molecular fragments, which will restrict the search space
and ignore certain potential molecular structures. The generation
of new molecules with deep generative models and the targeted
optimization of models with reinforcement learning algorithms
can solve the problems of the above traditional methods in a more
satisfactory way [288–290].

Deep generative models are of great advantage in the field of de
novo drug design, as they do not require explicit prior input of
chemical knowledge during the generation of molecules. These
models can search in a broader unknown chemical space to auto-
matically design novel molecular scaffolds beyond the limitations
of existing molecular scaffolds. Deep generative models that are
widely used for de novo drug design include RNN-based generative
models, variational AEs, AAEs, and GANs. The process of designing
molecules with generative models is highly stochastic, and the
generated molecules are highly variable in structure and uneven
in quality. Reinforcement learning can enable generative models
to perform targeted optimization by fine-tuning the model
parameters so that the generated molecules have specific drug
molecule properties.

RNN-based generative models can generate compounds with
similar biochemical properties as the sample compound but with
a completely new scaffold structure. The training process starts
by using a large chemical database to train the RNN model so that
the model can learn how to generate the correct chemical
structure. Reinforcement learning algorithms are then used to
fine-tune the RNN parameters so the model is capable of mapping
generated chemical structures to a specified chemical space. Rein-
forcement learning enables the RNN-based generative model to
generate new molecules with promising pharmacological proper-
ties, while ensuring the structural diversity of the generated mole-
cules. A single reinforcement learning reward mechanism often
leads to relatively simple structures of the generated molecules,
so an appropriate and multi-perspective reward function must be
selected to guide molecule generation. Olivecrona et al. [123]
developed a sequence-based approach to de novo drug design
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called REINVENT. First, the researchers collected 1.5 million
molecules from the ChEMBL database that satisfied specific
requirements and used SMILES of these molecules to train the
RNN model to learn the characteristics of active molecules and
generate new molecules. The generated molecules were then
scored using a reinforcement learning algorithm to fine-tune the
RNN parameters, so that new compounds with activity against a
specific target could be generated. This method was applied to sev-
eral different molecule generation tasks in the study, including the
generation of sulfur-free molecules, backbone expansion from a
single molecule to generate celecoxib-like structures, and the gen-
eration of new inhibitor molecules for type 2 dopamine receptors.

Another area in which RNN-based generative models are
applied in drug design is the optimization problem of lead com-
pounds [291]. A new molecular generation algorithm called
scaffold-constrained molecular generation (SAMOA) was proposed
to solve the scaffold constraint problem within the lead compound
optimization problem. The study used an RNN generation model to
generate SMILES sequences of new molecules, and then used a
refined sampling procedure to implement the scaffold constraint
and generate molecules. A strategy-based reinforcement learning
algorithm was also applied to explore the relevant chemical space
and generate new molecules matching the expected ones. The
DeepFMPO framework proposed by Ståhl et al. [292] started from
an initial set of lead compounds and modified the structure of
these lead molecules by replacing some of their fragments. This
study confirmed the wide use of RNN-based generative models in
the field of molecular generation.

As deep generative models, VAEs are often used in various gen-
erative tasks, including the de novo design of small molecules and
the generation of peptide sequences. A group constructed a molec-
ular generation model based on a conditional VAE for de novo
molecular design with a three-layer RNN for both the encoder
and decoder. The results demonstrated that this model can design
drug-like molecules with five target properties and can also tune
individual molecular properties without affecting other properties
[124].

In 2019, Insilico Medicine published a study [28] on the rapid de
novo design of potent discoidin domain receptor 1 (DDR1) kinase
inhibitors using a VAE. Several new compounds with inhibitory
activity against DDR1 kinase were identified, chemically synthe-
sized, and experimentally validated in just 21 days. This study
demonstrated the potential of the method to perform fast and effi-
cient molecular design. The generative tensorial reinforcement
learning (GENTRL) model consists of two main components: a
VAE and a strategic gradient reinforcement learning algorithm.
The VAE is used to generate new molecules, while the reinforce-
ment learning fine-tunes the model parameters to make the new
molecules generated by the VAE more consistent with the
expected properties. The encoder of the VAE is used to encode
known molecules into hidden vectors. The decoder samples and
decodes the hidden vector into a new molecule based on the hid-
den vector space. A reinforcement learning algorithm is used to
guide the VAE-directed optimization during the training process.
After model construction, Insilico Medicine used GENTRL to gener-
ate four new active compounds, two of which were validated in
cellular experiments. Moreover, one of the lead compounds was
tested in mice and was shown to have good pharmacokinetic prop-
erties. This study provides strong evidence that reinforcement
learning combined with deep generative models can accelerate
the process of and provide new insights into de novo drug design.

GANs are capable of generating new samples with a similar dis-
tribution to real data and have advantages in the fields of image
recognition and natural language processing (NLP). In the pharma-
ceutical field, GANs are often integrated with techniques such as
feature learning and reinforcement learning, and have played an
17
important part in protein function prediction, small molecule gen-
eration, and more. Various molecular generation models have been
constructed based on GANs, such as Mol-CycleGAN [293],
objective-reinforced generative adversarial network for inverse-
design chemistry (ORGANIC) [294], and reinforced adversarial neu-
ral computer (RANC) [295]. ORGANIC is a well-known molecular
generation model that has become a comparative baseline model
for other models. Its combination of a GAN model and a reinforce-
ment learning algorithm can generate novel and effective mole-
cules. The molecule generation performance of the RANC model
has surpassed ORGANIC in many aspects, including the ability to
generate new molecular structures and drug-like properties of
molecules, which allows the design of active newmolecules for dif-
ferent biological targets and covers a wide chemical space.

In addition, Harel and Radinsky [296] proposed a molecular
template-driven neural network that combines a VAE, CNN, and
RNN to generate chemical structures with similar properties to
the template molecules while being structurally diverse. The
researchers found that the proportion of effective molecules
among the generated molecules was significantly enhanced by
adjusting the sampling process of the VAE.

Molecules designed by computer must not only have good
physicochemical properties but also be highly active and selective
for the target under study; therefore, the question of how to set up
an effective reward function is an important challenge in reinforce-
ment learning. A combination of the framework of deep generative
models with reinforcement learning algorithms drives the devel-
opment of the drug design field and will have significant applica-
tions in the future in the de novo design of small-molecule and
peptide drugs.

4.3. Application of advanced techniques in antibody design

Due to the wide application of ML and DL in chemistry, biology,
and medicine, as well as their use in basic research in various
fields, researchers now have a profound comprehension of biomo-
lecules and systems biology. In the future, the direction of drug
R&D will be biased toward the research of small molecules; more-
over, bio-innovative drugs will gain ground. Similarly, there are
already many DL approaches for the study of biological macro-
molecules drugs, both now and in the near future, such as oligonu-
cleotides, monoclonal antibodies, or peptides with specific
pharmacological properties. Here, we will elaborate on the design
of antibodies.

Since antibodies are inherently biological macromolecules, the
characterization of antibodies is similar to the encoding of proteins
and RNAs. There are six general strategies for encoding antibodies:
‘‘one-hot” encoding, substitution matrix, amino acid properties,
learned amino acid properties, encoding of supplementary attri-
butes, and encoding of structural features [297]. The application
of AI in antibodies is different from its application in ordinary bio-
molecules because antibodies are biological agents that can be used
for disease treatment. Therefore, the design of antibodies has more
in common with the design of drugs, since safety and efficacy of
drugs must be taken into account. At present, AI-based methods
are often used for antibody structure prediction, antigen–antibody
binding prediction, antibody generation/design, deimmunization
studies, and antibody sequence-based studies [297].

The AlphaFold2 DL system has been able to solve most of the
protein structure prediction problems; however, for antibody
structure prediction, as a special subfield of protein structure pre-
diction, it is necessary to capture the subtle differences in the struc-
ture with extreme precision. Many methods have been developed
to solve this problem, such as DeepAb [298] and DeepH3 [299].
To perform VS for the binding of antibodies to target antigens, a
structure-based framework called DL for antibodies (DLAB) was



Fig. 3. A brief workflow of new target and drug discovery based on AI. First, useful data required for modeling and evaluating the model is collected and initially processed; it
is then divided into a training set, validation set, and test set. Next, data in different formats is encoded as vectors or matrices for input to the model. The prepared data can be
represented in various ways (e.g., small molecules can be represented by molecular descriptors, molecular fingerprints, and graph-based representations, while proteins can
be represented by sequence correlation features (PSSM, AAC, CTD, etc.), AE, pre-trained protein language models, etc.). Depending on the problem to be studied, an
appropriate algorithm must be selected to perform the prediction task. Criteria are adopted to evaluate the performance of the proposed model; according to these criteria, it
is necessary to continuously adjust the parameters of the model and apply tricks to improve the performance of the model. Finally, a reasonable discussion and analysis of the
prediction results are required.
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proposed to improve antibody–antigen dockings [300]. As DLAB is a
structure-based approach, it can optimize the pose ranking of anti-
body docking experiments and select antibody–antigen pairs for
which accurate poses are generated and properly ranked. This
approach has also demonstrated that the SBVS of antibodies can
strongly complement traditional experimental screening methods.

The search for new antibody sequences is a major research hot-
spot in antibody discovery. Early computational approaches
attempted to use enumeration methods for new sequence discov-
ery and subsequent prediction work. Although these methods
reflect the diversity of designed antibodies, they do not explain
these discoveries in a biological sense and lack conviction.
Recently, the potential features of antibodies—including the fre-
quency of amino acid positions and the physicochemical properties
of the antibody—have been learned by GANs or VAEs [301]. These
methods provide a new way of thinking and a new approach for
antibody generation and design, which can be relied upon in the
future to design therapeutic antibodies via DL.

The directions for the development of antibody drugs discussed
above stem from a starting point that is similar to that of the
design of small molecule drugs. Antibodies can be designed differ-
ently than traditional drugs due to their large molecular weight
and attributes such as biomolecular function. In designing an anti-
body drug, it is necessary to consider the immune response the
drug elicits when it enters the body. Thus, it is critical to use ML
algorithms for analysis of next-generation sequencing (NGS) data
to carry out deimmunization studies of antibodies [302]. In addi-
tion, antibodies similar to human antibodies must be designed
without loss of activity during the humanization process. [303].
Novel humanization (e.g., Sapiens) and humanness evaluation
methods (e.g., OASis) are two data-driven approaches to address
these issues. Sapiens uses a masked language modeling (MLM)
model to learn the humanization method of antibodies, while
OASis is used to evaluate the humanness of an antibody sequence.
BioPhi successfully combined these two algorithms to capture the
intrinsic features of antibody complexes and provide similar muta-
tion selection to that used experimentally for humanized muta-
tions. This achievement indicates that DL will be indispensable in
the deimmunization studies of antibodies. Another major feature
of DL in antibody research is its ability to use NLP to learn and
encode the antibody space to reveal new insights into the biologi-
cal function of antibodies. For example, antibody-specific bidirec-
tional encoder representation from transformers (AntiBERTa)
[304] and AbLang [305] can understand the back-and-forth associ-
ation of antibody sequences and, based on this understanding, can
infer specific masked regions.

When conducting antibody drug research, DL can be used to
connect the microscopic properties of molecules with the macro-
scopic results of experiments and provide additional insights into
the biology associated with immunoglobulins. Therefore, DL
approaches are increasingly being applied in the research and
design of therapeutic antibodies to enable the efficient develop-
ment of new antibodies and provide a new strategy for the future
pipeline of antibody design. Overall, AI has shown promising power
in drug target identification and new drug discovery. Fig. 3 depicts a
generic workflow using AI for target and drug identification.
5. Application of AI to preclinical drug research

Preclinical studies focus on non-clinical pharmacology, pharma-
cokinetics, and toxicology studies. The physicochemical properties
of a drug and its ADMET properties are essential for pharmacoki-
netic and toxicology studies [33,306]. Unsuitable properties of
drug candidates will lead to the failure of the expensive drug
development phase [307]. The failure rate and loss of clinical stud-
19
ies can be decreased by early evaluation of the relevant properties
of drug candidates.

5.1. Prediction of physicochemical properties

The ADMET properties of a drug candidate can be directly influ-
enced by its physicochemical properties and will have a critical
impact on the success of a drug entering the market [308,309].
For example, the ionization constant (pKa), which is the fundamen-
tal parameter underlying properties such as logD and solubility,
affects the aqueous solubility of a molecule, which can in turn
affect the drug formulation method. Moreover, the ADMET of com-
pounds under different pH conditions are profoundly influenced by
the charge state of the compounds [310]. Although lead com-
pounds with promising drug-like properties may not always be
successfully marketed, promising properties are still an inspiration
for drug design. However, physicochemical properties are not
easily measured directly, and accurate prediction of the properties
of small molecule drug candidates facilitates further structural
optimization of small molecules until they are designed to meet
the desired properties.

Some approaches for predicting the physicochemical properties
of molecules focus on predicting a certain physicochemical prop-
erty, such as lipophilicity [311] or aqueous solubility [312], while
others predict several physicochemical properties together [99].
Although molecules can be represented in a variety of ways, pre-
dictions for a single property may use certain specific features,
such as the number of hydrogen bonds [313] and the connectivity
indices of various molecules [314] correlated with solubility. To
date, accurate prediction of the aqueous solubility of small mole-
cules remains a challenge [315], but DL methods have been found
to be more effective than previous ML methods in this endeavor
[316]. In the Second Challenge to Predict Aqueous Solubility, one
of the models [317] combined an NLP approach to obtain embed-
ding vectors based on small molecule SMILES, in order to feed
these vectors into the transformer model for predicting molecular
aqueous solubility. Francoeur and Koes [317] found that overly
complex models did not perform as well as small DL models in this
task, which may be due to overfitting of the model as a result of the
complex model and the smaller amount of data.

To address the issue of simultaneously predicting several
physicochemical properties of small molecules, researchers have
focused on molecular feature learning and characterization; exam-
ples include molecular feature learning and representation based
on a GNN architecture [98], combining traditional molecular repre-
sentation approaches with features learned by message-passing
neural networks (MPNNs) [99], and a form of graphical representa-
tion of molecular design based on extended-connectivity circular
fingerprints (ECFPs) [318]. Shen et al. [319] proposed a new form
of molecular representation that involved first calculating the dis-
tance matrices of molecular fingerprints and the molecular
descriptors of eight million molecules, respectively, and then
reducing the distance matrices to two dimensions via uniform
manifold approximation and projection (UMAP) to form a scatter
plot. Next, the dimensionality-reduced scatterplots were assigned
to 2D grid maps using the Jonker–Volgenant (J–V) algorithm.
Finally, the data was divided into different channels based on dif-
ferent molecular fingerprints or descriptors. These molecular rep-
resentation forms were fed into a CNN for the prediction of
molecular properties, achieving a SOTA performance on multiple
datasets.

5.2. Prediction of ADMET-related properties

The failure of most clinical trials is often blamed on inadequate
ADMET studies of the drug, rather than on a lack of certain efficacy.
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The ‘‘absorption, distribution, metabolism, excretion (ADME)” por-
tion of ADMET often determines whether a drug molecule will
reach the target protein in vivo, what protein will transport or
metabolize this drug [47,320], how long it will stay in the blood,
and when it will be inactivated, while the ‘‘T” portion (i.e., toxicity
assessment) is a major concern in phase I clinical trials. If the risk
of clinical trial failure can be reduced via thorough preliminary
ADMET studies, significant money and time costs will be avoided
[321,322]. With hundreds of compounds waiting to be evaluated
for their ADMET properties in the early drug discovery phase, it
would be time-consuming and expensive to validate each one
through extensive animal studies. Therefore, the use of AI to
rapidly and accurately predict the ADMET properties of drugs has
been widely adopted [323].

QSAR and quantitative structure–property relationship (QSPR)
models play pivotal roles in the ADMET prediction of small mole-
cules. Many ML methods, in combination with QSAR or QSPR mod-
els, have performed well in ADMET prediction [324]. Most of these
ML methods focus on several ADMET properties [325], such as
human ether-a-go-go related gene (hERG)-mediated cardiotoxicity
[326], blood–brain barrier penetration [327], permeability glyco-
protein (P-gp) [328], cytochrome P450 (CYP) enzyme family
[329], acute oral toxicity [330], carcinogenicity [331], mutagenicity
[332], respiratory toxicity [333], or irritation/corrosion [333]. Zhu
et al. [334] used a QSPR model to predict the blood–brain partition
coefficient (logBB). The researchers used four ML methods—
namely, SVM, multivariate linear regression, multivariate adaptive
regression splines, and RF—to predict this property for 287 com-
pounds and found that the polar surface area and octanol–water
partition coefficient were strongly relevant to the blood–brain par-
titioning. A CYP enzymes-inhibition prediction model based on the
C5.0 algorithm (a decision tree model algorithm) was constructed
using several molecular fingerprints or molecular descriptors as
inputs to predict five CYP enzymes related to drug oxidation or
hydrolysis [335].

Most of the ADMET datasets are imbalanced and have high
dimensionality problems, and the integrated learning approach
has been applied to deal with these two types of problems. The
processing of imbalanced data, the combination of multiple mod-
els, and optimization steps have been integrated to form an adap-
tive ensemble classification framework (AECF) [336]. Yang et al.
[336] used AECF to predict a variety of ADMEproperties using mul-
tiple ML methods; their results all had satisfactory AUROC values
ranging from 0.78–0.91. This ensemble approach was demon-
strated to be a very useful multi-classification system through val-
idation with the DrugBank database.

DL approaches are also widely applied to the prediction of
ADMET properties. For example, a classical feed-forward back-
propagation neural network (BPNN) architecture and a repeated
double cross-validation (rdCV) approach were combined to esti-
mate the blood–brain barrier penetration [337]. DL allows a model
to be trained using a larger andmore representative dataset, ensur-
ing that a wider variety of compounds are covered than is possible
with ML. Validated with external datasets, this method predicts
values that are in good agreement with many experimentally
derived logBB values. In another work, it similarly demonstrated
that neural networks generally outperform ML methods for
ADMET properties prediction. Montanari et al. [121] predicted
seven different ADMET properties corresponding to each of the fol-
lowing endpoints: logD, solubility, melting point, membrane affin-
ity, and human serum albumin binding. Moreover, Wang et al.
[338] developed a DL model to predict drug metabolites with an
accuracy superior to the popular rule-based method systematic
generation of potential metabolites (SyGMa). In a comparison of
a multi-task graph convolutional model, a fully connected neural
network, and an RF model, it was shown that the multi-task graph
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convolutional model performed the best. However, for more com-
plex tasks, such as the prediction of Caco2 permeation or in vitro
metabolic stability, multi-task graph convolutional networks were
unable to achieve good results, probably due to the simplicity of
the model constructed in this study, which hindered the model
from learning the deeper features. In addition, the multitasking
model in this study was considered a trial-and-error exercise,
and there were no specific experiences and rules about which tasks
should be combined together.

Other recent work has similarly demonstrated the potential of
multitasking models for ADMET properties prediction. Various
user-friendly ADMET software and web servers have been devel-
oped for predicting the ADMET properties of molecules
[125,339–342]; among these, ADMETlab 2.0 [125] is widely
praised. ADMETlab 2.0 is based on a multi-task graph attention
(MGA) framework and can predict multiple ADMET properties of
drugs (it contains a total of 88 relevant parameters with 23 ADME
properties, 27 toxicity endpoints, and eight toxicophore rules).
Most of the data used for training was derived from bioactivity
data in the open-access database, relevant literature, and toxicity
prediction software (toxicity estimation software tools (TEST)).
Based on these training sets and the novel model architecture,
some of the properties predicted by ADMETlab 2.0 are unique in
comparison with the results of similar tools. It is a convenient tool
for non-expert users while being able to provide comprehensive
and accurate ADMET properties for target molecules for medicinal
chemists.
6. AI-assisted clinical trial design, post-market surveillance, and
prognosis prediction

A drug candidate can be sent to clinical studies only after it has
undergone the process from target identification to drug design,
synthesis, and optimization, and then to preclinical studies of
ADMET-related properties, which initially confirm the safety and
efficacy of this compound. The clinical trial phase consumes most
of the time and investment during drug R&D. Although AI cannot
be used to directly predict the clinical trial results of drug candi-
dates in clinical studies, it can be used to assist in the design of
clinical trials to enhance the rationality and safety and ultimately
provide a more realistic response to the clinical trial results of a
drug. After phase III clinical trials, drugs also require long-term
regulatory work to further identify undocumented toxic effects in
previous studies in order to prevent malignant events.
6.1. AI-assisted clinical trial design

The high failure rate of clinical trials makes this the most diffi-
cult step in the new drug development pipeline, with about 90% of
drug candidates being eliminated in clinical trials [343], where
each failed clinical trial costs approximately 0.8 to 1.4 billion
USD. To overcome these shortcomings, a number of AI-based
approaches are now available to assist in crucial steps in clinical
trial design, such as helping to improve patient recruitment and
enhance patient monitoring [344]. To address the issue of patient
selection, AI can be used to explore the association of patient
biomarkers with external indications to predict the likely treat-
ment response of patients, which can help in screening for patients
with high clinical success [345]. In addition, e-phenotyping can be
used to reduce patient population heterogeneity [346] and to aid
patient selection through prognostic or predictive enrichment
[347,348].

Patient monitoring in clinical trials is also a critical process. By
incorporating wearable technology, AI can be used to help auto-
mate and personalize real-time patient monitoring, thereby reduc-
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ing patient workload and improving medication adherence issues.
Accurate medication adherence data can better reflect the results
of clinical trials, and AiCure [349]—a new AI platform used to mea-
sure medication adherence—has shown a 25% improvement in
adherence compared with traditional therapies in a phase II trial
for schizophrenia. In addition, AI has been used to optimize dosing
to reduce adverse effects, improve the safety of trial protocols, and
reduce patient defaults due to safety concerns [350].
6.2. AI-assisted post-market surveillance and prognosis prediction

After a drug is approved and successfully enters the market
after the clinical phase, it undergoes a long-term investigation to
further monitor and evaluate the drug safety. Electronic health
record (EHR) mining is an important data source for AI applications
in post-market surveillance, in which the use of structured data
can simplify the process of data pre-processing. Existing methods
used in EHR include the self-control case series (SCCS) model
[351], cohort and case-control methods [352], and temporal
pattern-discovery algorithms [353].

Convolutional SCCS (ConvSCCS) is a scalable model for predict-
ing longitudinal features using SCCS. Morel et al. [354] used step
functions and exposures to avoid the problem of classical SCCS
models that require a precisely defined risk window. The results
showed a significant improvement in the computational speed
and accuracy of the method and enabled its application to adverse
drug reactions (ADRs) detection in a cohort of diabetic patients.
Aside from the application of structured data, unstructured data
from biomedical and clinical corpora can be used for NLP methods
for DDI detection and classification [355] and the prediction of
drug ADR [356]. Systems pharmacology, which is based on systems
biology, studies the effect of drugs on the system as a whole; it is a
rich source of data and is a common approach for AI in ADRmining.
Lorberbaum et al. [357] proposed a network-based algorithm
involving the modular assembly of drug safety subnets (MADSS).
They combined systems pharmacology models with pharmacovig-
ilance (PV) statistics to validate the algorithm, and the results
showed a significant improvement in the prediction of adverse
effects for four drugs.

Disease prognosis is the prediction of the course and outcome of
the future development of a disease. In the past, clinicians usually
relied on professional experience and traditional statistical analy-
sis for clinical prognosis prediction, making it difficult to provide
accurate results. Now, through the introduction of AI technology,
multi-patient and multi-factor data can be analyzed to improve
the accuracy of prediction results. In cancer prognosis, patient sur-
vival and disease recurrence are usually predicted. Enshaei et al.
[358] used an AI model to compare the prediction accuracy of an
ANN with traditional statistical methods (e.g., LR); the results
showed that AI has higher accuracy in predicting the prognosis
of OvCa patients. Nowadays, there are many ML and DL methods
for the prognosis of various cancers, such as BrCa [359–363], lung
cancer [364,365], gastric cancer [366–368], bladder cancer
[369,370], and prostate cancer [371,372], illustrating the potential
of AI technology in cancer prognosis.
7. Automation of drug synthesis with AI

The development of a new drug usually involves four stages:
design, make, test, and analyze (DMTA). The application of AI is
particularly important in the stage of drug synthesis, as it can
effectively shorten the cycle of new drug R&D by speeding up the
discovery of a new synthetic route for target molecules and reduc-
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ing the rate of synthetic failure when the structure of the target
molecule is known.

7.1. Automated exploration of reaction spaces with AI

In the 1960s, Corey proposed computer-aided synthetic design
(CASP) [373] as the earliest AI drug synthesis design. However,
due to the lack of computing power at that time, this concept could
not be further developed. With the development of ML methods in
recent years, CASP has come back into the limelight. CASP mainly
consists of three aspects: retrosynthetic planning, reaction condi-
tion recommendation, and forward reaction prediction [374]. Ret-
rosynthetic planning, which involves the stepwise splitting of the
target molecule into commercially available chemical materials,
is an important approach in the design of drug synthesis reactions.
MC tree search (MCTS) is a general search technique for sequential
decision-making with large branching factors. Segler et al. [375]
combined three different neural networks trained with all pub-
lished reactions with MCTS to predict the best retrosynthetic
routes. In comparison with conventional algorithms, the model is
30 times faster and doubles the number of molecules solved.

After designing the synthetic route, the rationality of each step
in the synthesis process must also be considered. Researchers have
also used AI for the prediction of reaction conditions in order to
reduce the time spent on screening reaction conditions. Gao et al.
[376] proposed a neural network model to predict appropriate
reaction conditions and reaction temperature. They trained the
model using ten million examples on Reaxys and tested it on one
million reactions outside the training set. Their results showed
the model’s ability to predict reaction conditions that matched
those in the record in 69.6% of those cases. The computational
framework DeepReac+ [377] also adopted an active learning strat-
egy to explore the response space more efficiently in order to
reduce the time for model learning and prediction.

Forward reaction prediction verifies the feasibility of the
designed route by predicting the products. The starting material,
which is predicted by retrosynthetic planning, can be replaced by
many other compounds, and forward reaction prediction can be
used to rank these compounds in order to select the best solution.
For example, Coley et al. [378] proposed a neural network model
for predicting reaction outcomes. They trained the model with 15
000 reaction examples from the USPTO literature and ranked all
the generated candidate compounds to select the product that
matched the record. The model used an edit-based representation
of the candidate reactions and achieved an accuracy of 71.8%.

In addition to designing new reaction routes based on target
molecules, unknown chemical spaces can be explored by synthetic
robots based on AI. Recently, a synthetic robot proposed by Granda
et al. [26] not only analyzed chemical reactions faster than manual
analysis but was also able to predict the reactivity of various reac-
tion combinations on its own and explore the unknown reaction
space. The robot model’s analysis of samples by nuclear magnetic
resonance and infrared spectroscopy is coupled with ML for
decision-making, allowing reactions to be evaluated in real time.
The outcomes showed that the model can predict the reactivity
of about 1000 reaction combinations with over 80% accuracy. Four
entirely new reactions were discovered by chemists using real-
time data from this robot for prediction. In addition, Caramelli
et al. [379] proposed an inexpensive synthetic robot with the abil-
ity to network and coordinate multiple reactions in addition to per-
forming chemical reactions autonomously. The robot can also
explore new chemical spaces to search for new reaction results
and can evaluate the reproducibility of reactions. In conclusion,
the invention of intelligent synthesis robots is an important step
toward an automated synthesis approach with AI.
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7.2. AI usage in automatic drug synthesis

AI-based automated chemical synthesis technologies are free-
ing researchers from a great deal of manual works by automating
experimental processes. Many reactions can already be performed
on automated synthetic systems, such as the synthesis of peptides
[380], oligonucleotides [381], natural products [382], and various
drug molecules [383], as reported earlier. To establish a common
standard for automated chemical synthesis, Steiner et al. [35] pro-
posed the Chemputer system and used it to synthesize three drug
compounds—diphenhydramine hydrochloride, flufenamide, and
sildenafil—in yields comparable to those from manual synthesis.
The program they developed, called Chempiler, allows low-level
instructions to be compiled in order to synthesize compounds
through a modular robotic platform. Moreover, the synthesis pro-
cess is captured to generate digital code that is shared between
platforms, thereby driving the spread of automated chemical syn-
thesis in the laboratory.

In parallel to increasing the automation of reactions, improving
the reaction throughput is a goal of automated synthesis, causing
high-throughput experiments (HTEs) to receive much attention
in recent years. HTEs with 24- or 96-well reactors are capable of
performing dozens of reactions in a single experiment [384,385].
In contrast, ultra-high-throughput reactions on the nanoscale can
even perform thousands of reactions at a time [386,387]. Of the
limited types of reactions that high throughput can currently
achieve, heated reactions with homogeneous reactions in low-
volatile solvents at room temperature are relatively easy to achieve
[388]. Moreover, among the reactions commonly used in THE,
metal-catalyzed cross-coupling reactions in which many reaction
variables are observed during development are a hot research
topic. Ahneman et al. [389] proposed an RF algorithm trained by
a high-throughput dataset to predict the tolerance of palladium
catalysts to isoxazole during C–N bond formation. The perfor-
mance of the algorithm was shown to be significantly improved
compared with conventional linear regression analysis, and the
model was also useful for analyzing the inhibition mechanism of
metal catalysts.

As an increasing number of algorithms related to reaction pre-
diction are developed, scientists can identify optimal reaction con-
ditions faster and more accurately, obtain optimal reaction routes,
and further explore the reaction space. The integration of these
novel and effective algorithms can facilitate the development of
automated chemical synthesis platforms, freeing researchers from
repetitive tasks [377].
8. Application of AI in other areas related to drug discovery

AI technology has been widely used in the whole process of
drug R&D, including target identification, drug design, synthesis,
and property evaluation. It has undoubtedly shortened the drug
R&D cycle and saved a great deal of experimental cost compared
with the traditional experimental process. Scientists are continu-
ing to explore the application of AI technology, as they attempt
to use AI in more fields to promote the development of pharmaceu-
tical sciences.
8.1. Facilitating knowledge discovery through literature mining

Every year, numerous papers are published in the fields of med-
icine, pharmacy, biology, chemistry, materials, and so forth. There
is a great deal of relevant expertise in these papers. Mining the lit-
erature and linking information with relevant knowledge quickly
and purposefully is very important. NLP algorithms can extract
the required knowledge from unstructured information in a large
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number of papers, patents, and published documents. Further
analysis of the extracted knowledge can reveal the knowledge
associations hidden in many documents and can thereby reduce
the workload of researchers in analyzing documents one by one
[390]. Long short-term memory (LSTM), gate recurrent units
(GRUs), bidirectional encoder representations from transformers
(BERT), and transformers, which are commonly used in NLP
research, have made their mark in this field [391,392].

MEDLINE is a commonly used corpus in the biomedical field
and is an important part of PubMed. For decades, there has been
extensive work on text mining this corpus for screening key genes,
targets, and drugs and for drug side-effect discovery, drug reposi-
tioning, and other research. Researchers have focused on five main
areas of text mining in biomedicine—namely, biomedical named
entity recognition (NER) and normalization, biomedical text classi-
fication, relation extraction (RE), pathway extraction, and hypoth-
esis generation [393]—which has led to many new discoveries. For
example, hypothesis generation studies on biomedicine have dri-
ven research on drug repositioning [394,395], drug development
[396,397], and pharmacovigilance [398,399].

Hundreds of papers are published every day on COVID-19
research, and text mining can be helpful for finding useful knowl-
edge from the vast literature of this research boom. The COVID-19
Open Research Dataset (CORD-19, https://www.semanticscholar.
org/cord19) is a corpus containing a large amount of information
related to COVID-19, and most text mining models are based on
this corpus for information extraction. The COVID-19 text mining
model uses NLP correlation models to mine the constructed corpus
for the implementation of the following applications: a question–
answer (QA) system (to answer questions asked by users, the
model system extracts relevant answers from the corpus), a sum-
marization system (for long texts, the main points are automati-
cally inferred to provide users with a quick overview),
visualization (the information in the text is visualized to make it
easier for users to understand), and others [400]. These findings
have greatly helped researchers to cope with the challenge of infor-
mation overload and to obtain valuable information in a short per-
iod of time.

Aside from the examples given above, text mining models dri-
ven by DL will have applications in many more scenarios. As time
progresses, advances in NLP technology will make it easier for
models to understand human language. Then the model will be
able to extract knowledge from this unstructured information by
relying on contextual associations to extract the focus of the full
text. In this way, thousands of related documents will be processed
into a knowledge network to provide a rich knowledge base for
drug development. For example, the web service—explorer for tar-
get significance and novelty (e-TSN) [401])—constructed the
world’s largest relation map using drug targets and diseases
extracted by means of NLP-based text mining. The service aims
to visualize target-disease KG and provide approved drugs and
associated bioactivity information to assist in prioritizing candi-
date disease-related proteins. Furthermore, Wang et al. [402]
developed a multimodal chemical information reconstruction sys-
tem (CIRS) that automatically processes, extracts, and aligns
heterogeneous structure information from text descriptions and
structural images of chemical documents. CIRS is a powerful tool
for constructing a structured molecular database based on chemi-
cal patents to enrich the near-drug space.

8.2. Advancing the development of precision medicine

Precision medicine usually involves the adoption of different
treatment plans for the diseases or symptoms of different people.
This approach is the opposite of simplifying (or over-simplifying)
the classification method of diseases such that all individuals with

https://www.semanticscholar.org/cord19
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certain symptoms use the same treatment plan [403]. In society
today, the causes of patients’ illness are affected by more factors
than before, so more accurate diagnosis and treatment plans are
required for each patient. The specific concept of precision medi-
cine has been defined as a process [404]. First, information on
the patient is needed at different levels, such as the patient’s med-
ical history, lifestyle, physical examination results, basic laboratory
results, imaging, functional diagnostics, immunology, and omics.
This data is then preprocessed to build a relevant model that
reflects the patient’s situation. Among the data collected, omics
data is recognized as the largest and most complex data [404]
and has been widely used in the discovery of biomarkers, the iden-
tification of disease subgroups, and prognosis prediction [405–
408]. In the current era of big data, AI has rapidly advanced the
development of precision medicine—especially precision medicine
based on omics.

The extensive use of second-generation sequencing technolo-
gies has enabled complex diseases to be finely characterized at
the molecular scale, especially in the field of tumor research. The
global tumor genome sequencing program, represented by the
TCGA project, has laid an essential foundation for the molecular
typing and precision treatment of tumors. Based on the mRNA
expression data of a TCGA dataset through the analysis of
differentially expressed genes, Zhao et al. [409] selected the first
40 differentially expressed genes from each type of tumor, merged
them to form a feature subset containing 791 different genes, and
established a DL model named cancer of unknown primary (CUP)-
AI-Dx for predicting the tissue origin and tumor subtype of tumor
samples. Yeh et al. [410] studied the transcriptome of patients with
severe asthma using the highly variable expressed gene profile of
patients’ peripheral blood mononuclear cells (PBMCs); their k-
means clustering analysis of 2048 genes revealed that the genetic
characteristics of the transcriptome clusters in patients with
asthma determine specific asthma subtypes. In comparison with
transcriptomics, the in-depth study of proteomics can help
uncover biomarkers and drug targets for different diseases. Rolland
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et al. [411] used a hierarchical clustering approach to analyze pro-
teomic data from lymphoma patients to reveal specific N-
glycoprotein biomarkers in different lymphoma subtypes, thereby
providing potential therapeutic targets for precision medicine in
lymphoma. Niu et al. [412] identified a combination of protein
biomarkers for predicting liver fibrosis, hepatitis, and hepatic
steatosis with satisfactory performance using mass spectrometry-
based proteomic assays and ML models.

Of course, as mentioned in Section 3, multi-omics technologies
are more promising for application than single omics. Many pub-
lished works explore the molecular mechanisms of disease and
the discovery of reliable biomarkers to serve in the diagnosis and
treatment of diseases through multi-omics technology. The grow-
ing scale of omics data and the increasing development of AI tech-
nology will greatly advance the development of precision
medicine.

8.3. Utilization of AI in drug formulation and release

With advances in new drug discovery methods, advanced drug
delivery systems have expanded rapidly, promoting clinical
translation and associated with safety, efficiency, and patient com-
pliance [413,414]. A drug delivery system can be visualized as a
‘‘cart” (i.e., a carrier) that transports ‘‘goods” (i.e., therapeutics) to
the appropriate destination. With the advancement of materials,
engineering, and biology technologies, the term ‘‘carrier” has
expanded to include nanocarriers, cells, eluting devices, and
micro–nano robots [415,416]. Compared with conventional drug
carriers, nanocarriers can improve drug solubility and mitigate
the adverse effects of conventional solubilizers. In addition to pro-
tecting the drug from deterioration, nanocarriers can endow the
drug with a targeting function [417].

Nevertheless, preparing a suitable nanocarrier is extraordinarily
complicated, as it depends on the drugs, excipients, and reaction
conditions (including temperature, time, and stirring speed).
Experiments alone cannot screen all of these parameters. In addi-



Fig. 5. Bioresponsive design of physiological signal-triggered drug formulations.
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tion to determining a drug’s molecular target and biological activ-
ity [418,419], AI can accurately predict its optimal nano-forming
conditions (Fig. 4) [420–422].

Helle et al. [422] predicted particle self-assembly via computa-
tional methods. Using quantitative structure-nanoparticle assem-
bly prediction (QSNAP) calculations, they discovered two
molecular descriptors for predicting which drugs will form
nanoparticles with indocyanine. This method also revealed crucial
molecular structural characteristics that permit the self-assembly
and the formation of nanoparticles. With the aid of indocyanine
sulfate, these drugs were assembled into nanoparticles with a load-
ing efficiency of 90%. The researchers also evaluated the targeted
delivery properties of nanoparticles in human colon and primary
liver cancer models expressing caveolin 1 (CAV1). Sorafenib- and
trametinib-containing nanoparticles were able to selectively target
tumors without harming healthy tissue.

In addition, Traverso et al. [9] utilized MD simulations, ML, and
a HTE co-aggregation platform to determine which drug-excipient
combinations could self-assemble into stable solid drug nanoparti-
cles without additional stabilization. The researchers isolated 100
self-assembled drug nanoparticles from 2.1 million pairs, each
containing one of 788 drug candidates and one of 2686 approved
excipients. Nanoparticles of sorafenib-glycyrrhizin and
terbinafine-taurocholic acid were subjected to proof-of-concept
studies in vitro and in vivo. Both validations suggest that this plat-
form can produce nanoparticles with a high drug loading and
enhanced bioavailability, representing a significant step toward
personalized drug delivery.

The release pattern of a drug is also crucial for disease treat-
ment. Developing drugs that are released in response to differences
in the physiological signals of various organs, tissues, and orga-
nelles can enhance the drug’s efficacy, prevent toxic and side
effects caused by non-specific off-targets, and achieve safe and pre-
cise treatment. Multiple endogenous signals—including pH, active
redox species, enzymes, glucose, various ions, adenosine triphos-
phate (ATP), and oxygen—have been incorporated into the design
of responsive drug nanocarriers (Fig. 5) [423]. In addition to the
material’s properties, the target tissue environment influences
drug release. AI can facilitate the evaluation of a drug-release mode
and can provide feedback for the formulation of drug carriers
through ML [424–427].
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8.4. Promoting the economic development of the pharmaceutical
market

AI has shown itself to be powerful and promising in the phar-
maceutical industries, leading to a surge of interest in AI-based
drug development from both the scientific and industrial commu-
nities. In the past five years, numerous AI-based pharmaceutical
companies have been established and have signed collaboration
agreements with many large pharmaceutical companies [428].
These shifts have driven massive financing in the drug market,
injecting new dynamics into the pharmaceutical economy.

Some of these AI-based pharmaceutical companies focus on a
specific stage of the drug discovery pipeline, such as target discov-
ery and the screening of compounds. Some are involved in multiple
stages of the pipeline, while others have built end-to-end plat-
forms for new drug discovery [428].

BenevolentAI is a leading AI-based pharmaceutical company
that focuses on drug target discovery. Founded in 2013, the com-
pany has seen rapid growth in recent years and has emerged as a
leader in AI-based drug discovery, attracting significant investor
attention. The company was listed in Amsterdam on 6 December
2021 and has a pre-investment valuation of €1.1 billion and a
post-investment valuation of up to €1.5 billion. BenevolentAI iden-
tifies drug targets for complex diseases through its leading KG
technology, which integrates large amounts of publicly available
biopharmaceutical data with internal company data. For example,
the KG identified baricitinib as a possible treatment for COVID-19
[429]. Through this technology, BenevolentAI has entered into a
long-term collaboration with AstraZeneca for target identification
in chronic kidney disease, idiopathic pulmonary fibrosis, heart fail-
ure, and systemic lupus erythematosus. On 17 May 2022, AstraZe-
neca made a milestone payment to BenevolentAI for a new target
discovery in idiopathic pulmonary fibrosis, which is the third
new target identified through BenevolentAI’s R&D platform. In
addition, BenevolentAI has entered into a new drug discovery col-
laboration with Johnson & Johnson. The judgment-augmented cog-
nition system (JACS) is a core technology that can focus on
processing large amounts of unstructured data in a short period
of time through its NLP capabilities. The current market opportu-
nity around AI-led drug discovery capabilities is over 30 billion
USD [430].



Table 6
AI-based pharmaceutical companies and their technology platforms.

Platform Pharma Description

Discovery of new targets JACS BenevolentAI A JACS is a judgment–enhancing cognitive system that extracts knowledge from a
scattered mass of information and proposes new hypotheses that can be tested, which
can identify drug targets by different mechanisms

XtalCryoTM XtalPi Combines AI technology with cryo–electron microscopy (EM) structure analysis and
kinetic simulation to identify the binding sites of new target proteins

PandaOmics Insilico Medicine Supports multi-omics target discovery and deep biological analysis engine
Drug discovery and design AtomNet Atomwise Learns 3D features of small molecule binding to target targets for lead discovery and

optimization
Ligand Express Cyclica Screens and evaluates all protein targets bound to small molecule compounds for drug

optimization and repurposing
NpuTM Nuritas Trains on proprietary experimental data and curated structured and unstructured data to

predict novel peptides with on-target efficacy
Chemistry42 Insilico Medicine An automated ML platform to rapidly search for new lead-like structures
CentaurChemistTM Exscientia Fully automated design of small molecule compounds and calculation of priorities to

select the best chemical structure
Conformetrix C4x discovery Measuring dynamic 3D shapes of free drug molecules to accelerate drug design
XcelaHitTM XtalPi Ultra-high-throughput VS based on DL method and AI-integrated DNA-encoded library

(DEL) technology to rapidly design emerging compounds
Clinical trial design inClinico Insilico Medicine A multimodal data-driven prediction platform for the probability of success (PoS) of a

single clinical trial
Link
RecruitmentTM

LinkDoc Based on the largest medical big data database in China, relevant data is extracted from
clinical trial documents to evaluate the appropriate therapy for patients
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In 2019, Insilico Medicine completed a challenge to design new
small molecule inhibitors of DDR1 in 21 days using the GENTRL AI
system [28]. This challenge caused a great sensation at the time,
because it was unimaginable for so many new inhibitors to be dis-
covered in such a short period of time using AI methods. The total
time taken was reduced by 1–2 years compared with the tradi-
tional process. Insilico Medicine’s outstanding performance has
made it a hit with investors. In June 2021, Insilico Medicine raised
225 million USD in a Series C round of funding and, in February
2022, it announced the launch of a phase I clinical trial of a small
molecule inhibitor for the treatment of idiopathic pulmonary fibro-
sis [430].

The company Exscientia stands tall in the area of getting small
molecules that have been discovered using AI into clinical trials. At
a time when AI-based pharmaceutical companies are competing
with each other, Exscientia has become the first company to send
an AI-discovered drug candidate, DSP-1181, to the clinical stage.
This process will take less than 12 months, compared with a histor-
ical average of about 4.5 years for this step. In 2021, Exscientia
raised a total of approximately 800 million USD through Series C
and Series D funding, and an initial public offering (IPO). The com-
pany has also raised significant funding through deal partnerships,
signing deals with Bristol–Myers Squibb and Sanofi for potential
transaction amounts of 1.2 and 5.2 billion USD, respectively. Both
deals are focused on drug discovery in the areas of oncology and
immunology. Over the decade of Exscientia’s development, a com-
plete end-to-end AI drug development pipeline has been progres-
sively established, from target selection to molecular screening
and generation. It is this complete pipeline that continues to drive
Exscientia’s growth. To date, Exscientia has three drugs in the clin-
ical stage, and its market value is highly anticipated upon launch
[430].

Thus far, the development of AI-driven drugs is at a historical
inflection point, and the average funding for pharmaceutical com-
panies with AI as a core technology has been on the rise. Table 6
provides some information on the core technologies of AI-based
pharmaceutical companies. Investors now recognize that drug
R&D based on AI technology is becoming a powerful tool to accel-
erate biopharmaceutical innovation. This technology can provide
new insights to accelerate drug discovery by analyzing the bio-
pharmaceutical data that is accumulated and generated on a daily
basis. As a result, this field has become a strategic area of focus for
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pharmaceutical companies and continues to attract capital market
attention.
9. Challenges

This review has elaborated on most of the applications of AI in
the whole process of drug R&D. However, at the present stage, AI
has not really broken down the traditional pharmaceutical system,
and many research processes are still waiting for ‘‘optimization” by
AI. The use of AI for more in-depth research in the field of pharma-
ceutical preparations is still being gradually explored. For example,
some scholars have used AI technology to assist in studying the
interaction of drug excipients with biomolecules [431]. In addition
to the application areas of AI in the drug development stage that
still require expansion, there are limitations in the application of
AI to drug discovery.
9.1. Data limitations

The development of AI algorithms cannot be separated from the
drive of data. High-quality and accurate data can sometimes enable
simple models to outperform complex models. There are many
excellent publicly accessible databases for data research, including
TTD, CHemBL, Drugbank, CMAP, and PRIDE, but the amount of data
is insufficient to support more complex research. The construction
of AI algorithms relies heavily on high-quality and sufficient data.
The acquisition of high-quality data is a very important issue for
sophisticated and complex biological systems, due to the limita-
tions of current technology, and it is costly to process this data into
standard data with high confidence. The method, time, and place of
operation of each batch of data acquisition are different, making it
more difficult to process the acquired data into uniform and valid
data [432]. For example, the results obtained by current single-cell
RNA-seq (scRNA-seq) vary with their sequencing platforms and
often tend to form doublets. Some data is obtained by in vitro
assays; however, due to the lack of a thorough understanding of
the response in the organism, the in vitro data often differs signif-
icantly from the actual in vivo data. Therefore, the prediction
results of models trained with the data obtained from in vitro
experiments are often unconvincing.
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These limitations reflect the uneven quality of the data that is
currently used. Data imbalance is also a major difficulty in model
training. As previously mentioned, positive datasets are readily
available in the pharmaceutical field, but negative datasets are
often not accurately identified because failed data is often not pub-
licly available. In addition to the problem of data quality and bal-
ance, some types of data are generally unavailable to researchers.
The key core data for new drug R&D usually originates from drug
companies; this part of the data is usually not open source, as
drugs are commodities. Similarly, clinical data involves patient pri-
vacy and is usually not open source. The problem of data quality
and balance requires advances in experimental techniques to
obtain more accurate biomedical data in comparison with current
data, in order to break the data bottleneck. The development of
algorithms such as distributed training can be expected to solve
the problem of privacy data to a certain extent. We also appeal
to major institutions and companies to disclose as much high-
quality data as possible without compromising their own interests.

9.2. Limitations in interpretability

In addition to the limitations of data, DL methods lack inter-
pretability. Compared with traditional ML methods, which often
pass through a rigorous mathematical reasoning validation analy-
sis, DL methods are considered to be a black box. Although DL per-
forms better than ML on most tasks, it is often impossible for
researchers to understand the reason results of ML are so good.
When a DL model yields a new result that contradicts previous
research, the lack of interpretability makes the result unacceptable.
In particular, compared with other fields, the field of drug discov-
ery has a complete set of knowledge logic, such as the mechanisms
of action of molecules, the metabolic mechanisms of molecules,
and the regulatory mechanisms of biological pathways. In order
to ensure the safety and efficacy of drugs, relevant biological pro-
cesses must be thoroughly studied, ranging from the physicochem-
ical properties of a drug to what proteins it binds to in the body,
how it binds, what biological reactions it triggers, and how it is
metabolized. DL can only accept input and give predicted output;
it cannot provide sufficient explanations for how this output is
derived. For example, for protein function annotation, although
DL methods can predict the GOA of a specific protein [70], the com-
putational process is not known and most of the predictions are
not accepted when the accuracy is not reliable. Even in terms of
data representation methods, no uniform standards have been
developed regarding which representation method is more suit-
able for which study and which representation methods lead to a
loss of information.

In the future, the development of DL in the pharmaceutical
sciences and industry should focus on improving interpretability
as much as possible without compromising accuracy, and should
involve the establishment of a set of well-established research
methods that combine white-box models with black-box models.

10. Conclusions

In conclusion, AI is advantageous in all aspects of new drug
R&D. It can be used in the discovery of drug targets, the design
and development of new drugs, preclinical research, clinical trial
design, and post-market surveillance to assist in the design of safe
and effective drugs, while greatly reducing the cycle time and cost
of drug R&D. Some limitations still remain in the AI-based drug
R&D process. However, we believe that the emergence of AI is
gradually assisting us in unraveling the mystery of large and com-
plex biological systems, and that AI has become an indispensable
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technology in the drug R&D process. Furthermore, AI technologies
will change the R&D paradigm of pharmaceutical sciences in the
future, helping us to better overcome complex diseases while pro-
viding personalized medicine to patients. In this process, further
research is needed to inject new energy into this field.
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