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a b s t r a c t

The zinc oxide rotary kiln, as an essential piece of equipment in the zinc smelting industrial process, is
presenting new challenges in process control. China’s strategy of achieving a carbon peak and carbon
neutrality is putting new demands on the industry, including green production and the use of fewer
resources; thus, traditional stability control is no longer suitable for multi-objective control tasks.
Although researchers have revealed the principle of the rotary kiln and set up computational fluid
dynamics (CFD) simulation models to study its dynamics, these models cannot be directly applied to pro-
cess control due to their high computational complexity. To address these issues, this paper proposes a
multi-objective adaptive optimization model predictive control (MAO-MPC) method based on sparse
identification. More specifically, with a large amount of data collected from a CFD model, a sparse regres-
sion problem is first formulated and solved to obtain a reduction model. Then, a two-layered control
framework including real-time optimization (RTO) and model predictive control (MPC) is designed. In
the RTO layer, an optimization problem with the goal of achieving optimal operation performance and
the lowest possible resource consumption is set up. By solving the optimization problem in real time,
a suitable setting value is sent to the MPC layer to ensure that the zinc oxide rotary kiln always functions
in an optimal state. Our experiments show the strength and reliability of the proposed method, which
reduces the usage of coal while maintaining high profits.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Given the urgent necessity of achieving a carbon peak and car-
bon neutrality, the manufacturing and recycling of zinc oxide in
the zinc smelting industry are presenting new challenges, due to
the high energy usage and environmental pollution of these pro-
cesses [1–4]. In general, to produce 1 t of zinc, a well-equipped
plant consumes about 460 kg of coal, with emissions equivalent
to more than 3 t of carbon dioxide (CO2) [5]. It is obvious that
the more coal is burned, the more greenhouse gases will be emit-
ted; thus, an efficient way to achieve carbon neutrality is to cut
coal consumption. As an essential piece of equipment in the zinc
smelting industry, the rotary kiln consumes the greatest propor-
tion of coal as an energy supply to maintain a suitable reaction
atmosphere for recycling zinc oxide, thereby producing green-
house gases with a great impact on the environment [6]. More
importantly, a rotary kiln is a typical distributed parameter system
[7], which makes it difficult to obtain all the sensor information to
evaluate its reaction atmosphere, leading to the emission of pollut-
ing gases such as carbon monoxide (CO). Therefore, it is necessary
to study the characteristics of the zinc oxide rotary kiln in detail to
enable its performance enhancement [8].

Over the decades, in order to figure out the principle of the
rotary kiln, modeling research has accumulated a number of works
that lay a foundation for bringing the rotary kiln from the physical
world into digital space. For example, Boateng and Barr [9] came
up with a thermal model for the rotary kiln that includes heat
transfer within the bed, and Wang et al. [10] proposed a mathe-
matical model of a rotary kiln that not only considers the reaction
mechanisms but also reduces the computation complexity.
Recently, in order to optimize the operation performance of the
rotary kiln, researchers have gradually come to focus on establish-
ing thermal models for the rotary kiln, since the distribution of
temperature has a major impact on the reaction atmosphere
[11,12]. Meanwhile, with the development of computing power,
new computational fluid dynamics (CFD) technology has been
issions
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widely introduced into large-scale system modeling. Witt et al.
[13] built up a CFD simulation of a rotary kiln that includes granu-
lar flow and heat transfer. With the help of a CFD model, Ditaranto
and Bakken [14] managed to improve the rotary kiln operating
conditions to achieve higher combustion efficiency.

Although academia has made great progress in rotary kiln mod-
eling, the works in the literature cannot be directly applied to
industrial sites, since a CFD simulation requires high computing
resources and does not satisfy the demands of real-time
decision-making in practice. Therefore, most CFD simulations are
used to guide workers in determining the optimal design parame-
ters of a rotary kiln before construction. Researchers have
attempted to explore the balance between the accuracy of the sim-
ulation model and real-time computing demand, leading to the
development of reduced-order models (ROMs) [15]. The purpose
of a ROM is to significantly reduce computational complexity while
maintaining the model accuracy compared with the original CFD
simulation. Two widely used approaches to obtain ROMs include
projection-based model reduction [16–18] and subspace model
identification [19–21]. In the projection-based method, a vector
field is decomposed into a set of modes and the system operators
are projected onto a low-dimensional subspace to reduce the com-
putational complexity. In subspace model identification, the origi-
nal model is transferred into a multivariable linear model based on
state-space models. These methods have been demonstrated to be
effective in several nonlinear systems. Nevertheless, they still have
a drawback: Once reduction models are found, the physical mean-
ing of the states and the structure of the original system are com-
pletely lost, which is not suitable for further process monitoring
and control.

To address the abovementioned limitations, innovative sparse
identification methods inspired by compressive sensing and sparse
regression have been put forward [22–24]. In sparse identification,
the original data—without additional transformation—are applied
to formulate a basis function library. By performing nonlinear
sparse regression on a large library of potential candidate func-
tions, the fewest terms that most accurately represent the data
are found. Kaiser et al. [25] applied sparse identification to predict
nonlinear dynamics for model predictive control (MPC) with low
data. Bhadriraju et al. [26] proposed an operable adaptive sparse
identification combined with deep neural networks to deal with
plant-model mismatch, and Li et al. [27] considered the impact
of noise on sparse identification and put forward a robust sparse
identification method. These works provide new methods of
obtaining ROMs and demonstrate the promising prospects of
sparse identification.

Since a ROM can save on computing resources and satisfy the
demands of real-time computing, it is possible to use this method
to improve the performance of a zinc oxide rotary kiln with the
help of advanced control strategies. MPC is an efficient control
method that is widely applied in industrial processes. It includes
three fundamental elements: a predictive model of the controlled
system, a reference trajectory, and an optimal controller obtained
via rolling optimization [28–30]. In research on rotary kilns, most
researchers focus on how to realize temperature stability control
in the reaction zone [31,32]. For example, Stadler et al. [33] and
Machalek and Powell [34] combined a first-principles model with
an MPC framework to optimize operation performance of reaction
zone accordingly. However, with the urgent necessity of achieving
a carbon peak and carbon neutrality, relying on stability control
alone cannot ensure optimal economic benefits. If the given setting
value is not reasonable, even if most of the monitoring indicators
remain stable, the reaction atmosphere will worsen, resulting in
the emission of more greenhouse or polluting gases. To satisfy
the new demand for optimal control, a new two-layered control
framework including real-time optimization (RTO) and MPC has
2

been developed [35,36]. The RTO-MPC framework can not only
keep a controlled plant stable but also determine the optimal-
setting value based on economic indicators, thereby providing a
new perspective for the optimal control of a rotary kiln.

Inspired by the development of modeling and optimal control in
complex industrial processes and the new production demands for
zinc oxide rotary kilns, we propose a multi-objective adaptive opti-
mization model predictive control (MAO-MPC) method based on a
first-principles model and sparse identification. First, we establish
a dynamical CFD model of a zinc oxide rotary kiln based on the law
of energy conservation. Then, since the CFD model is too complex
to calculate in real time, we put forward a sparse identification-
based model-reduction method. More specifically, a function
library is formulated with the help of original data obtained from
the CFD model. By solving a sparse regression problem, the ROM
is determined. Finally, a two-layered control framework including
RTO and MPC is proposed. In the RTO layer, an optimization prob-
lem with the goal of achieving optimal process operation perfor-
mance is set up. By solving the optimization problem in real
time, a suitable setting value can be sent to the MPC layer to ensure
that the zinc oxide rotary kiln is always working in an optimal
state. Several experiments demonstrate the superiority of the pro-
posed method in improving the control effect. In summary, the
main contributions of this paper are threefold.

(1) A sparse identification-based ROM is proposed to overcome
the high computational complexity of the traditional dynamical
CFD model, making it possible to obtain the dynamics of a zinc
oxide rotary kiln in real time.

(2) An optimization problem is formulated in the RTO layer that
takes the economic performance of the process and the demand to
reduce greenhouse gas emissions into consideration to determine
the optimal-setting value for process control.

(3) The MAO-MPC method is proposed for an industrial zinc
oxide rotary kiln; the proposed method not only maintains the kiln
working efficiently but also decreases coal consumption.

The rest of this paper is organized as follows: In Section 2, a
brief introduction to the zinc oxide rotary kiln process is formu-
lated and a first-principles model is established. Details of the pro-
posed ROM based on sparse identification and the MAO-MPC
method are presented in Section 3, while Section 4 gives an analy-
sis and discussion of the experimental results. Section 5 provides
the concluding remarks of this paper.

2. Process description

This section first presents a brief introduction to the zinc oxide
rotary kiln process. Then, a dynamical CFD model of a zinc oxide
rotary kiln is established based on the law of energy conservation.
This model generates the data that becomes the foundation of the
proposed method.

2.1. Zinc oxide rotary kiln process

The zinc oxide rotary kiln is an essential piece of equipment in
the zinc smelting industrial process that largely determines
whether the raw production materials are fully utilized. A produc-
tion flow chart of the zinc smelting process is provided in Fig. 1.
The raw materials are directly sent to the roaster to produce zinc
concentrate. Through a series of ionic and electrochemical reac-
tions in the hydrometallurgy process, a pure zinc product is
obtained. During the hydrometallurgy process, the leaching step
dissolves the zinc element in the raw materials into a solution,
while other elements such as lead and silver remain as byproducts
in a solid called the leaching residue. However, in practice in the
production process, some zinc oxide is mixed into the leaching
residue before further reactions occur. Therefore, a rotary kiln is



Fig. 1. The zinc smelting industrial process.
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applied to avoid wasting zinc oxide. More specifically, when the
leaching residue is sent to the rotary kiln, high temperature calci-
nation and redox reactions are used to separate the zinc oxide from
the leaching residue. The zinc oxide is then sent back to the
hydrometallurgy process, increasing resource utilization.

The structure of a zinc oxide rotary kiln is shown in Fig. 2.
According to the temperature distribution, the inside of a rotary
kiln is divided into several zones: the dry zone, preheat zone,
reaction zone, and cooling zone. Since the kiln body is on an
incline and is constantly rotating, the materials inside the kiln
slowly move from the top (the tail) to the bottom (the head)
while undergoing a circular motion along the kiln wall. When
the leaching residue mixed with coal is fed into the rotary kiln
at the tail, it passes through the dry zone and preheat zone,
which remove moisture and prepare the residue for subsequent
reactions. Redox reactions take place in the reaction zone, yield-
ing pure zinc gas with a temperature of up to 1000–1200 �C. A
large amount of air is blown to oxidize the pure zinc gas to zinc
oxide gas and blow it back out of the tail of the rotary kiln. The
reaction atmosphere in the reaction zone determines whether
the rotary kiln performs well or not. As the temperature distribu-
tion inside the kiln has a strong relationship with the reaction
atmosphere, it is necessary to figure out how temperature varies
along the axis of the kiln.
Fig. 2. Schematic of a zin
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2.2. Modeling the kiln temperature distribution along the axis

The dynamic mathematical model of the temperature distribu-
tion along the kiln axis is based on energy balance equations for
three phases within the rotary kiln: the freeboard gas, solid bed,
and wall. Fig. 3 shows a cross-section of the rotary kiln, where Tg
is the freeboard gas temperature, Ts represents the solid bed tem-
perature, Tw denotes the wall temperature, and To stands for the
temperature of the environment.

To make the model as simple as possible while maintaining the
essential dynamics, the following assumptions have been made
[10,37]:
� The axial linear velocity changes of both the solid and the gas

are negligible.
� There is neither solid nor gas axial mixing. The two phases

are considered to be a plug flow model. Solid drag by the
gas is negligible.

� The heat transfer and specific heat coefficients are constant.
� The mass changes of the solid and the gas in the axial direc-

tion caused by the reaction are negligible.
� Coal combustion is the main heat source, and the reaction

heat is negligible.
� The wall has no ability to store or consume any energy; thus,

its net energy is zero.
c oxide rotary kiln.



Table 1
List of parameters in the CFD model.

Parameter Physical meaning

cg Specific heat of gas
cs Specific heat of solid
cw Specific heat of kiln wall
mg Mass of gas
ms Mass of solid
mw Mass of kiln wall
Asg Surface area between gas and solid
Awg Surface area between gas and wall
Aws Surface area between solid and wall
Awo Surface area between environment and wall
wsg Convection coefficient between gas and solid
wwg Convection coefficient between gas and wall
wws Convection coefficient between solid and wall
wwo Convection coefficient between environment and wall
r Coefficient of radiation
eg Emissivity of gas
es Emissivity of solid
ew Emissivity of wall

Table 2
Values of the parameters in the CFD model.

Parameter term Value

cgmg 450.00
csms 550.00
cmmm 55.00
wsgAsg 74.50
wwgAwg 5.10
wwsAws 2.50
wwoAwo 119.30
resegAsg 5.04 � 10�8

rewesAws 5.22 � 10�8

rewegAwg 5.32 � 10�8

Fig. 3. Cross-section of a rotary kiln.
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Based on the above assumptions, the following mathematical
expressions of the dynamic model can be formulated [10–12]:

Gas phase:

cgmg
@Tg
@t ¼ �vgcgmg

@Tg
@x þ wsgAsg Ts � Tg

� �þ wwgAwg Tw � Tg
� �

þresegAsg T4
s � T4

g

� �
þ rewegAwg T4

w � T4
g

� �
þ Qi

c

ð1Þ

Solid phase:

csms
@Ts
@t ¼ �vscsms

@Ts
@x þ wsgAsg Tg � Ts

� �þ wwsAws Tw � Tsð Þ
þresegAsg T4

g � T4
s

� �
þ rewesAws T4

w � T4
s

� � ð2Þ

Wall phase:

cwmw
@Tw
@t ¼ wwgAwg Tg � Tw

� �þ wwsAws Tw � Tsð Þ þ rewegAwg T4
g � T4

w

� �
þrewesAws T4

s � T4
w

� �
þ wwoAwo To � Twð Þ ð3Þ

where x and t are space and time domains, respectively; vg and vs
represent the movement speed of the gas and the solid, respec-

tively; and Qi
c in Eq. (1) is the heat generated by coal combustion

at position i, whose expression can be formulated as follows [37]:

Qi
c ¼ mcoalQnet e�3:912Liþ1=L

2
f � e�3:912Li=L

2
f

� �
ð4Þ

where mcoal represents the mass of coal; Qnet is the heat of combus-
tion of coal, which is equal to 29 MJ�kg�1; Lf stands for the length of
the flame; and Li is the distance between the flame and position i
inside the rotary kiln. The physical meanings of all the parameters
are provided in Table 1, while Table 2 lists the values of these
parameters, which are mainly determined according to Ref. [38]
and a design drawing of a rotary kiln obtained from an industrial
site. With the help of CFD simulation software such as COMSOL,
the solution of the dynamical model above can be found, laying a
foundation for optimal control of the rotary kiln reaction
atmosphere.

3. Proposed method

In this section, the proposed MAO-MPC method based on sparse
identification is introduced in detail, with the aim of improving the
performance of a rotary kiln.

3.1. Motivation

With the dynamical CFD model, a large amount of data can be
collected to analyze and monitor the operation status of the rotary
kiln. However, when it comes to improving the reaction atmo-
sphere through an advanced control strategy, the CFD model can-
not be directly applied due to its high computational complexity,
4

which decreases its practical application value. On the other hand,
with the increasing need to contribute to the goal of achieving a
carbon peak and carbon neutrality, traditional stability control is
not suitable for a multi-objective case with the requirements of
reducing environmental pollution and resource consumption while
ensuring high-level production efficiency. Thus, to further improve
the performance of the rotary kiln, we propose an MAO-MPC
method based on sparse identification. Our proposed method has
two essential parts: a model reduction and a two-layer control
framework including RTO layer and an MPC layer. Inspired by
sparse regression and its powerful capacity for representation,
sparse identification is applied to reduce the model order and com-
putational complexity while retaining the key dynamics in the CFD
model. An optimization problem is designed in the RTO layer with
the goal of achieving optimal process operation performance,
which provides an optimal-setting value to ensure that the rotary
kiln is always working in an optimal state.

3.2. Reduction model based on sparse identification

A general schematic of sparse identification is provided in Fig. 4.
As shown in Eqs. (1)–(3), the CFD model is based on partial differ-
ential equations (PDEs) rooted in conservation laws, physical prin-
ciples, and phenomenological behaviors. Thus, the general form of
a nonlinear PDE is formulated as follows:

ut ¼ N 1; x; u; u2; . . . ; ux; uxx; . . .
� � ð5Þ

where N(�) represents the nonlinear function; ut and ux denote par-
tial differentiation in time and space, respectively; and 1 stands for
a constant term in the PDE. Since N(�) is usually difficult to deter-
mine and only the data generated by the PDE system can be



Fig. 4. Schematic of the sparse identification process.
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obtained, sparse identification is applied to reconstruct the nonlin-
ear dynamics of N(�), which transforms Eq. (5) into the following
form:

ût ¼
Xp

j¼1
njhj uð Þ ð6Þ

where hj(u) represents a library of nonlinear candidate functions,
which may be determined to be polynomials, trigonometric func-
tions, or other forms of functions according to the original dynamics
of the system [15,22,26]. j is the index of each nonlinear candidate
functions, p is the number of nonlinear candidate functions, nj is a
coefficient vector of all candidate terms, and each nonzero entry
corresponds to a valid term in the PDE.

To reconstruct N(�) from the data, a series of historical data U(x,
t) are collected from the PDE system, and their partial differentia-
tion in time and space, Ut and Ux, are measured or numerically
approximated from U(x, t). All data are sampled at several times
and arranged into the following matrices:

U x; tð Þ ¼

u x0; t0ð Þ u x0; t1ð Þ � � � u x0; tnð Þ
u x1; t0ð Þ u x1; t1ð Þ � � � u x1; tnð Þ
..
. ..

. . .
. ..

.

u xm; t0ð Þ u xm; t1ð Þ � � � u xm; tnð Þ

266664
377775 ð7Þ

Ut x; tð Þ ¼

ut x0; t0ð Þ ut x0; t1ð Þ � � � ut x0; tnð Þ
ut x1; t0ð Þ ut x1; t1ð Þ � � � ut x1; tnð Þ
..
. ..

. . .
. ..

.

ut xm; t0ð Þ ut xm; t1ð Þ � � � ut xm; tnð Þ

266664
377775 ð8Þ

Ux x; tð Þ ¼

ux x0; t0ð Þ ux x0; t1ð Þ � � � ux x0; tnð Þ
ux x1; t0ð Þ ux x1; t1ð Þ � � � ux x1; tnð Þ
..
. ..

. . .
. ..

.

ux xm; t0ð Þ ux xm; t1ð Þ � � � ux xm; tnð Þ

266664
377775 ð9Þ

Then, a libraryH(U) consisting of candidate nonlinear functions
such as polynomial, trigonometric, and partial differentiation func-
tions in space terms is formulated as follows:
5

H Uð Þ ¼ 1;X;U;U2;U3; . . . ; sin Uð Þ; cos Uð Þ; . . . ;Ux;Uxx; . . .
h i

ð10Þ

Similar to Eq. (6), the dynamical system can be approximated as
follows:
Ut � H Uð Þ � N ð11Þ

For Eq. (11), it is vital to find a suitable N, which is coefficient
vector of each nonlinear candidate function, to perfectly recon-
struct N(�) with the function library H. Since H is over-full, it is
reasonable to assume that only a few terms would be chosen to
construct N(�) [15,23], which can transform Eq. (11) into a sparse
regression problem:

N ¼ argmin
N

1
2
k Ut �H � N k22 þ kk N k1 ð12Þ

where k is a hyper-parameter determining the sparsity in coeffi-
cient vector N. The above optimization problem is a typical sparse
regression problem and can be solved by the sequentially threshold
least squares shown in Algorithm 1. Through sparse identification, a
few terms that are vital for constructing the original dynamical CFD
model are picked up to establish a reduction model whose compu-
tational complexity is significantly decreased to meet the demands
of real-time computing.

Algorithm 1. Sequentially threshold least squares to solve the
sparse regression problem.

Input: Time derivative Ut, library of candidate functions H,
threshold parameter e

(1) Initial least squares guess: N0 ¼ Hy � Ut

(2) while k < max iteration do

(3) Find index of small entries: Ismall  abs Nk
� �

< e

(4) Set all small entries to zero: Nk Ismallð Þ ¼ 0

(5) Get index of big entries: Ibig  abs Nk
� �

� e

(6) Update Nk: Nk ¼ H Ibig
� �y � Ut

(7) k = k + 1
(8) end while
Output: Sparse coefficient vectors N
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3.3. Multi-objective adaptive optimization model predictive control

With the reduction model obtained, it is possible to satisfy the
demand of real-time computing and conduct advanced control
strategies. For a rotary kiln, the control objective is to optimize
the temperature of the solid, Ts, in the reaction zone, which is gen-
erally done by manipulating the coal consumption mcoal and the
movement speed of the solid vs. Since the national goal of achiev-
ing a carbon peak and carbon neutrality has led to new demands
on the zinc smelting industry, such as maintaining a high profit
while ensuring low resource consumption and green production
in process control, traditional stability control has gradually
revealed its limitations and disadvantages. Therefore, an MAO-
MPC method that includes RTO and MPC layers is proposed in this
paper. The structure of the proposed MAO-MPC method is pro-
vided in Fig. 5.
3.3.1. Model predictive control
In the MPC layer, the goal is to find a suitable control signal u(t)

through online optimization so that the output of the system
tracks the reference trajectory r(t) received from the RTO layer as
closely as possible. In this paper, given the prediction and control
horizons Tp and Tc, the optimization problem can be formulated
as follows:

min
U tð Þ

J tð Þ¼min
U tð Þ

R tð Þ� bY tð Þ
h iT

a R tð Þ� bY tð Þ
h i

þDU tð ÞTbDU tð Þ
Subject toby tð Þ¼ f d vs;mcoalð Þ
Du tð Þj j �Dumax

umin�u tð Þ�umaxbymin� by tð Þ� bymax

ð13Þ

where a and b are weight parameters; R(t) = [r(t + 1), r(t + 2), . . .,

r(t + Tp)] is the reference output; Ŷ tð Þ ¼ ŷ t þ 1ð Þ; ŷ t þ 2ð Þ; :::;½
ŷ t þ Tp
� �	 is the predictive output; U(t) = [u(t + 1), u(t + 2), . . .,

u(t + Tc)] is the optimal control input; DU(t) = [Du(t + 1), Du
(t + 2), . . ., Du(t + Tc)] represents incremental control moves; and
Fig. 5. Schematic of the proposed MAO-MPC method.
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fd(�) is a dynamical model of the solid temperature, which can be
obtained from the sparse identification-based reduction model.

For the optimization problem in Eq. (13), the gradient descent
(GD) method is suitable, since all functions are continuous and
derivable. More specifically, the expression of the GD method is
formulated as follows:

Ukþ1 tð Þ ¼ Uk tð Þ þ DUk tð Þ ð14Þ

DUk tð Þ ¼ g1 �
@J tð Þ
@Uk tð Þ

� �
ð15Þ

where g1 > 0 is the learning rate, and k is the number of iterations.
According to Eq. (13), the derivative of the objective function J(t)
can be rewritten as follows:

@J tð Þ
@Uk tð Þ ¼ �a

@Ŷ tð Þ
@Uk tð Þ

" #T

R tð Þ � Ŷ tð Þ
h i

þ bDUk tð Þ ð16Þ

Thus, Eq. (15) can be formulated as follows:

DUk tð Þ ¼ g1 a @Ŷ tð Þ
@Uk tð Þ

h iT
R tð Þ � Ŷ tð Þ
h i

� bDUk tð Þ
� 	

¼ 1
1þg1bg1a

@Ŷ tð Þ
@Uk tð Þ

h iT
R tð Þ � Ŷ tð Þ
h i ð17Þ

For the GD method, the constraints can be managed using the
projected gradient method, where the optimization variables are
projected onto the allowed hyperspace. Since the constraints in
the proposed optimization problem are box constraints (constant
or linear constraints), Eqs. (14) and (15) can be modified as follows
[39]:

Ukþ1 tð Þ ¼ P1 Uk tð Þ þ DUk tð Þ½ 	 ð18Þ

DUk tð Þ ¼ P2g1 �
@J tð Þ
@Uk tð Þ

� �
ð19Þ

where Pk
1 Uk tð Þ½ 	 and Pk

2 DUk tð Þ½ 	 is the projection function form for
the vectors Uk(t) and DUk(t). For each element in Uk(t) and DUk(t),

its projection form Pk
1 uk tð Þ½ 	 and Pk

2 Duk tð Þ½ 	 can be written as follows:

Pk
1 uk tð Þ½ 	 ¼min umax;max umin;uk tð Þ½ 	f g

¼
umax; if uk tð Þ > umax

uk tð Þ; if umin � uk tð Þ � umax

umin; if uk tð Þ < umin

8><>: ð20Þ

Pk
2 Duk tð Þ½ 	 ¼ min Dumax;max �Dumax;Duk tð Þ½ 	f g

¼
Dumax; if Duk tð Þ > Dumax

Duk tð Þ; if �Dumax � Duk tð Þ � Dumax

�Dumax; if Duk tð Þ < �Dumax

8><>: ð21Þ

where umax is the upper bound constraint on uk(t), umin is the lower
bound constraint on uk(t), and Dumax is the bound of the incremen-
tal control input Duk(t). In regard to the system state constraints,
such as dealing with the control input constraints, the projected
method will be added to the prediction model to ensure that the
constraints are satisfied. To speed up the optimization process, we
propose an improved adaptive GD method that uses a natural loga-
rithm to decay the learning rate; this makes it possible to accelerate
the convergence speed of the proposed method:

gkþ1
1 ¼ gk

1e
�xk ð22Þ

where x is the decay rate of each iteration.
By solving the optimization problem, the optimal control input

sequences u(t) can be obtained. Then, the first element of u(t) is
applied as the control signal in the system to make sure that the



Fig. 6. Result of the comparison experiment on the temperature steady-state
distribution of the CFD model and the reduction model.
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output of the system can track the reference trajectory, ensuring
that the rotary kiln is operating in the optimal state.

3.3.2. Real-time optimization
In the RTO layer, the essential goal is to design an appropriate

multi-objective optimization problem based on several new
demands on process control.With the solution of the designed opti-
mization problem, an optimal-setting value can be obtained, which
ensures that the process works in the optimal state. Meanwhile, the
system’s real-time states are continuously fed into the RTO layer,
promptly updating the optimal-setting value. For a rotary kiln,
two aspects are taken into consideration to formulate the multi-
objectives optimization problem: coal consumption and product
quality. To better evaluate the performance of the production pro-
cess from these two aspects, we define a cost function as follows:

C ¼ CMaterial þ CProduction ð23Þ
where CMaterial represents the material cost, which is mainly that of
coal consumption. This is formulated as follows:

CMaterial ¼ a �mcoal ð24Þ
where a is the coal selling price. CProduction denotes the production
cost, which is strongly related to product quality, as better quality
can reduce the reproduction number. According to the previous
analysis of the zinc oxide rotary kiln, the kiln’s function is to
improve the zinc recycling rate in useless slag in order to enhance
resource utilization. It is clear that the zinc recycling rate depends
on the solid temperature in the reaction zone, since a higher tem-
perature can speed up the reaction rate to produce more zinc. Based
on this analysis, CProduction is formulated as follows:

CProduction ¼ b � e�sTs ð25Þ
where b is the cost of reproduction and s is a hyper-parameter mea-
suring the impact of product quality on production cost. Therefore,
the goal of the RTO layer is to minimize the spending cost during
the production process, and its optimization problem is designed
as follows:

min
T
s

C ¼min
T
s

a �mcoal þ b � e�sTs

Subject to
T
s ¼ f s vs;mcoalð Þ
vmin � vs � vmax

mmin � mcoal � mmax

ð26Þ

where vs is the movement speed of solids in the rotary kiln, and fs(�)
represents the steady-state model of the solid temperature, which
is obtained from the reduction model. Through the GD method,
the optimization problem in Eq. (26) is solved and the optimal-
setting value is sent to the MPC layer to improve the performance
of the rotary kiln.

4. Experiment

In this section, a series of experiments are designed to demon-
strate the strength of the proposed method. The performance is
measured using the mean absolute percentage error (MAPE), root
mean-square error (RMSE), and average change (Du) in the manip-
ulated variable, which are defined as follows:

MAPE ¼ 1
N

XN
i¼1

yi � ŷi
yi





 



� 100% ð27Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

yi � rið Þ2
vuut ð28Þ
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Du ¼ 1
N

XN
i¼1

Du ið Þj j ð29Þ

where ri represents the reference trajectory, yi stands for the actual
output of the controlled system, ŷi stands for the output of the pre-
diction model, and Du(i) is the change in the manipulated variable.

4.1. Verification of reduced-order model

At first, whether the reduction model is accurate enough to rep-
resent the rotary kiln CFD model determines the control effect on
the solid temperature of the reaction zone. Therefore, comparison
experiments are conducted to determine whether the sparse
identification-based reduction model is reliable. Since the rotary
kiln is a typical distributed parameter system, its temperature
has a strong relation with time and space; therefore, it is necessary
to verify the reduction model from two aspects: a steady state and
a dynamic state.

4.1.1. Steady-state verification
The steady state of the rotary kiln CFD model assumes that the

system state will not change any further; thus, it mainly focuses on
the temperature distribution along the spatial position. The tem-
perature of the solids in the rotary kiln starts at a low point, since
the raw material is sent into the kiln without heating. When the
raw material gradually moves into the reaction zone, its tempera-
ture climbs, finally reaching a maximum somewhere in the reac-
tion zone. Then, the temperature of the solids sharply decreases
as they pass through the cooling zone. The result of the comparison
experiment is demonstrated in Fig. 6. It can be seen that, regardless
of the trend of the temperature distribution curve or the tempera-
ture value at each position, the sparse identification-based reduc-
tion model is similar to the original CFD model, showing the
reliability of the proposed method.

4.1.2. Dynamic-state verification
The dynamic state of the rotary kiln CFDmodel denotes how the

temperature of the solids in the kiln varies with time. For any posi-
tion inside the rotary kiln, given an initial state, if the control vari-
ables remain unchanged and as time passes, the temperature of the
solids will gradually approach a steady state. The result of the com-
parison experiment is demonstrated in Fig. 7. It can be seen that
the reduction model can maintain most of the dynamical charac-
teristics of the original CFD model, laying a foundation for process
control.



Fig. 7. Result of the comparison experiment on the temperature dynamic-state
distribution of the CFD model and the reduction model at different positions: (a)
10 m; (b) 40 m; and (c) 60 m.

Fig. 8. Results of the comparison experiment on the dynamic response to a step
change in the manipulated variables: (a) +5% step change; and (b) �5% step change.
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Another aspect of verifying the dynamic state of the reduction
model is to study whether its dynamic response to probable
changes in manipulated variables fits the principle of the zinc
oxide rotary kiln. According to field workers’ experience, the coal
consumption mcoal and the movement speed of the solids vs have
a great impact on the temperature of the solids. Regarding coal
consumption, it is obvious that more coal means more heat, lead-
ing to an increase in temperature. Regarding the movement speed
of the solids, this speed determines the time spent by the solids
inside the rotary kiln. The longer the solids stay inside the kiln,
the higher their temperature will be. In this experiment, a step
change in the manipulated variables occurs at some timepoint in
order to study the dynamic response of the proposed reduction
model. The results are shown in Fig. 8. It can be seen that the
dynamic response of the proposed reduction model perfectly fits
the principle of the rotary kiln, compared with the original CFD
model. According to these verification experiments, the proposed
reduction model is demonstrated to be effective, and it can replace
the original model to meet the real-time demand for optimal
control.
Fig. 9. Control results for the temperature of the rotary kiln: (a) MAO-MPC; (b) MPC
(tail of rotary kiln); and (c) MPC (reaction zone of rotary kiln).
4.2. The control effect on a rotary kiln

In this section, the control effect of the proposed optimal con-
trol method is compared with two control schemes that come from
field work: (a) maintaining the temperature of the tail of the rotary
kiln at 600–700 �C; and (b) maintaining the temperature of the
reaction zone of the rotary kiln at 1000–1200 �C. Both comparison
control methods are based on an MPC whose prediction model is
the proposed reduction model. During the experiment, the setting
values coming from workers’ experience are 670 and 1100 �C,
respectively. The hyper-parameters for the proposed optimization
MPC method are a = 1, b = 1, a = 0.035, b = 4.8, s = 3.5 � 10�3;
the prediction horizon is Tp = 2; and the control horizon is Tc = 1.
The control results for all the methods are provided in Fig. 9 and
Table 3.
8



Table 3
A comparison of all the control methods.

Method RMSE Du Coal consumption Production cost

MPC (tail) 0.747 0.062 5.572 0.384
MPC (reaction zone) 0.874 0.046 5.896 0.394
MAO-MPC 0.497 0.077 5.331 0.379

The minimum values of each method are in bold.

Fig. 10. A comparison of the time required by a simple MPC and the proposed
method with different optimization frequencies.
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From Fig. 9 and Table 3, it can be seen that all the methods can
perfectly achieve stability control of the temperature-setting val-
ues. However, the overall goal of achieving a carbon peak and car-
bon neutrality requires higher standards, such as cutting coal
consumption. The two comparison methods cannot adjust the
temperature-setting value according to the operation states of
the rotary kiln, resulting in greater consumption of coal and emis-
sions of greenhouse or polluted gases. The proposed optimal con-
trol method designs a multi-objective optimization problem in
the RTO layer, which takes the new control demands into consid-
eration and can promptly determine the optimal temperature-
setting value for the rotary kiln. Therefore, the proposed method
not only keeps the rotary kiln stable but also achieves optimal eco-
nomic performance and reduces coal consumption.

To compare the time cost for each method, a comparison exper-
iment on the time spent was conducted, as shown in Fig. 10. It was
found that the time spent by the proposed method is strongly
related to the frequency of the optimization of the setting value,
since every optimization process requires solving the steady-
state model of the rotary kiln with the help of the ROM. The more
frequently the optimization process is conducted, the more time it
will take. Moreover, the control effect may not always improve
with a higher frequency of optimizing the setting value, since a
rotary kiln is a slow change process, so the optimal-setting value
remains unchanged for a while. Accordingly, the time required
by the proposed method depends on the frequency of optimizing
the setting value, which can be determined through the demands
of practical application
5. Conclusions

In this work, to meet the new demand for process control in
zinc oxide rotary kilns, we proposed a novel model reduction
method and two-layered optimal control framework. First, based
9

on sparse identification, the rotary kiln CFD dynamic model was
simplified to satisfy real-time computing. Then, the proposed
two-layered optimal control method was designed. In the RTO
layer, an optimization problem with the goal of achieving optimal
process operation performance is set up. By solving the optimiza-
tion problem in real time, an optimal setting value can be sent to
the MPC layer to ensure that the zinc oxide rotary kiln is always
working in an optimal state. Several experiments demonstrated
that the proposed method can achieve better control performance
for a rotary kiln and can reduce coal consumption. In the future,
the issue of how to improve accuracy of a first-principles model
and design the optimization objective function can be studied to
further improve the performance of rotary kilns.
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