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By combining machine learning with the design of experiments, thereby achieving so-called active
machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms
are more flexible and are better than traditional design of experiment algorithms at investigating pro-
cesses spanning all length scales of chemical engineering. While active machine learning algorithms
are maturing, their applications are falling behind. In this article, three types of challenges presented
by active machine learning—namely, convincing the experimental researcher, the flexibility of data cre-
ation, and the robustness of active machine learning algorithms—are identified, and ways to overcome
them are discussed. A bright future lies ahead for active machine learning in chemical engineering,
thanks to increasing automation and more efficient algorithms that can drive novel discoveries.
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1. Introduction machine learning as a supervised machine learning technique in
Experiments performed under well-defined conditions and cal-
culations based on first principles constitute the basis of engineer-
ing research. In chemical engineering, these activities are aimed at,
for example, the development and optimization of catalysts, reac-
tion conditions, and reactor configurations. In the chemical indus-
try, 51 billion USD was spent in 2017 on research and development
[1]. This illustrates the importance of high-quality data; however,
obtaining accurate data is tedious and error prone. The design of
experiments (DoE) can help in extracting the maximal information
with a minimum of effort [2,3], making sure that time and
resources are spent efficiently. By integrating machine learning
with DoE, a more flexible and efficient DoE is achieved. This so-
called ‘‘active machine learning” allows a more effective selection
of experimental conditions, particularly for high-dimensional and
highly nonlinear phenomena [4].

Machine learning can facilitate the automation of the whole
experimental cycle, from experimental selection to model building
and data analysis [5]. While the most common field of application
in machine learning is model building and data analysis, the focus
of this article is on the potential of combining DoE with machine
learning for active machine learning. Olsson [6] defined active
which the learner—that is, the machine learning model—is in con-
trol of the data from which it learns. In active machine learning,
machine learning algorithms are used to iteratively determine
new experimental data, the so-called training data, based on
uncertainty criteria. It should be noted that ‘‘experimental” can
also refer to computationally expensive high-level simulations,
such as high-level ab initio calculations of molecular properties
or large eddy simulations of reactive flow with computational fluid
dynamics (CFD) codes [7]. Active machine learning consists of two
branches with two different purposes: active learning and
Bayesian optimization. Active learning aims to explore and model
a process with a minimum number of ‘‘experiments” to ensure
accurate predictions over the entire design space [8]. Bayesian
optimization is essentially a machine learning-based optimization
strategy, where iteratively new experimental data is selected to
find an experiment that optimizes the objective [9]. Either active
learning or Bayesian optimization can be employed for experimen-
tal selection, depending on whether the goal is to model a process
and acquire process knowledge or to optimize an objective.

1.1. Basic principles of active machine learning

Fig. 1 [10] illustrates the general workflow of active machine
learning algorithms, starting with the initialization followed by
an iterative loop consisting of three phases. The critical first step
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Fig. 1. Overview of the general active machine learning workflow, depicting initialization and iterative query selection. Reproduced from Ref. [10] with permission.
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of initialization consists of clearly defining the research problem as
either the modeling of an output (active learning) or the optimiza-
tion of an objective (Bayesian optimization). An example of active
learning is the investigation of the effect of reaction conditions,
such as temperature and pressure, on the conversion [10,11]. With
Bayesian optimization, the goal is to find the optimal reaction con-
ditions to maximize this conversion [12–14]. In both cases, a
design space is set up that defines the ranges of the studied vari-
ables by considering the objectives and the intrinsic limitations
of the experimental tools. A machine learning model is then initial-
ized and trained using a small sample of labeled data, which comes
from experiments whose outcomes are known, stemming from lit-
erature, previous experiments, or newly performed experiments.
In general, the amount of preliminary labeled data is very low.

After initial training, the machine learning model is able to
make rudimentary predictions in the design space. The model
can vaguely estimate where an optimum could be situated for
Bayesian optimization, or which experiment—the so-called
query—is most informative for active learning. While the definition
and initialization of both active learning and Bayesian optimization
are essentially the same (and are not even too different from a clas-
sic experimental campaign), the main differences and advantages
are found in the model training.

Active learning is purely based on exploration, to enable predic-
tions of the design space that are as accurate as possible. Con-
versely, Bayesian optimization balances both exploration and
exploitation in order to find the optimum in the design space,
treating every iteration as the potentially final one. Exploitation
investigates areas with a high objective value to find an optimum
nearby, whereas exploration discovers areas for which the predic-
tions are unknown and therefore uncertain. Exploration requires a
measure of uncertainty in the predictions to identify which areas of
the design space remain unexplored [15]. Therefore, popular
machine learning models for active machine learning are Gaussian
processes [16–19] and Bayesian neural networks [20–22], as these
allow an uncertainty estimation of their predictions. Another
advantage of Gaussian processes is that they deal very well with
noisy measurements, which are inherent in real-life experiments.
By adding a noise term to the Gaussian process kernel, the machine
learning model can estimate the experimental uncertainty and
allow optimal performance of the active machine learning method
[16,23]. Neural networks can also be employed for active machine
learning purposes, but approximative methods such as Monte
Carlo dropout or model ensembling are required to estimate the
model uncertainty [11,24,25].
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After initialization, the active machine learning procedure con-
sists of three phases: the training of the machine learning model,
the selection of new experiments, and the execution and annota-
tion of these experiments (Fig. 1). The active machine learning
query (phase 2) is determined through a so-called acquisition func-
tion, which is a measure of potential informativeness or optimality.
The model needs the most informative subsequent data point,
which is the point where the acquisition function is maximal for
the selected query. The query is performed and new data is gath-
ered (phase 3), after which the machine learning model is retrained
(phase 1) and can now make improved predictions. This loop is
sequentially iterated until an optimum (Bayesian optimization) is
found or a sufficiently accurate model (active learning) is obtained.

To further illustrate the workflow, we present the example of a
researcher examining the performance of a new catalyst for a
chemical process. The researcher either aims to investigate (with
active learning) or optimize (with Bayesian optimization) the effect
of reaction variables (design space), such as the temperature,
pressure, and reactant concentrations, on the desired product yield
(objective). First, initial experiments must be performed at a num-
ber of random combinations of temperature, pressure, and reactant
concentrations. Next, the researcher initiates the active machine
learning loop by training the machine learning model on these ran-
domly picked experimental data points, after which the model pro-
poses a new experiment. When using active learning, this
experiment is the most informative one; when optimizing with
Bayesian optimization, this experiment is the most likely experi-
ment to improve upon the desired product yield. The researcher
performs the experiment and retrains the machine learning model,
which now makes improved predictions. The experimental selec-
tion continues until the desired number of experiments is per-
formed and an optimal machine learning model or process
condition is obtained.

1.2. Active machine learning in chemical engineering

The applications of active machine learning span all the length
scales of chemical engineering, from ab initio calculations
[17,18,26] to material, molecule, and catalyst design [27–36], reac-
tion design [12–14,37–42], and reactor design [43–45]. For exam-
ple, the design of catalysts is an important asset in achieving
carbon neutrality, as catalysts can enable more sustainable pro-
cesses and can increase the energy efficiency of chemical processes
in general [46]. However, catalyst design is still deemed an art
nowadays, as it mainly relies on high-throughput screening and



Fig. 2. Three different types of thresholds for the breakthrough of active machine
learning (AML).
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limited theoretical relations, such as the Sabatier principle and lin-
ear scaling relations [47–50]. This makes catalyst design prone to
human bias, as researchers tend to exploit catalyst designs that
are known to work, which hampers real breakthroughs [51,52].
With active machine learning, this human bias is removed, and a
substantially larger fraction of the catalyst space can be studied.
Currently, the applications of active machine learning in catalysis
only consider a limited design space, varying only the catalyst
composition while maintaining the catalyst structure [53,54]. For
example, Zhong et al. [53] performed Bayesian optimization on
density functional theory (DFT) calculations to identify and synthe-
size promising electrocatalysts for the reduction of CO2, whereas
Nugraha et al. [54] determined the optimal composition of the
most active PtPdAu catalyst to electrocatalytically oxidize
methanol.

In reaction or process design, the goal of Bayesian optimization
is to determine the optimal operating conditions in order to max-
imize the product yields, minimize the emissions per product,
achieve the highest energy efficiency, and so forth. Optimization
of reaction conditions has been demonstrated multiple times,
including multi-objective reaction optimization with both discrete
and continuous variables, likely making this the most well-
developed field of active machine learning in chemical engineering
[12–14]. Shields et al. [39] applied Bayesian optimization to opti-
mize the reaction conditions for a Mitsunobu reaction and
obtained an optimal yield (>99%) for several non-intuitive reaction
conditions after 40 experiments, thereby overcoming the standard
reaction yield of 60%. With active learning, the goal is to acquire
reaction knowledge that can be used for reactor and catalyst
design, process control, or retrosynthesis. Eyke et al. [11] demon-
strated the potential of active learning for DoE in reaction design
by predicting reaction yields for combinations of catalysts and sol-
vents with a minimum of available data. Recently, a DoE tool for
the study of chemical reactions was developed and validated on
the catalytic pyrolysis of plastic waste by Ureel et al. [10].

CFD has become an important tool for reactors, optimization,
and trouble shooting. Bayesian optimization makes it possible to
find an optimal reactor configuration with a minimum of computa-
tionally intensive CFD simulations. Park et al. [44] demonstrated
the power of multi-objective Bayesian optimization by maximizing
the gas holdup and minimizing the power consumption of a stirred
tank reactor. Clearly integrating active machine learning in CFD
allows for a faster and more efficient reactor design.

This survey shows that chemical engineering is a broad and
diverse research field with a whole spectrum of possible active
machine learning applications. Nevertheless, the use of active
machine learning is not yet widespread, and there are some hur-
dles to overcome before it can become a trusted asset in the chem-
ical engineer’s toolkit. In this perspective article, we focus on active
machine learning as a DoE technique for an experimentalist and
how to popularize it. We identify three types of thresholds: con-
vincing the experimental researcher, the flexibility of data creation,
and the robustness of active machine learning algorithms (Fig. 2).
In the following sections, we discuss each of these challenges
and how they can be overcome.
2. Convincing the researcher

2.1. Big data misconception

At present, a knowledge gap exists between the experimentalist
community and machine learning experts [55]. This knowledge
gap is the fundamental reason why active machine learning is
not yet being systematically applied by experimentalists. First,
there is a misconception that big data is mandatory for active
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machine learning and that an enormous experimental campaign
is required to make it feasible. Nugraha et al. [54] reported on an
optimal catalyst composition performing only 47 of a total of
5151 possible experiments, as shown in Fig. 3. In their work,
Bayesian optimization was employed to determine the optimal
PtPdAu catalyst composition for the electrocatalytic oxidation of
methanol. Similarly, Schweidtmann et al. [12] identified their
Pareto front after 68 experiments for a four-dimensional reaction
optimization. Moreover, Ureel et al. [10] showed that active learn-
ing strategies are already beneficial for experimental campaigns
consisting of as few as 18 experiments. These examples illustrate
that both active learning and Bayesian optimization are already
feasible for smaller datasets.

A second issue is related less to the experimental researcher
and more to the intrinsic algorithms. Initially, all active machine
learning algorithms explore the entire design space, which can
result in counterintuitive or trivial queries. Consequently, the
experimentalist loses confidence in the machine learning tool.
The initial selection of experiments does not rely on any prelimi-
nary or physical knowledge within the machine learning models.
Therefore, this issue is related both to human bias and the percep-
tion of these algorithms by their users, and to the absence of pre-
liminary knowledge within these models. Integrating process
knowledge beforehand in the machine learning model is the most
powerful methodology to alleviate this problem. Such knowledge
can be incorporated via two different approaches: either through
the design of the machine learning model, such as a Gaussian pro-
cess kernel [56], or through training on literature or simulation
data [57]. The incorporation of preliminary knowledge into active
machine learning models will be discussed in Section 4.1.
2.2. Ease of use

In active learning strategies, multiple factors are varied at the
same time, whereas regular DoE strategies often vary a single fac-
tor at a time. This makes the post-processing of the experiments
less trivial, as the effects of the factors are not isolated. As a result,
a statistical analysis is required to draw conclusions from an exper-
imental campaign using an active learning strategy [58]. These



Fig. 3. (a) Nugraha et al. [54] determined the optimal PtPdAu catalyst composition for the electrocatalytic oxidation of methanol by performing only 47 experiments, with a
higher peak current density denoting a better catalyst. (b) Contour plot of the effect of catalyst composition on peak current density, as determined by the 47 performed
experiments. Reproduced from Ref. [54] with permission.
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tools are incorporated in regular DoE software but not in the active
machine learning packages that are currently available. This prob-
lem is closely related to another issue that limits the applicability
of active learning—namely, its ease of use. Many different active
machine learning packages exist these days, such as Gryffin [59],
Phoenics [60], and BayesianOptimization [61] for Bayesian opti-
mization, and Gaussian N-dimensional active learning framework
(GandALF) [10] or general and efficient active learning (GEAL)
[62] for active learning. However, most of the current active
machine learning packages must be configured with Python,
except for GandALF, which uses a csv spreadsheet. The use of these
active machine learning tools requires programming skills, as they
offer no graphical user interface (GUI), hampering the usage of
these methodologies. Thus, at present, researchers that wish to
use active machine learning must make a substantial time invest-
ment. This ‘‘activation barrier” is too high for many researchers,
particularly because of the required ability to code.

3. Improving the flexibility of data creation

3.1. Constrained active machine learning

Active machine learning algorithms are often developed on sim-
ulated data, where there are no practical limitations on the data
creation side [32,36,63]. However, in real life, experimental units
or procedures do not allow this flexibility. For example, even a
completely automated experimental unit often needs to heat up
or cool down, or requires time to stabilize, which slows down
the generation of a new data point when different temperatures
are selected by the algorithm. In addition, experiments are often
performed in parallel (e.g., in high-throughput units), as opposed
to the algorithms, which assume a sequential selection of experi-
ments. Therefore, active machine learning strategies should be
constrained to the unit on which they are used, to allow for an
optimal experimental efficiency that will make them applicable
to real-world applications [64]. In the example above, it is often
easier to heat an experimental unit than it is to cool it; therefore,
an extra constraint should be added to the algorithm to make it
preferable to select experiments that increase rather than decrease
in temperature.

Next to constraints resulting from how the experimental equip-
ment operates, constraints can also be important for simulations
[43,45]. Let us consider a case that involves optimizing a reactor
in silico using CFD. When defining the reactor geometry for CFD,
it is not trivial that every type of geometry is feasible to simulate,
nor that the geometry can be properly meshed or the results are
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mesh independent [65]. When these constraints are non-trivial, a
separate machine learning model can be trained to learn the con-
straints and enforce the viability of the simulations [43].

Another example with constrained experimental units is a high-
throughput experimental campaign that is used to screen different
catalytic materials. Within these units, several experimental vari-
ables, such as temperature and pressure, are often fixed for every
type of experiment per batch. This requires another constraint
for the batch selection of these experiments, as the variables must
be fixed for all selected queries. To tune active machine learning
algorithms according to their application, a close collaboration
between the machine learning expert and the experimentalist is
thus required. In this way, the benefits of applying active machine
learning are also available for less flexible experimental units.

Symbiosis between the experimentalist and the machine learn-
ing scientist will benefit both parties. First of all, it will extend the
fields of application for active machine learning as researchers
becomemore aware of the benefits of active machine learning. This
close collaboration will help in identifying useful features within
these active machine learning algorithms, such as blocking or auto-
matic post-processing. More practical constraints might be added
to the experimental selection, such as the time or cost required
for a proposed experiment. Lastly, this collaboration between the
experimentalist and the machine learning expert assists in inform-
ing experimental researchers and removing the currently existing
biases against active machine learning.

3.2. Automation

In an ideal case, active machine learning is coupled with a flex-
ible automated experimental unit or is even equipped by a robot
[12,14,66]. Thus, the control and optimization of the performance
of the experiments can become optimal, saving valuable time
and effort. Automated experimental units are increasingly being
applied in molecular synthesis and chemical engineering, although
these units are not yet commonplace [67–69]. One requirement of
automated robotic units is that they should be reconfigurable [70].
Moreover, they should have a broad application range and should
not be limited to the investigation of a single reaction type or a
narrow temperature range. Of course, the use of automated units
is not self-evident, as they are often expensive and are currently
not well-suited for every problem. For example, despite past efforts
[71], the automated synthesis and testing of catalysts is a challeng-
ing task, especially when studying a broad design space [72]. By
coupling these systems with active machine learning techniques,
enormous time saving is expected for experimental campaigns,
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as this will speed up reaction and catalyst optimization, as well as
the acquisition of scientific knowledge. A last threshold of these
automated units is the question of the safety of these units. By
expanding the catalyst or reaction design space, safety concerns
increase, as doing so increases the probability that undesired reac-
tions will occur. Therefore, good chemical knowledge is still
required when employing these units in order to identify and
incorporate safety constraints. Here, the definition of safety con-
straints again requires close collaboration between experimental
experts and machine learning scientists.
4. Algorithm robustness

4.1. Data transfer

When performing experiments, it is advantageous for the
experiments to be widely applicable and to serve multiple pur-
poses. The information gathered in experiments should be made
available according to the FAIR guiding principles (i.e., findability,
accessibility, interoperability, and reusability) and can then be of
value for other researchers [73]. However, with active machine
learning, a single objective is chosen, which determines the exper-
imental selection. This hampers the applicability of the experi-
ments, as only one experimental output is well-studied. For
example, when investigating reactions, the conversion is typically
selected as the output of interest; however, this limits the informa-
tion on other properties, such as yields or selectivity. In the worst-
case scenario, the yields are not measured and no information is
gathered; contrarily even when these yields are measured, it can-
not be guaranteed that all trends are considered in the example. As
the goal of active machine learning is to model conversions, this
method ignores the behavior of interesting reaction yields, which
can result in trends remaining hidden. With Bayesian optimization,
this does not pose an issue, as the goal is to optimize an objective,
which makes the data per definition less generally applicable.
Multi-objective Bayesian optimization techniques exist, whereas
only single objective strategies are possible for active learning,
meaning that all interesting outputs should be incorporated within
a single active learning objective [12,40,44]. Therefore, to ensure
the reusability of the gathered data, it is important that not only
the modeled output but also other potential relevant outputs are
measured during experiments.

After creating data that is of wide interest, it is important to be
able to incorporate that knowledge into active machine learning
tools. Fig. 4 summarizes the different data sources and modeling
Fig. 4. The incorporation of data from the literature, simulations, or expert knowledge in
the active machine learning performance.
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strategies that can be employed to achieve this. When an active
machine learning model is pretrained on literature data, an
improved initial experimental selection is achieved that resolves
the issue of suboptimal initial selection that was mentioned earlier
[57]. The incorporation of literature data is trivial when the exper-
imental uncertainty is similar to that of the newly gathered data.
However, when the literature data is of better or inferior quality
than the gathered data, it is important for the machine learning
model to be able to make a distinction between the two.
Heteroscedastic machine learning models exist [63], but they do
not necessarily permit the incorporation of two separate noise fac-
tors, as the variation in noise is dependent on the variable in
heteroscedastic models. Conversely, multi-fidelity active machine
learning strategies make it possible to employ widely abundant
low-quality data for accurate pretraining of the active machine
learning model [74–76]. These methods have been developed
based on simulated ‘‘experimental” data only, but they are very
promising for improving the performance of active machine learn-
ing tools when applied to real experimental data. Moreover, these
multi-fidelity models can also be used for the incorporation of data
from a mechanistic model into the machine learning model. When
the uncertainty of the mechanistic model predictions is known, an
appropriate distinction can be made between experimental data
and modeled data, both with their respective uncertainties, in
the multi-fidelity model. In this way, additional mechanistic infor-
mation can be incorporated into a machine learning model, which
improves the experimental selection.

Data that is closely related—but not similar in nature—can also
serve as an initialization for active machine learning models [77].
For example, when modeling reactions with one type of catalyst
and literature data on another catalyst are available, this data
might still contain valuable information for an active learning
model [78]. With active transfer learning, the goal is to leverage
this knowledge from nearly similar data to obtain a machine learn-
ing model with an improved perception of the examined problem.
Active transfer learning is the combination of the two main meth-
ods of active machine learning and transfer learning to make
machine learning less data intensive. With transfer learning,
(abundantly) available low-quality data is used to pretrain a
machine learning model, which is then refined with a limited
amount of high-quality data. In this way, rudimentary physical
knowledge is introduced into the machine learning model, which
again improves the initial experimental selection. This methodol-
ogy has been proven to work on the reaction yield classification
of cross-coupling reactions, by pretraining a machine learning
model on reactions with different nucleophiles [78].
to machine learning models via transfer learning or multi-fidelity models improves
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The reuse of literature data within active machine learning
applications will further enhance the performance of these tools.
The first active transfer learning approaches are being developed
within chemical engineering, but further development of algo-
rithms is crucial to make active transfer learning applicable within
all domains of chemical engineering.

4.2. Synthesizability

Active machine learning can be used to determine the optimal
query for either optimization or modeling purposes. However, for
certain problems, it is not evident that these queries are exe-
cutable. For example, in catalyst or molecule design, novel com-
pounds are proposed to synthesize and test the property of
interest. Here, the representation of the catalyst or molecule is cru-
cial for the synthesizability of the queries. Synthesizability, which
is defined as the feasibility of the proposed queries, refers to
whether the proposed catalysts or molecules can be synthesized,
as illustrated in Fig. 5. Often, a vector containing the catalyst com-
position is a simple representation of a catalyst [54,79]. This
ensures the synthesizability of the catalyst but limits the design
space explored by the active machine learning algorithm, as only
the composition is varied and no structural or geometrical proper-
ties are considered. Ideally, the complete catalyst space is consid-
ered for every problem by, for example, considering the complete
three-dimensional (3D) geometry as a representation of the cata-
lyst site or molecule. However, not every imaginable catalyst’s or
molecule’s 3D geometry can be synthesizable, so there is tradeoff
between the magnitude of the design space, so-called creativity,
and synthesizability.

As illustrated by the previous example, the problem of synthe-
sizability essentially boils down to a problem of the machine learn-
ing representation upon which constraints are added to enforce
synthesizability. One intuitive approach is to use the synthesis pro-
cess of the catalyst or molecule as the machine learning represen-
tation. A vector containing the catalyst composition, calcination
temperature and time, and presence of ion exchange or impregna-
tion can be used to represent a catalyst. In this way, the synthesiz-
ability of the queries is ensured, as every proposed recipe is
executable. However, this representation does not necessarily
ensure an easy mapping to the property of interest, and an
increased amount of data might be required to model this relation.
Fig. 5. An illustration of synthesizability. A machine learning model proposes a query, wh
a catalyst, which can either be realistic and synthesizable (top) or unrealistic and non-s
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Aside from this intuitive approach, learned machine learning
representations make it possible to create a continuous representa-
tion, which ensures the validity of the proposed queries [80,81]. By
training recently developed methodologies such as variational
auto-encoders or generative adversarial neural networks on a set
of synthesizable molecules or catalysts, a learned machine learning
representation—that is, a so-called latent space—can be developed,
ensuring the synthesizability of the proposed queries [80,82,83].
Upon this representation, additional constraints on the catalyst
or molecule can be enforced, according to the application [31].

Finding an adequate representation is always important in
machine learning problems. For active machine learning, this rep-
resentation is essential in order to harmonize both synthesizability
and creativity.
5. Conclusions and perspectives

Active machine learning is extremely well suited for use by
chemical engineering researchers to speed up experimental cam-
paigns ranging from molecule and catalyst design to reaction and
reactor design. However, active machine learning is not well-
known among experimental researchers, and many active machine
learning applications are not currently user friendly. Better collab-
oration between machine learning experts and chemical engineers
can overcome these barriers. Such interactions will also help to
tune active machine learning algorithms, depending on the applied
(automated) experimental units and procedures, which will
improve the performance of these algorithms. A key barrier here
is the suboptimal initial experimental selection, which can be over-
come by integrating transfer learning and active learning with the
aid of multi-fidelity models. Moreover, the application domain of
active machine learning can be significantly extended by adapting
general active machine learning algorithms to obtain ‘‘tailor-made”
algorithms, depending on the setup constraints. While the algo-
rithms should be customized, the data should be generally usable,
such that performed experiments can serve multiple purposes. By
harmonizing synthesizability and creativity, active machine learn-
ing is bound to make significant advances in the fields of molecule
and catalyst synthesis. Recent promising breakthroughs will allow
active machine learning to become an essential tool for the
chemical engineer and will further facilitate autonomous and
ich is essentially a vector representation of the catalyst. This query corresponds with
ynthesizable (bottom).
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efficient scientific discoveries, which will contribute to a more sus-
tainable chemical industry in the future.
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