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Based on an analysis of the operational control behavior of operation experts on energy-intensive equip-
ment, this paper proposes an intelligent control method for low-carbon operation by combining mecha-
nism analysis with deep learning, linking control and optimization with prediction, and integrating
decision-making with control. This method, which consists of setpoint control, self-optimized tuning,
and tracking control, ensures that the energy consumption per tonne is as low as possible, while remain-
ing within the target range. An intelligent control system for low-carbon operation is developed by
adopting the end–edge–cloud collaboration technology of the Industrial Internet. The system is success-
fully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon
emissions.
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1. Introduction

In April 2016, after the Paris Agreement on global climate
change came into effect, China committed to reducing its carbon
dioxide (CO2) emissions intensity per unit of gross domestic pro-
duct (GDP) by 60%–65% in 2030, compared with 2005. In 2021,
the United Nations Economic Commission for Europe (UNECE)
pointed out that the carbon emissions per kilowatt-hour of coal-
fired power generation are as high as 751–1095 g [1]. The 13th
Five-Year Development Plan for Energy Conservation and the Envi-
ronmental Protection Industry reported that improving energy effi-
ciency will contribute about 82% to China’s 2030 target for
reducing the intensity of carbon dioxide emissions. Thus, conserv-
ing industrial electricity has become an important means of realiz-
ing the low-carbon industry.

Process industries mainly include raw material industries (e.g.,
petrochemicals, steel, nonferrous metals, building materials, and
mining) and the energy industries (e.g., electric power). The scale
of China’s process industries is the largest in the world, and they
serve as important basic support for China. However, their energy
consumption accounts for more than half of China’s total energy
consumption. In the process industry, the energy consumption is
concentrated in energy-intensive equipment. Examples include
the submerged arc furnaces widely used in the metallurgical
industry, the fused magnesium furnaces used for the production
of fused magnesia, the crystalline silicon furnaces used for the pro-
duction of metallic silicon, and the yellow phosphorus furnaces
used for the production of phosphorus. Other examples include
the grinding equipment in the beneficiation industry, electrolytic
aluminum equipment for producing metal aluminum, electric arc
furnaces for producing alloy steel in the iron and steel industry,
and the large-scale cracking furnaces that are widely used in the
petrochemical industry. The total number of industrial furnaces
is about 120000, and their annual energy consumption is as high
as 260 million tonnes of standard coal, accounting for 25% of
China’s total energy consumption and 60% of industrial total
energy consumption [2]. Energy-intensive equipment is the key
equipment in China’s manufacturing industries. The five major
industries of China—namely, the iron and steel, non-ferrous metal-
lurgy, petrochemical, power, and machinery industries—greatly
rely on energy-intensive equipment. The energy consumption of
these industrial enterprises accounts for about 70% of China’s total
energy consumption [3].

Carbon emission refers to the emissions of greenhouse gases
generated during the production, transportation, use, and recycling
of products. The main sources of carbon emissions from

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2023.05.018&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2023.05.018
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tychai@mail.neu.edu.cn
https://doi.org/10.1016/j.eng.2023.05.018
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng


T. Chai, M. Li, Z. Zhou et al. Engineering 27 (2023) 84–95
energy-intensive equipment are the electric energy consumed by
the production of products and the waste discharged. Therefore,
energy conservation and emissions reduction are the key to achiev-
ing low-carbon operational control. Since the raw ore or raw mate-
rials loaded by such equipment are fixed, the key to the low-carbon
operational control of energy-intensive equipment is to convert as
much of the loaded raw ore or raw materials into qualified prod-
ucts as possible while ensuring that the energy consumption is
as low as possible—that is, to minimize the energy consumption
per tonne of qualified products. Therefore, the energy consumption
per tonne is a comprehensive production index used to measure
the operation status of energy-intensive equipment, known as
the operation index. Achieving the energy conservation of
energy-intensive equipment is the key to realizing low-carbon
operational control.

The electric arc furnace is a type of energy-intensive equipment
that is widely used in industry, and its modeling and control are
therefore of wide concern [4,5]. Predictive control for the arc cur-
rent has been proposed in order to reduce the flicker caused by elec-
trode short-circuits [4]. A control strategy for the arc furnace has
also been proposed, to obtain the maximum active power of the
electric arc by modifying the speed and the direction of electrodes;
the effectiveness of this strategy has been verified by simulation [5].
Such control methods focus on arc furnaces with an open arc and
are difficult to apply to submerged arc furnaces, with their frequent
changes in dynamic characteristics. When the melting temperature
of mineral resources is high, the submerged arc method is adopted.
The three-phase electrodes of a submerged arc furnace are buried in
the raw ore, and the raw ore is melted by controlling the electrode
to form an arc. The material is fed while being melted, which con-
sumes a great deal of energy. Submerged arc furnaces are widely
used in the production of national strategic minerals and include
the fused magnesium furnace, crystalline silicon furnace, yellow
phosphorus furnace, ferrochrome furnace, and matte furnace. The
fused magnesia, silicon metal, and phosphorus produced by these
energy-intensive pieces of equipment play an important role in
China’s industrial production and national defense security. For
example, fused magnesia has the characteristics of high purity, a
high melting point, anti-oxidation, a complete structure, and strong
insulation. It is mainly used to produce various magnesium refrac-
tories with excellent properties. Magnesium and magnesium alloys
are important materials for the production of key products in
China’s strategic emerging industries and are widely used in aero-
space, aviation, national defense, metallurgy, and other industries.

There are challenges and difficulties in realizing the low-carbon
operational control of the energy-intensive equipment described
above. First of all, modeling is difficult. The process of converting
raw ore and raw materials into qualified products by means of
energy-intensive equipment is an interactive process involving
material flow, information flow, and energy flow (i.e., three flows).
These are often accompanied by physical and chemical reaction
processes whose reaction mechanisms are unclear. The dynamic
characteristics change in interactive processes. A process model
is composed of an operation layer and a control layer with different
time scales. The dynamic model changes with the batch produc-
tion, and the operation index of the energy consumption per tonne
is difficult to measure online. Second, operational control is diffi-
cult. The process under control has comprehensive complexities
such as strong nonlinearity, strong coupling, strong interference,
and frequent changes in dynamic characteristics, and the optimal
decision-making and operational control of the energy consump-
tion per tonne involve the scientific problems of global non-
convex non-stationary optimization and optimization of the whole
production process [6,7]. Therefore, the low-carbon operational
control of energy-intensive equipment presents challenges to the
theory and technology of modeling, control, and optimization.
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Although some achievements have been obtained in the model-
ing, control, and optimization of industrial processes [8–15], due to
the comprehensive complexity of energy-intensive equipment, it is
difficult to use existing methods to realize the operational opti-
mized control of energy-intensive equipment [16]. Therefore, man-
ual operational control methods are adopted in energy-intensive
equipment. Many human activities are a bottleneck in progress
[17]. For example, it is difficult for people to perceive dynamic
changes in operating conditions and process heterogeneous infor-
mation in a timely manner. Human decision-making and opera-
tions are subjective and inconsistent. Thus, manual operational
control methods are a key reason for the high energy consumption
of energy-intensive equipment.

Smart manufacturing has become a well-recognized core high-
level technology to enhance the overall competitiveness of the
manufacturing industry. The technical foundation of smart manu-
facturing, as represented by Germany’s Industry 4.0, is the cyber–
physical systems (CPSs). The term CPS refers to the tight conjoining
of and coordination between computational and physical
resources. We envision that the CPS of tomorrow will far exceed
those of today in terms of adaptability, autonomy, efficiency, func-
tionality, reliability, safety, and usability [18]. CPS provides new
research ideas for realizing the low-carbon operational control of
energy-intensive equipment.

The development of artificial intelligence (AI) technology pro-
vides a new technical foundation for realizing the low-carbon
operational control of energy-intensive equipment. AI is not a sin-
gle technology, but rather a collection of technologies that are
applied to specific tasks [19]. Although the boundaries of AI can
be uncertain and have tended to shift over time, what is important
is that a core objective of AI research and applications over the
years has been to automate or replicate intelligent behavior [20].
Machine intelligent systems have already begun to quietly pervade
a growing share of businesses, governments, and individual lives
around the world [21]. AI system developers commonly recognize
that machine learning will have a broad impact on industry [22]. AI
can accelerate production capabilities through more reliable
demand forecasting, increased flexibility in operations and the
supply chain, and better prediction of the impacts of change to
manufacturing operations [23]. On 10 May 2018, the US White
House hosted the Summit on Artificial Intelligence for American
Industry and issued a statement focusing on the development of
high-impact, domain-specific AI. According to the Summit, AI holds
tremendous potential as to empower the American worker, drive
growth in American industry, and improve the lives of the
American people [24]. The US National Science Foundation also
stated that AI is transforming every segment of American industry.
It is making agriculture more precise and efficient, providing new
medical diagnostics that save lives, and creating the promise of
autonomous transportation and advanced manufacturing [25].
The Development Plan for the New Generation of Artificial Intelli-
gence released by the State Council of the People’s Republic of
China has emphasized the development directions of the deep
integration of AI technology and manufacturing [26]. However,
the evolution of AI to deep learning does not consider how it can
be applied to the manufacturing process, and smart manufacturing
presents the challenges of multi-scale and multi-source informa-
tion acquisition, predictive models, and the integration of resource
planning decisions and control processes [27]. Thus, the develop-
ment of operational control intelligent systems through the tight
conjoining of and coordination between AI, industrial automation
and information technology, and energy-intensive equipment
opens up a new way to achieve the low-carbon operational control
of energy-intensive equipment.

With the development of the mobile internet represented by
the fifth generation of wireless technology (5G), edge computing,
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cloud computing, and cloud platform software, the Industrial Inter-
net has been born. The Industrial Internet creates conditions for
obtaining industrial big data. The end–edge–cloud collaboration
technology of the Industrial Internet creates conditions for the
realization of big-data-driven industrial AI algorithms and the
low-carbon intelligent operation of energy-intensive equipment
[28]. This paper proposes an intelligent control method for the
low-carbon operation of energy-intensive equipment by combin-
ing control and optimization with prediction, linking system iden-
tification with deep learning, and integrating decision-making
with control. The proposed method consists of setpoint control,
self-optimized tuning, and setpoint tracking control. An intelligent
control system for low-carbon operation was developed by adopt-
ing Industrial Internet end–edge–cloud collaboration technology.
The system has been successfully applied to a fused magnesium
furnace and achieved remarkable results in reducing carbon
emissions.
2. Description of the low-carbon operational control of energy-
intensive equipment

2.1. Status of the operational control of energy-intensive equipment

In energy-intensive equipment, such as a typical submerged arc
furnace, with raw ore as the raw material, the submerged arc
method is adopted. The current control system controls the
three-phase electrodes, forming an arc and generating a melting
current. This melts the raw ore, forming a molten pool. The raw
ore is fed while being melted. When the liquid level rises to the
top of the furnace, the processing ends. It is difficult to observe
the operating conditions in the furnace and difficult to establish
a dynamic model of the three-flow (i.e., material, information,
and energy) interaction process. The submerged arc furnace adopts
the batch production method. It takes several hours to complete
the production of one batch, and the production conditions—such
as the raw ore composition, the operation (feeding, melting, and
exhausting), and the equipment conditions—of the next batch will
change randomly. Therefore, it is difficult to establish a dynamic
model of the energy consumption per tonne for different batches,
and the operation index of energy consumption per tonne cannot
be measured online, but can only be obtained by means of labora-
tory calculation after processing. Thus, a manual operational con-
trol mode is used for the operation of a submerged arc furnace,
as shown in Fig. 1. The ‘‘knowledge workers” referred to in Fig. 1
include enterprise managers and process engineers. Enterprise
Fig. 1. Structure of the operational cont
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managers obtain production data through the information system
and decide the target value range of energy consumption per
tonne, based on their experience and knowledge. Process engineers
obtain the operating condition data through the monitoring
system and process control system, and decide on the range of
the melting current according to the target value range of the
energy consumption per tonne, based on their experience and
knowledge. Operators obtain the operating condition data through
the control system, they judge the operating condition in combina-
tion with the onsite perception of the operating condition informa-
tion, and then decide the setpoint of the melting current, which is
sent to the current-control system through the monitoring system.
The current-control system controls the three-phase electrode cur-
rent to track the setpoint of the melting current. Due to the com-
prehensive complexity of the process under control, including its
strong nonlinearity, strong coupling, strong disturbance, and
dynamic characteristics that change with the melting process, it
is difficult for a proportional–integral–derivative (PID) control sys-
tem to track the setpoint well, and the tracking error is large and
fluctuating. Thus, it is difficult to achieve the low-carbon operation
of energy-intensive equipment, which results in a high energy
consumption per tonne or even abnormal and faulty conditions.

2.2. Description of the low-carbon operational control of energy-
intensive equipment

The operational control target is given by the following:

min r Tð Þð Þ; rmin < r Tð Þ < rmax ð1Þ
where r Tð Þ represents the energy consumption per tonne, T repre-
sents the end time of the production, and rmax and rmin are the upper
and lower bounds, respectively, of the target range of the energy
consumption per tonne.

The dynamic model under operational control consists of a
dynamic model for operation and a dynamic model under control.
The dynamic model for operation is described by

_r Tð Þ ¼ g r Tð Þ; y tð Þ;dr tð Þð Þ ð2Þ
The dynamic model under control is described by

_y tð Þ ¼ f y tð Þ;u tð Þ;dy tð Þ� � ð3Þ

where g �ð Þ and f �ð Þ are unknown nonlinear functions, and the dis-
turbances dr and dy mainly involve environment and material vari-
ation, wear and tear, and so forth. y tð Þ and u tð Þ are the output and
input of the dynamic model under control.
rol of energy-intensive equipment.
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The operational optimized control law includes the optimal set-
point of the controller �y tð Þ and the control law
u tð Þ ¼ p �y tð Þ � y tð Þð Þ ¼ pe tð Þ, where p and e tð Þ respectively repre-
sent the control law and the tracking error. It is necessary for the
control law to have a good dynamic performance—that is, to ensure
that the tracking error and the fluctuation of the control input are
within their target range for the entire operational time. This
requirement is described as follows:

e tð Þj j < d1; u tð Þj j � d2; 0 < t � T ð4Þ
where d1 and d2 are the upper bounds of the tracking error and the
control input fluctuation, respectively.

Based on the problem description, some challenging problems
can be identified. The process under operational control has a
hybrid complexity. First, the dynamic model has a different time
scale. Second, the operational processes are strongly nonlinear;
thus, it is difficult to establish a mathematical model due to the
unclear mechanisms. The energy consumption per tonne cannot
be measured online. Third, the process under control also has a
hybrid complexity; for example, it has unknown variation of model
dynamics, frequent unmeasurable disturbances, and continuous
dynamical variation in status. Thus, when there are frequent
changes of the setpoint according to the optimal operation of the
energy-intensive equipment, the integral action of the controller
loses its effect. In such a case, a PID controller cannot deliver a good
performance.

The operational optimized control law also has hybrid complex-
ity. One type of complexity involves the optimal setpoints of the
controller, which change along with the dynamical variation of
the operational process under control. The other is the controller
with good dynamic performance—that is, the tracking error is con-
trolled within the target range throughout the operation time. This
operational optimized control problem is dynamic optimization
with multiple conflicting objectives. Therefore, solving this prob-
lem falls beyond the suitable range of the control and optimization
method [10,15]. Thus far, no unified method has been developed
for the operational optimized control of complex energy-
intensive equipment.

2.3. Intelligent control method for low-carbon operation

To address the difficulties in decision-making regarding the
optimal setpoint for tracking control �y tð Þ, with the aim of achiev-
ing low-carbon operational control, as shown in Eq. (1), setpoint
control is proposed, based on an analysis of the operational control
behavior of operation experts working with energy-intensive
equipment (Fig. 1), by combining control and optimization with
prediction. The setpoint control consists of a tracking control pre-
setting model, a prediction model of the energy consumption per
tonne, a feedforward compensator, and a feedback compensator.
Fig. 2. Structure of the intelligent contro
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To address the difficulties of the online measurement of the energy
consumption per tonne, a prediction model of energy consumption
per tonne driven by industrial big data is proposed, which combi-
nes mechanism analysis with deep learning. Since the dynamic
characteristics of energy-intensive equipment based on the sub-
merged arc mode change with the charging and melting process,
the setpoint for tracking control is not suitable. To deal with this
problem, self-optimized tuning is proposed, which consists of
operating condition recognition and a self-tuning compensator.
The frequent changes in the dynamic characteristics of the process
under control lead to the failure of the integral action of the feed-
back control. Therefore, it is difficult to control the tracking error
within the target range throughout the entire operation time. To
ensure that the tracking control has good control performance—
that is, to meet the constraint shown in Eq. (4)—setpoint tracking
control driven by a signal compensation method is proposed,
which combines PID with data-driven signal compensation. In
order to realize the low-carbon operational control of energy-
intensive equipment, it is necessary to integrate the decision-
making of the optimal setpoint for tracking control with the con-
trol of the optimal tracking setpoint. Thus, by integrating
decision-making and control, an intelligent control method for
the low-carbon operation of energy-intensive equipment is pro-
posed, as shown in Fig. 2. This method consists of setpoint control,
self-optimized tuning, and setpoint tracking control. The setpoint
control, which is intended to control the energy consumption per
tonne r kð Þ within the target range—that is, rmax; rmin½ �—and to keep
it as low as possible, generates the setpoint ~y kð Þ for the setpoint
tracking control. Self-optimized tuning identifies the operating
conditions in real time. When non-optimal operating conditions
are found, the tuned value D ~y kð Þ of the setpoint value is generated,
and the setpoint of the tracking control is adaptively tuned; that is,
�y kð Þ ¼ ~y kð Þ þ D ~y kð Þ. In this way, abnormal operating conditions
can be avoided, and the energy-intensive equipment can run under
optimal operating conditions. The setpoint tracking control causes
the output y kð Þ of the process under control to track the setpoint
and controls the tracking error e kð Þ—that is, e kð Þ ¼ y kð Þ � �y kð Þ—to
fluctuate within the target range.

The structure of the setpoint control is shown in Fig. 3. It con-
sists of a tracking control presetting model, a prediction model of
the energy consumption per tonne, a feedforward compensator,
and a feedback compensator. The tracking control presetting
model generates the pre-setpoint yP kð Þ of the tracking control
based on the target range rmax; rmin½ � and the target value r� of the
energy consumption per tonne. The prediction model of the energy
consumption per tonne takes yP kð Þ as input and generates the pre-
dicted value �r Tð Þ of the energy consumption per tonne. Based on
the error D�r Tð Þ between the predicted value and the target value
of the energy consumption per tonne, the feedforward compen-
sator generates the feedforward compensating value DyF kð Þ. The
l method for low-carbon operation.



Fig. 3. Structure of the setpoint control.
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tuned tracking control setpoint can be obtained by
�yF kð Þ ¼ yP kð Þ þ DyF kð Þ. Based on the error DrB Tð Þ between the
actual value r Tð Þ and the target value r� of the energy consumption
per tonne, the feedback compensator generates the feedback com-
pensating value DyB. The tracking control setpoint can be obtained
by �y kð Þ ¼ �yF kð Þ þ DyB kð Þ. The tracking control causes the output
y kð Þ of the process under control to track the setpoint �y kð Þ. The
tracking control presetting model, the feedforward compensator,
and the feedback compensator can be designed through case rea-
soning or rule reasoning [10].

The structure of the prediction model of the energy consump-
tion per tonne is shown in Fig. 4. It consists of a main model based
on the mechanism and an adaptive deep learning compensation
model [29]. The latter consists of an online deep learning compen-
sation model, a self-tuning deep learning compensation model, and
a self-tuning mechanism. The main model that is based on the
mechanism takes the tracking control pre-setpoint yP kð Þ as input
and generates a prediction br Tð Þ of the energy consumption per
tonne. The adaptive deep learning compensation model adopts
the big data of all the factors affecting energy consumption per
tonne and takes the prediction error Dr Tð Þ of the main model—that
is, Dr Tð Þ ¼ r Tð Þ � br Tð Þ—as the label. The estimated value Dbr Tð Þ of
the main model prediction error Dr Tð Þ can be obtained through
the adaptive deep learning method. The predicted value of the
energy consumption per tonne can be obtained by
�r Tð Þ ¼ br Tð Þ þ Dbr Tð Þ.

The structure of the setpoint tracking control is shown in Fig. 5.
To realize optimal operation of energy-intensive equipment, the
tracking error between the setpoint and the output must be con-
Fig. 4. Structure of the prediction model o
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trolled within its target range throughout the operation time.
Therefore, the tracking controller must have a good dynamic per-
formance. The process under control has hybrid complexity. For
example, the parameters of themodel are unknown nonlinear func-
tions. Unknown frequent and random disturbances cause the con-
trolled process to continually be in a state of dynamic variation.
The setpoint control causes the setpoint to change frequently,
according to the optimal operation of the energy-intensive equip-
ment. The integral action of the PID controller loses its effect, mak-
ing it difficult to use PID. In such a case, we use the physical
resources of the process. Since the energy-intensive equipment
operates near the working points, we can use a combination of a
lower-order linear model and an unknown high-order nonlinear
term obtained via virtual unmodeled dynamics to describe a
dynamic model of the complex energy-intensive equipment. The
unmodeled dynamics contain unknown variations of the dynamics
of the process under control and can be represented by a combina-
tion of the known unmodeled dynamics of a previous time and its
change rate. We design the controller based on a low-order linear
model, such as PID. Using this controller, we can obtain u kð Þ. We
put u kð Þ into controller-driven model to obtain the output, y� kð Þ.
Then, we can obtain y kð Þ through the process under control. Using
y kð Þ and y� kð Þ, we can obtain the unmodeled dynamic from a previ-
ous time, v k� 1ð Þ. We can use the new data for v k� 1ð Þ to design
the compensator, u2 kð Þ. Although Dv kð Þ is unknown, the tracking
error e kð Þ produced by Dv kð Þ can be obtained.We can design a com-
pensator to eliminate e kð Þ—that is, to eliminate Dv kð Þ. The objec-
tives of the design for the compensator, u2 and u3, are to
eliminate the effect of v k� 1ð Þ and Dv kð Þ as much as possible.
The compensation signals, u2 and u3, are added to the feedback con-
troller based on a low-order linear model. For a controlled process
with unknown varying parameters or one that is always in a state of
dynamic variation, existing forms of control via PID, for example,
cannot be adopted. For this complex process, compensation
signal-driven tracking control has robust adaptive control functions
and good dynamic performance. The compensated observations of
the disturbance and adaptive control have estimation errors, which
cause a tracking error outside of the target range.

The structure of the self-optimized tuning is shown in Fig. 6. It
consists of operating condition recognition, a prediction model of
the energy consumption per tonne, and a self-tuning compensator.
In complex energy-intensive equipment, the unknown random
changes of the production condition result in an unsuitable set-
point of the tracking controller, which will lead to abnormal or
non-optimal operation conditions. In the case, the operating
condition recognition, which consists of abnormal condition diag-
nosis and non-optimal condition diagnosis, produces diagnosis
results for the operating condition S (i.e., abnormal, non-optimal,
f the energy consumption per tonne.



Fig. 5. Structure of the setpoint tracking control.

Fig. 6. Structure of the self-optimized tuning. SPC: statistical process control.

T. Chai, M. Li, Z. Zhou et al. Engineering 27 (2023) 84–95
or optimal) using the target value of the energy consumption per
tonne, the predicted value, the input, the output, and the tracking
error of the tracking control system. The self-tuning compensator
consists of a self-healing compensator and a self-optimized com-
pensator. The self-healing compensator generates the compen-
sated value D~y1 Tð Þ of the setpoints for an abnormal operating
condition. The self-optimized compensator generates the compen-
sated value D~y2 Tð Þ for the non-optimal condition, so as to realize
optimal operation of the energy-intensive equipment. In the case,
the prediction model of the energy consumption per tonne predicts
the energy consumption per tonne �r Tð Þ at time T using the process
output y tð Þ at time t.

The self-optimized tuning adopts data-driven modeling and
control methods, including case-based reasoning, fuzzy-logic-
based reasoning, and rule reasoning. The prediction model of the
energy consumption per tonne in the self-optimized control adopts
system identification and adaptive deep learning.

The end–edge–cloud collaboration technology of the Industrial
Internet is used to realize the above intelligent control algorithm
89
for low-carbon operation. The end programmable logic controller
(end-PLC) control system executes setpoint tracking control and
data collection. The edge–edge control system executes the track-
ing control presetting model, the feedforward compensator, and
the feedback compensator in the setpoint control, as well as the
main model and the online deep learning compensation model in
the prediction model of the energy consumption per tonne. The
edge control system also performs the recognition of the operating
conditions, the self-tuning compensator in the self-optimized tun-
ing, and the main model and online deep learning compensation
model of the prediction of the energy consumption per tonne for
the setpoint tracking control output. The generated setpoint of
the tracking control is taken as the setpoint of the end-PLC tracking
control system. The cloud-data server and AI computing platform,
which use the industrial big data of the current moment and the
previous moment, adopting a self-tuning deep learning model
and self-tuning mechanism of setpoint control and self-
optimized tuning, adaptively tune the weight parameters and bias
parameters of the online deep learning compensation model of the
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energy consumption per tonne, so as to ensure the accuracy of the
prediction of the energy consumption per tonne.
3. Industrial application

The proposed intelligent control method for low-carbon opera-
tion has been successfully applied to a fused magnesium furnace,
an energy-intensive piece of equipment in a fused magnesia pro-
duction enterprise, as shown in Fig. 7. The parameters of the fused
magnesium furnace are provided in Table 1. The fused magnesium
furnace is the key equipment for the production of fused magnesia,
which is an important raw material in the production of refractory
materials for aerospace and industrial production. Since the melt-
ing temperature of fused magnesium is as high as 3000 �C, the
fused magnesium furnace adopts the submerged arc method. The
three-phase electrode is buried in the magnesite. By controlling
the electrode, an arc is generated to melt the magnesite, forming
a molten pool. The material is fed while being melted. Production
is completed when the liquid level of the molten pool reaches the
top of the furnace. This process generally takes 10 h, and the aver-
age power consumption of each furnace is 4000 kW�h. The process
of melting the magnesite into fused magnesium involves physical
and chemical changes. The raw materials and other production
conditions differ among different batches, and the energy con-
sumption per tonne cannot be measured online. Thus, it is difficult
to establish a dynamic model between the energy consumption per
tonne and the melting current. The parameters of the dynamic
Fig. 7. Energy-intensive equipment: the fused magnesium furnace.

Table 1
Parameters of the fused magnesium furnace

Item Parameter

Electrode diameter 350 mm
Electrode length 1500 mm
Furnace body diameter 2.5 m
Drive motor rated power 7.5 kW
Drive motor rated voltage 380 V
Drive motor rated speed 960 r�min�1

Melting voltage 100–200 V
Melting time 10 h
Design production capacity 18 t
Minimum yield 15 t
Maximum energy consumption per tonne 2650 kW�h
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model of the melting current are nonlinear functions that vary
with the impedance, the height of the molten pool, and so forth.
The three-phase electrode currents affect each other, and their
dynamic characteristics change frequently. Therefore, it is difficult
to use existing operational optimization and control methods for a
fused magnesium furnace, and manual operation control is still
adopted, as shown in Fig. 8. When the feeding and composition
of the raw ore change, it is difficult for engineers and operators
to make timely and accurate decisions regarding the setpoint of
the melting current and the control input, resulting in high energy
consumption or even abnormal operating conditions.

The key to realizing the low-carbon operation of a fused magne-
sium furnace is to control the energy consumption per tonne of
each furnace within the target range rmax; rmin½ � while reducing it
as much as possible. This can be written as follows:

min r sð Þð Þ; rmin < r sð Þ < rmax ð5Þ
where r sð Þ represents the energy consumption per tonne; s repre-
sents the batch, where s = 1, . . ., n; and s = 1 represents one batch
and its production time is T.

The magnesite loaded into the fused magnesium furnace are
fixed. The magnesite can be converted into fused magnesia as long
as the melting current and power are controlled within the target
range. Therefore, the operational control objective, Eq. (5), can be
expressed as follows:

min p kð Þð Þ
pmin < p kð Þ < pmax

ymin < yi kð Þ < ymax ð6Þ
umin < ui kð Þ < umax

0 < k � T; i ¼ 1; 2; 3

where p kð Þ represents the power; pmax and pmin are the upper and
lower bounds of the target range of the power; yi and ui represent
the ith phase electrode current and control input; ymax and ymin

are the upper and lower bounds of the target range of the melting
current; and umax and umin are the upper and lower volatility bounds
of the control inputs.

An intelligent control method for the low-carbon operation of
the fused magnesium furnace, as shown in Fig. 9, is designed by
adopting the proposed method, which consists of setpoint control
for the melting current, tracking control, and self-optimized
tuning.

Setpoint control for the melting current, as shown in Fig. 10,
consists of a presetting model that relies on case-based reasoning,
a prediction model of the power based on system identification
and adaptive deep learning, and feedforward compensation based
on rule-based reasoning.

The tracking control for the melting current, as shown in Fig. 11,
adopts PID control based on signal compensation. The method
reported in Ref. [30] is used to design adaptive PID tracking control
for the melting current, based on signal compensation.

Self-optimized tuning, as shown in Fig. 12, consists of a predic-
tion model of the power based on the three-phase electrode cur-
rent yi kð Þ, operating condition recognition driven by data, and a
self-tuning compensator driven by rule-based reasoning. The
method reported in Ref. [31] is used to design the operating condi-
tion recognition and self-tuning compensator.

The prediction model of the power, shown in Fig. 13, consists of
a linear model and an adaptive deep learning model for unknown
nonlinear dynamic systems.

The prediction model of the power is designed by adopting the
method reported in Ref. [29]. A prediction model of the power can
be established by using a melting current-tracking control closed-
loop system, described by



Fig. 8. Manual operation control of energy-intensive equipment.

Fig. 9. Intelligent control method for the low-carbon operation of a fused magnesium furnace.

Fig. 10. Structure of setpoint control for the melting current.

Fig. 11. Structure of signal compensation-based tracking control for the melting
current.
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p kþ 1ð Þ ¼ h/ kð Þ þ �v kþ 1ð Þ ð7Þ
where h ¼ a1; a2; a3; b1; b2; b3½ � and / kð Þ ¼ y kð Þ; y k� 1ð Þ;½ y k� 2ð Þ;
y� kð Þ; y� k� 1ð Þ; y� k� 2ð Þ�T, in which y(k) is the sum of the three-

phase electrode currents yi kð Þ—that is, y kð Þ ¼ P3
i¼1yi kð Þ, y� kð Þ is

the setpoint of the melting current; and �v kþ 1ð Þ is an unknown
nonlinear function.

The least-squares algorithm is used to identify the model

parameter vector h offline, and its estimated value bh is obtained.
Thus, Eq. (7) can be expressed as follows:

p kþ 1ð Þ ¼ bh/ kð Þ þ v kþ 1ð Þ ð8Þ

where v kþ 1ð Þ ¼ h� bh� �
/ kð Þ þ �v kþ 1ð Þ, v kþ 1ð Þ ¼ f y kð Þ; y k� 1ð Þ;ð

. . . ; y� kð Þ; y� k� 1ð Þ; . . .Þ. v kþ 1ð Þ is a nonlinear dynamic system with
an unknown model structure and system order. Using the method
91



Fig. 12. Structure of the self-optimized tuning.

Fig. 13. Structure of the prediction model for the power.
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reported in Ref. [29], the prediction model of v kþ 1ð Þ can be estab-
lished. The prediction model consists of an online deep learning
prediction model, a self-tuning deep learning model, and a self-
tuning mechanism. The online deep learning prediction model
and the self-tuning deep learning model adopt the same network
architecture of long short-term memory (LSTM) [32]. Since
v kþ 1ð Þ is a nonlinear system with an unknown model structure
and unknown system order, its input variable is the sum of the
three-phase electrode current y kð Þ and the melting current set value
y� kð Þ, according to Eq. (8). Therefore, it is regarded as the input of a
single neuron. The number of neurons n is expressed as the order of
the system, and the number of nodes h and the number of network
layers L of a single neuron represent the structure of the system.
Although the system structure and the order of v kþ 1ð Þ are
unknown, they can be estimated by means of the adaptive deep
learning training method and big data reported in Ref. [29]. When
the selected data is large enough, the estimated results remain
unchanged. The deep learning model structure of v kþ 1ð Þ is trained
offline with 30000 sets of power and melting current data, deter-
mining that the number of neurons n=10, the number of neuron
nodes h=160, the number of network layers L =3, and the online
training data window length N=1550. An intelligent power-
prediction algorithm is implemented using the end–edge–cloud
collaboration structure shown in Fig. 14.
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The prediction model of the power of the melting current set-
point control replaces y� kð Þ in Eq. (8) with the pre-setpoint yP kð Þ
generated by the presetting model. The generated power-
prediction value is used for the feedforward compensator, which
brings �p kþ 1ð Þ within the target range pmax; pmin½ � and generates a
setpoint y� kð Þ of the melting current that is as low as possible.
The prediction model of the power of the self-optimized tuning
replaces y kð Þ in Eq. (8) by the sum of three-phase electrode cur-

rents yi tð Þ at the instant k, which is written as
P3

i¼1yi kð Þ. The gen-
erated power-prediction value �p kþ 1ð Þ is used for operating
condition recognition and for the self-tuning compensator driven
by rule-based reasoning. Self-optimized tuning eliminates abnor-
mal operating conditions and controls �p kþ 1ð Þ to be as low as pos-
sible within the target range, in order to tune the setpoint of the
melting current.

An intelligent control algorithm for the low-carbon operation of
the fused magnesium furnace is realized by adopting an opera-
tional control system based on end–edge–cloud collaboration, as
shown in Fig. 15. Fig. 16 and Table 2 show a comparison of the
effects of the melting current setting and the control under manual
operation control with the setpoint control for the melting current
and the current-tracking control using the proposed method. The
setpoint of the melting current under manual operation control
remains unchanged. The proposed method changes the setpoint



Fig. 14. Structure of single-furnace intelligent power prediction based on end–edge–cloud collaboration.

Fig. 15. Architecture of the operational control system based on end–edge–cloud collaboration.
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of the melting current in order to control the energy consumption
per tonne to be as low as possible within the target range. Com-
pared with manual operation control, the proposed method clearly
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reduces the tracking error between the three-phase electrode cur-
rent and the setpoint of the melting current. The integral absolute
error (IAE) and mean square error (MSE) of the tracking error are



Table 2
A comparison of the effects of the current-tracking control.

Item IAE MSE

A-phase B-phase C-phase A-phase B-phase C-phase

Manual control 2.12�106 2.08�106 2.19�106 2.28�106 2.31�106 2.01�106

Compensation signal drive PID control 1.35�106 1.61�106 1.32�106 1.37�106 1.74�106 1.26�106

Decrease 36.3% 22.6% 39.7% 39.9% 24.7% 37.3%

IAE: integral absolute error; MSE: mean square error.

Fig. 16. (a) Manual operational control and (b) intelligent operational control
curves; (c, d) images of (c) manual operational control and (d) intelligent
operational control.
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reduced by 36.3%, 22.5%, and 39.7% and by 39.9%, 24.7%, and 37.3%,
respectively. The energy consumption per tonne is reduced by
8.82%, the output rate of high-quality products is increased by
3.65%, the electrode consumption is reduced by 3.73%, and the
CO2 emissions are reduced by 8.82%.
4. Conclusions

In this paper, an intelligent control method for the low-carbon
operation of energy-intensive equipment based on end–edge–
cloud collaboration was proposed. The proposed method includes
setpoint control, self-optimized tuning, and tracking control. The
setpoint control consists of a tracking control presetting model, a
prediction model of energy consumption per tonne, a feedforward
compensator, and a feedback compensator. The self-optimized
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tuning consists of operating condition recognition, an intelligent
prediction model of the energy consumption per tonne, and a
self-tuning compensator. The tracking control adopts an adaptive
PID controller based on signal compensation.

The proposed method was successfully applied to a fused mag-
nesium furnace, reducing the CO2 emissions by 8.82%, increasing
the yield of high-quality products by 3.65%, and reducing the elec-
trode consumption by 3.73%. The intelligent operational control
method proposed in this paper opens up a new way to realize
low-carbon operational control in the process industry. However,
the following challenges will be encountered: the development
of a modeling method based on digital twin technology, optimal
decision-making of the setpoint for process control with conflicting
objectives, the controller parameter optimization of a high-
performance control system, integration of the optimal decision-
making of the setpoint, and tracking control for process control.
In order to realize the low-carbon operational control of complex
industrial systems, the following issues require further study:
developing a modeling method based on digital twins for complex
production processes by combining mechanism analysis with deep
learning; developing a method for high-performance control sys-
tems by combining digital twins with machine learning; develop-
ing a low-carbon operational control method for complex
industrial systems based on the industrial metaverse; and estab-
lishing end–edge–cloud collaborative implementation technology
for realizing the low-carbon operational control of complex indus-
trial systems.
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